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1 Introduction
In the past forty years, there have been plenty of papers written about the neural net-
work dynamics in various application areas [1–12]. Particularly, (asymptotically, pseudo)
almost neural networks have received great deal of attention in the past decade due to
their potential applications in classification, associative memory parallel computation, and
other fields. So there have been many research results about the almost periodicity [13–
19], pseudo almost periodicity [20–28], and weighted pseudo almost periodicity [29–32]
on neural networks. From the viewpoint of mathematics, let (x1(t), x2(t), . . . , xn(t)) repre-
sent the state vector, recurrent neural networks (RNNs) involving mixed delays can be
described as the following nonlinear dynamic system:

x′
i(t) = –ai(t)bi

(
xi(t)

)
+

n∑

j=1

αij(t)fj
(
xj(t)

)
+

n∑

j=1

βij(t)hj
(
xj

(
t – σij(t)

))

+
n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
xj(t – μ)

)
dμ + Ii(t), i ∈ S = {1, 2, . . . , n}, (1.1)

which includes many kinds of neural networks such as BAM neural networks, Hopfield
neural networks, and cellular neural networks. Here the decay function bi and activation
functions fj, gj, hj are continuous, ai(t) represents the rate of decay, Ii(t) denotes the exter-
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nal input. Further information on the mixed delays and coefficient parameters is available
from [1, 13, 14].

Recently, for bi(u) = u (i ∈ S), by using the exponential dichotomy theorem in semilinear
differential systems, the almost periodicity and pseudo almost periodicity have been fully
investigated in [15–19] and [20–32], respectively. Nevertheless, as a nonlinear differential
equation, RNNs (1.1) involving that bi(u) �= u for some i ∈ S has no exponential dichotomy,
and there are a few research works on the asymptotically almost periodicity analysis for
this case. It is worth pointing out that all results in [13–32] are established under

Assumption (E) : ai(t) is almost periodic on R for all i ∈ S.

Now, a question naturally arises: how about the asymptotically almost periodicity of RNNs
(1.1) without assuming (E) and bi(u) = u (i ∈ S). Inspired by the preceding discussions, in
this paper, avoiding (E) and bi(u) = u (i ∈ S), we derive some novel criteria to validate the
existence and convergence of the asymptotically almost periodic solutions of (1.1). Main
contributions and innovation points of this paper are threefold. First, a class of asymp-
totically almost periodic recurrent neural networks involving mixed delays is established.
Second, a novel approach to the problem of the existence on asymptotically almost peri-
odic solutions of RNNs (1.1) is presented. Third, improved results on the global exponen-
tial attractivity of all solutions of RNNs (1.1) are obtained. Furthermore, our results not
only generalize the results in [20–32], but also improve them. In truth, one can view the
following Remark 3.1 and Remark 4.1 for extensive information.

The rest of this paper is arranged as follows. Some preliminaries and lemmas are sup-
plied in Sect. 2. In Sect. 3, some novel sufficient conditions are gained to evidence the
asymptotically almost periodicity of system (1.1). In Sect. 4, an illustrative example is pre-
sented to validate the correctness of the proposed theory. In the end, a brief conclusion is
presented to summarize and evaluate our work.

2 Preliminary results
Notations For J ⊆ R, C0(R+,J) = {ν : ν ∈ C(R+,J), limt→+∞ ν(t) = 0}. We designate the
collections of the almost periodic functions and the asymptotically almost periodic func-
tions from R to J by AP(R,J) and AAP(R,Jn), respectively. For the definitions of AP and
APP, we refer the reader to [33, 34]. For i, j ∈ S, we suppose that ai,σij ∈ AAP(R,R+),
Ii,αij,βij,γij ∈ AAP(R,R), and

ai = a0
i + a1

i , Ii = I0
i + I1

i , αij = α0
ij + α1

ij,

βij = β0
ij + β1

ij , γij = γ 0
ij + γ 1

ij , σij = σ 0
ij + σ 1

ij ,

where a0
i ,σ 0

ij ∈ AP(R,R+), I0
i ,α0

ij,β0
ij ,γ 0

ij ∈ AP(R,R), a1
i ,σ 1

ij ∈ C0(R+,R+), I1
i ,α1

ij,β1
ij ,γ 1

ij ∈
C0(R+,R).

Assumptions For i, j ∈ S and u, v ∈ R, there are constants bi > 0, bi > 0, Lf
j , Lh

j , Lg
j ,

η1,η2, . . . ,ηn, ξ , and λ such that
(U0) bi(0) = 0, bi|u – v| ≤ sign(u – v)(bi(u) – bi(v)) ≤ bi|u – v|.
(U1) |fj(u) – fj(v)| ≤ Lf

j |u – v|, |hj(u) – hj(v)| ≤ Lh
j |u – v|, |gj(u) – gj(v)| ≤ Lg

j |u – v|.
(U2) Kij : R+ →R is continuous and absolutely integrable.
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(U3)

–
[
a0

i (t)bi – λ
]
ηi +

n∑

j=1

(∣∣α0
ij(t)

∣∣ +
∣∣α1

ij(t)
∣∣)Lf

j ηj +
n∑

j=1

(∣∣β0
ij(t)

∣∣ +
∣∣β1

ij(t)
∣∣)eλσ Lh

j ηj

+
n∑

j=1

(∣∣γ 0
ij (t)

∣
∣ +

∣
∣γ 1

ij (t)
∣
∣)

∫ +∞

0

∣
∣Kij(s)

∣
∣eλs dsLg

j ηj < –ξ ,

t ∈R
+,σ = max

i,j∈S
sup
t∈R

σ 0
ij (t).

For further analysis, we set up the following nonlinear auxiliary system:

x′
i(t) = –a0

i (t)bi
(
xi(t)

)
+

n∑

j=1

α0
ij(t)fj

(
xj(t)

)
+

n∑

j=1

β0
ij(t)hj

(
xj

(
t – σ 0

ij (t)
))

+
n∑

j=1

γ 0
ij (t)

∫ +∞

0
Kij(u)gj

(
xj(t – u)

)
du + I0

i (t), i ∈ S. (1.1)0

The initial condition involved in systems (1.1) and (1.1)0 can be described as follows:

xi(s) = ϕi(s), s ∈ (–∞, 0], i ∈ S,ϕ is bounded and continuous on (–∞, 0]. (2.1)

Denote ‖x‖ = maxi∈S |xi|, ‖x(t)‖η = maxi∈S |η–1
i xi(t)|, and let it be such a designation that

η–1
it

∣
∣xit (t)

∣
∣ =

∥
∥x(t)

∥
∥

η
. (2.2)

Lemma 2.1 Designate x(t) to be a solution of the initial value problem (1.1)0 and (2.1). If
(U0), (U1), (U2), and (U3) hold, then x(t) is bounded and exists on [0, +∞).

Proof Denote [0,η∗(ϕ)) to be the maximal right existence interval of x(t). Apparently, we
can take Nϕ > 0 such that

Nϕ > 1 + sup
t∈(–∞,0]

∥
∥ϕ(t)

∥
∥

+ max
i∈S

sup
t∈R

[ n∑

j=1

∣
∣α0

ij(t)
∣
∣
∣
∣fj(0)

∣
∣ +

n∑

j=1

∣
∣β0

ij(t)
∣
∣
∣
∣hj(0)

∣
∣

+
n∑

j=1

∣
∣γ 0

ij (t)
∣
∣
∫ +∞

0

∣
∣Kij(μ)

∣
∣dμ

∣
∣gj(0)

∣
∣
]

and

∣
∣xi(t)

∣
∣ < ηi

‖I0‖∞ + Nϕ

ξ
for all t ∈ (–∞, 0], i ∈ S.

We claim that

∣∣xi(t)
∣∣ < ηi

‖I0‖∞ + Nϕ

ξ
for all t ∈ [0,η∗(ϕ)), i ∈ S. (2.3)
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Suppose the contrary and choose i ∈ S and t∗ ∈ (0,η∗(ϕ)) such that

∣
∣xi

(
t∗)∣∣ = ηi

‖I0‖∞ + Nϕ

ξ
, and

∣∣xj(t)
∣∣ < ηj

‖I0‖∞ + Nϕ

ξ
for all t ∈ (

–∞, t∗), j ∈ S.
(2.4)

It follows from (U0), (U1), (U2), (U3), and (2.4) that

0 ≤ D–(∣∣xi
(
t∗)∣∣)

≤ –a0
i
(
t∗)∣∣bi

(
xi

(
t∗))∣∣ +

∣
∣∣
∣∣

n∑

j=1

α0
ij
(
t∗)fj

(
xj

(
t∗)) +

n∑

j=1

β0
ij
(
t∗)hj

(
xj

(
t∗ – σ 0

ij
(
t∗)))

+
n∑

j=1

γ 0
ij
(
t∗)

∫ +∞

0
Kij(μ)gj

(
xj

(
t∗ – μ

))
dμ + I0

i
(
t∗)

∣∣
∣∣
∣

≤ –a0
i
(
t∗)biηi

‖I0‖∞ + Nϕ

ξ
+

n∑

j=1

∣∣α0
ij
(
t∗)∣∣(∣∣fj

(
xj

(
t∗)) – fj(0)

∣∣ +
∣∣fj(0)

∣∣)

+
n∑

j=1

∣∣β0
ij
(
t∗)∣∣(∣∣hj

(
xj

(
t∗ – σ 0

ij
(
t∗))) – hj(0)

∣∣ +
∣∣hj(0)

∣∣)

+
n∑

j=1

∣∣γ 0
ij
(
t∗)∣∣

∫ +∞

0

∣∣Kij(μ)
∣∣(∣∣gj

(
xj

(
t∗ – μ

))
– gj(0)

∣∣ +
∣∣gj(0)

∣∣)dμ +
∣∣I0

i
(
t∗)∣∣

≤ –a0
i
(
t∗)biηi

‖I0‖∞ + Nϕ

ξ
+

n∑

j=1

∣∣α0
ij
(
t∗)∣∣Lf

j ηj
‖I0‖∞ + Nϕ

ξ

+
n∑

j=1

∣∣β0
ij
(
t∗)∣∣Lh

j ηj
‖I0‖∞ + Nϕ

ξ

+
n∑

j=1

∣
∣γ 0

ij
(
t∗)∣∣

∫ +∞

0

∣
∣Kij(μ)

∣
∣dμLg

j ηj
‖I0‖∞ + Nϕ

ξ

+
n∑

j=1

∣
∣α0

ij
(
t∗)∣∣∣∣fj(0)

∣
∣ +

n∑

j=1

∣
∣β0

ij
(
t∗)∣∣∣∣hj(0)

∣
∣

+
n∑

j=1

∣
∣γ 0

ij
(
t∗)∣∣

∫ +∞

0

∣
∣Kij(μ)

∣
∣dμ

∣
∣gj(0)

∣
∣ +

∣
∣I0

i
(
t∗)∣∣

<

[

–a0
i
(
t∗)biηi +

n∑

j=1

∣∣α0
ij
(
t∗)∣∣Lf

j ηj +
n∑

j=1

∣∣β0
ij
(
t∗)∣∣Lh

j ηj

+
n∑

j=1

∣∣γ 0
ij
(
t∗)∣∣

∫ +∞

0

∣∣Kij(μ)
∣∣dμLg

j ηj

]
‖I0‖∞ + Nϕ

ξ
+

∥∥I0∥∥∞ + Nϕ

< 0,

which derives a contradiction and proves the above claim. Thus, the boundedness and the
extension theorem of solution in [35] entail that η∗(ϕ) = +∞, which finishes the proof of
Lemma 2.1. �
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Remark 2.1 Under the assumptions in Lemma 2.1, an argument similar to that applied in
Lemma 2.1 shows that each solution of initial value problem (1.1) and (2.1) is bounded on
[0, +∞).

Lemma 2.2 Let (U0), (U1), (U2), and (U3) hold. Suppose that x(t) is a solution of system
(1.1)0 with the initial function ϕ satisfying (2.1), and ϕ′ is bounded and continuous on
(–∞, 0]. Then, for any ε > 0, one can pick a relatively dense subset Mε in R to satisfy that,
for any τ ∈ Mε , there is N = N(τ ) > 0 obeying

∥∥x(t + τ ) – x(t)
∥∥

η
<

ε

2 maxi∈S ηi
for all t > N . (2.5)

Proof Denote

Pi(τ , t)

= –
[
a0

i (t + τ ) – a0
i (t)

]
bi

(
xi(t + τ )

)
+

n∑

j=1

[
α0

ij(t + τ ) – α0
ij(t)

]
fj
(
xj(t + τ )

)

+
n∑

j=1

[
β0

ij(t + τ ) – β0
ij(t)

]
hj

(
xj

(
t – σ 0

ij (t + τ ) + τ
))

+
n∑

j=1

β0
ij(t)

[
hj

(
xj

(
t – σ 0

ij (t + τ ) + τ
))

– hj
(
xj

(
t – σ 0

ij (t) + τ
))]

+
n∑

j=1

[
γ 0

ij (t + τ ) – γ 0
ij (t)

] ∫ +∞

0
Kij(μ)gj

(
xj(t + τ – μ)

)
dμ +

[
I0

i (t + τ ) – I0
i (t)

]
.

According to Lemma 2.1 and the boundedness of x(t), one finds that x(t) is uniformly
continuous on R. Thus, for any ε > 0, one can take 0 < ε∗ < ε to obey that

|a0
i (t) – a0

i (t + τ )| < ε∗, |I0
i (t) – I0

i (t + τ )| < ε∗, |σ 0
ij (t) – σ 0

ij (t + τ )| < ε∗,
|α0

ij(t) – α0
ij(t + τ )| < ε∗, |β0

ij(t) – β0
ij(t + τ )| < ε∗, |γ 0

ij (t) – γ 0
ij (t + τ )| < ε∗,

}

suggests that

∣∣Pi(τ , t)
∣∣ <

1
2 maxi∈S ηi

ξε, (2.6)

where t ∈R, i, j ∈ S.
Note that {a0

i , I0
i ,α0

ij,β0
ij ,γ 0

ij ,σ 0
ij ∈ AP(R,R) (i, j ∈ S)} is a uniformly almost periodic family.

From Corollary 2.3 in [33, p. 19], one can pick a relatively dense subset Mε∗ in R to satisfy
that

|a0
i (t) – a0

i (t + τ )| < ε∗, |I0
i (t) – I0

i (t + τ )| < ε∗,
|α0

ij(t) – α0
ij(t + τ )| < ε∗, |σ 0

ij (t) – σ 0
ij (t + τ )| < ε∗,

|β0
ij(t) – β0

ij(t + τ )| < ε∗, |γ 0
ij (t) – γ 0

ij (t + τ )| < ε∗,

⎫
⎪⎬

⎪⎭
τ ∈ Mε∗ , t ∈R. (2.7)

Denote Mε = Mε∗ , for each τ ∈ Mε , (2.6) and (2.7) give us

∣∣Pi(τ , t)
∣∣ <

1
2 maxi∈S ηi

ξε for all t ∈R, i ∈ S. (2.8)
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Designate t > T0 = 1 + max{0, –τ } and zi(t) = xi(t + τ ) – xi(t), one can obtain

dzi(t)
dt

= –a0
i (t)

[
bi

(
xi(t + τ )

)
– bi

(
xi(t)

)]
+

n∑

j=1

α0
ij(t)

[
fj
(
xj(t + τ )

)
– fj

(
xj(t)

)]

+
n∑

j=1

β0
ij(t)

[
hj

(
xj

(
t – σ 0

ij (t) + τ
))

– hj
(
xj

(
t – σ 0

ij (t)
))]

+
n∑

j=1

γ 0
ij (t)

∫ +∞

0
Kij(μ)

[
gj
(
xj(t + τ – μ)

)
– gj

(
xj(t – μ)

)]
dμ + Pi(τ , t),

and

D–(
eλs∣∣zis (s)

∣∣)∣∣
s=t

≤ λeλt∣∣zit (t)
∣
∣ + eλt

{

–a0
it (t)

∣
∣bit

(
xit (t + τ )

)
– bit

(
xit (t)

)∣∣

+

∣∣
∣∣∣

n∑

j=1

α0
it j(t)

[
fj
(
xj(t + τ )

)
– fj

(
xj(t)

)]

+
n∑

j=1

β0
it j(t)

[
hj

(
xj

(
t – σ 0

it j(t) + τ
))

– hj
(
xj

(
t – σ 0

it j(t)
))]

+
n∑

j=1

γ 0
it j(t)

∫ ∞

0
Kitj(μ)

[
gj
(
xj(t + τ – μ)

)
– gj

(
xj(t – μ)

)]
dμ + Pit (τ , t)

∣
∣∣
∣∣

}

≤ eλt

{

–
[
a0

it (t)bit – λ
]∣∣zit (t)

∣
∣η–1

it ηit +
n∑

j=1

α0
it j(t)Lf

j
∣
∣zj(t)

∣
∣η–1

j ηj

+
n∑

j=1

β0
it j(t)Lh

j
∣∣zj

(
t – σ 0

it j(t)
)∣∣η–1

j ηj

+
n∑

j=1

γ 0
it j(t)

∫ +∞

0

∣∣Kitj(μ)
∣∣Lg

j
∣∣zj(t – μ)

∣∣η–1
j ηj dμ

}

+ eλt∣∣Pit (τ , t)
∣∣. (2.9)

Denote

Q(t) = sup
s≤t

{
eλs∥∥z(s)

∥∥
η

}
for all t ≥ T0. (2.10)

Obviously, Q(t) is nondecreasing.
If Q(t) – eλt|z(t)| is eventually positive, then one can pick T1 > T0 satisfying

Q(t) > eλt∥∥z(t)
∥
∥

η
for all t ≥ T1.

Then, for each t ≥ T1, there exists εt > 0 such that

Q(t) > eλs∥∥z(s)
∥∥

η
for all s ∈ (t – εt , t + εt)
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and

Q(t) ≡ Q(s) for all s ∈ (t – εt , t + εt).

Therefore,

Q(t) ≡ Q(T1) is a constant for all t ≥ T1,

and there is T2 > T1 satisfying

∥
∥z(t)

∥
∥

η
≤ e–λtQ(t) = e–λtQ(T1) <

ε

2 maxi∈S ηi
for all t ≥ T2.

If Q(t) – eλt|z(t)| is not eventually positive, then A = {t ≥ T0 : Q(t) = eλt‖z(t)‖η} ∩
[s, +∞) �= ∅ for all s ≥ T0. Take Tt ≥ T0 satisfying Q(Tt) = eλTt ‖z(Tt)‖η , (U3) and (2.9)
yield

0 ≤ D+(
eλs∣∣zis (s)

∣
∣)

∣
∣
s=Tt

≤ eλTt

{

–
[
a0

iTt

(
Tt)biTt – λ

]∣∣ziTt

(
Tt)∣∣η–1

iTt ηiTt +
n∑

j=1

α0
iTt j

(
Tt)Lf

j
∣∣zj

(
Tt)∣∣η–1

j ηj

+
n∑

j=1

β0
iTt j

(
Tt)Lh

j
∣∣zj

(
Tt – σ 0

iTt j
(
Tt))∣∣η–1

j ηj

+
n∑

j=1

γ 0
iTt j

(
Tt)

∫ +∞

0

∣
∣KiTt j(μ)

∣
∣Lg

j
∣
∣zj

(
Tt – μ

)∣∣η–1
j ηj dμ

}

+ eλTt ∣∣PiTt

(
τ , Tt)∣∣

≤
{

–
[
a0

iTt

(
Tt)biTt – λ

]
ηiTt +

n∑

j=1

α0
iTt j

(
Tt)Lf

j ηj

+
n∑

j=1

β0
iTt j

(
Tt)Lh

j eλσ ηj

+
n∑

j=1

γ 0
iTt j

(
Tt)

∫ +∞

0

∣∣KiTt j(μ)
∣∣eλμ dμLg

j ηj

}

Q
(
Tt) + eλTt ∣∣PiTt

(
τ , Tt)∣∣

≤ –ξQ
(
Tt) + eλTt ∣∣PiTt

(
τ , Tt)∣∣. (2.11)

Hence, (2.8) and (2.10) lead to

∥
∥z

(
Tt)∥∥

η
≤ e–λTt

Q
(
Tt) ≤ e–λTt

eλTt 1
ξ

∣
∣PiTt

(
τ , Tt)∣∣ <

ε

2 maxi∈S ηi
.

Similarly, one can derive that ‖z(χ )‖η < ε
2 maxi∈S ηi

provided that χ > Tt with Q(χ ) =
eλχ‖z(χ )‖η . Therefore, assuming that t > Tt and Q(t) > eλt|z(t)|, one can take Tt∗ ∈ [Tt , t)
satisfying

Q
(
Tt

∗
)

= eλTt∗
∥∥z

(
Tt

∗
)∥∥

η
, and Q(s) > eλs∥∥z(s)

∥∥
η

for all s ∈ (Tt
∗, t].
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From the fact that ‖z(Tt∗)‖η < ε
2 maxi∈S ηi

, we get

Q(s) ≡ Q
(
Tt

∗
)

for all s ∈ (Tt
∗, t], and

∥∥z(t)
∥∥

η
≤ e–λteλTt∗

∥∥z
(
Tt

∗
)∥∥

η
<

ε

2 maxi∈S ηi
.

Finally, there is N = N(τ ) > 0 satisfying that

∥∥z(t)
∥∥

η
<

ε

2 maxi∈S ηi
for all t > N .

This finishes the proof of Lemma 2.2. �

3 Asymptotically almost periodicity
Theorem 3.1 If (U0), (U1), (U2), and (U3) hold, then every solution of (1.1) with initial
condition (2.1) is asymptotically almost periodic on R

+ and converges to an almost periodic
function x∗(t) as t → +∞, which is a unique almost periodic solution of system (1.1)0.

Proof Denote u(t) = (u1(t), u2(t), . . . , un(t)) to be a solution of system (1.1)0 in Lemma 2.2,
and

Pi,q(t)

= –
[
a0

i (t + tq) – a0
i (t)

]
bi

(
ui(t + tq)

)
+

n∑

j=1

[
α0

ij(t + tq) – α0
ij(t)

]
fj
(
uj(t + tq)

)

+
n∑

j=1

[
β0

ij(t + tq) – β0
ij(t)

]
hj

(
uj

(
t – σ 0

ij (t + tq) + tq
))

+
n∑

j=1

β0
ij(t)

[
hj

(
uj

(
t – σ 0

ij (t + tq) + tq
))

– hj
(
uj

(
t – σ 0

ij (t) + tq
))]

+
n∑

j=1

[
γ 0

ij (t + tq) – γ 0
ij (t)

]∫ +∞

0
Kij(μ)gj

(
uj(t + tq – μ)

)
dμ

+
[
I0

i (t + tq) – I0
i (t)

]
, i ∈ S,

where {tq}q≥1 ⊆ R is a sequence. Then

u′
i(t + tq)

= –a0
i (t)bi

(
ui(t + tq)

)
+

n∑

j=1

α0
ij(t)fj

(
uj(t + tq)

)
+

n∑

j=1

β0
ij(t)hj

(
uj

(
t – σ 0

ij (t) + tq
))

+
n∑

j=1

γ 0
ij (t)

∫ +∞

0
Kij(μ)gj

(
uj(t + tq – μ)

)
dμ

+ I0
i (t) + Pi,q(t), i ∈ S, t + tq ≥ 0. (3.1)

In a similar way to the proof of (2.8), we can take {tq}q≥1 satisfying

∣
∣Pi,q(t)

∣
∣ <

1
q

for all i, q, t. (3.2)
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Note that {u(t + tq)}q≥1 is uniformly bounded and equiuniformly continuous, from the
Arzela–Ascoli lemma, one can select a subsequence {tqj}j≥1 of {tq}q≥1 to satisfy that
{u(t + tqj )}j≥1 (we also designate it by {u(t + tq)}q≥1) is convergent uniformly to a bounded
and continuous function x∗(t) = (x∗

1(t), x∗
2(t), . . . , x∗

n(t)) in any compact set of R. Conse-
quently,

a0
i (t)hi(ui(t + tq)) ⇒ a0

i (t)hi(x∗
i (t)),

∑n
j=1 α0

ij(t)fj(uj(t + tq)) ⇒ ∑n
j=1 α0

ij(t)fj(x∗
j (t)),

∑n
j=1 β0

ij(t)hj(uj(t – σ 0
ij (t) + tq)) ⇒ ∑n

j=1 β0
ij(t)hj(x∗

j (t – σ 0
ij (t))),

⎫
⎪⎬

⎪⎭

as q → +∞ (3.3)

in every compact set of R. Here, the symbol “⇒” represents “ is convergent uniformly to”.
Now, we show that

n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
uj(t + tq – μ)

)
dμ

⇒
n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
x∗

j (t – μ)
)

dμ

(q → +∞) on any compact set of R. (3.4)

For any ε > 0 and [a, b] ⊆ R, (U2) and the boundedness of u and x∗ entail that one can
pick A∗ > 0 to satisfy that

∣
∣∣
∣∣

n∑

j=1

γij(t)
∫ +∞

A∗
Kij(μ)gj

(
uj(t + tq – μ)

)
dμ

–
n∑

j=1

γij(t)
∫ +∞

A∗
Kij(μ)gj

(
x∗

j (t – μ)
)

dμ

∣
∣∣∣
∣

<
ε

2
(3.5)

for all i, t, q. Note that {u(t + tq)} is convergent uniformly to x∗(t) on [a – A∗, b], one can
take a positive integer q∗ to satisfy that, for q > q∗ and t ∈ [a, b],

∣∣
∣∣∣

n∑

j=1

γij(t)
∫ A∗

0
Kij(μ)gj

(
uj(t + tq – μ)

)
du –

n∑

j=1

γij(t)
∫ A∗

0
Kij(μ)gj

(
x∗

j (t – μ)
)

dμ

∣∣
∣∣∣

<
ε

2
.

This and (3.5) produce that

∣
∣∣∣
∣

n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
uj(t + tq – μ)

)
dμ –

n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
x∗

j (t – μ)
)

dμ

∣
∣∣∣
∣

< ε, for all q > q∗, t ∈ [a, b],



Yu et al. Advances in Difference Equations        (2018) 2018:417 Page 10 of 15

which leads to (3.4). Hence, (3.1), (3.2), (3.3), and (3.4) suggest that {u′
i(t + tq)}q≥1 is con-

vergent uniformly to

–a0
i (t)hi

(
x∗

i (t)
)

+
n∑

j=1

α0
ij(t)fj

(
x∗

j (t)
)

+
n∑

j=1

β0
ij(t)hj

(
x∗

j
(
t – σ 0

ij (t)
))

+
n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
x∗

j (t – μ)
)

dμ + I0
i (t)

on every compact set in R. Furthermore, one can derive that x∗(t) is a solution of (1.1)0

and

(
x∗

i (t)
)′ = –a0

i (t)hi
(
x∗

i (t)
)

+
n∑

j=1

α0
ij(t)fj

(
x∗

j (t)
)

+
n∑

j=1

β0
ij(t)hj

(
x∗

j
(
t – σ 0

ij (t)
))

+
n∑

j=1

γij(t)
∫ +∞

0
Kij(μ)gj

(
x∗

j (t – μ)
)

dμ + I0
i (t) for all t ∈R, i ∈ S. (3.6)

Hereafter, for any ε > 0, according to Lemma 2.2, one can pick a relatively dense subset
Mε in R such that, for any τ ∈ Mε , there is N = N(τ ) > 0 obeying

∣∣ui(s + tq + τ ) – ui(s + tq)
∣∣ ≤ ηi

∥∥u(s + tq + τ ) – u(s + tq)
∥∥

η
<

ε

2
for all s + tq > N ,

and

lim
q→+∞

∣
∣ui(s + tq + τ ) – ui(s + tq)

∣
∣ =

∣
∣x∗

i (s + τ ) – x∗
i (s)

∣
∣ ≤ ε

2
< ε for all s ∈R, i ∈ S, (3.7)

which, together with definitions of AP in [33, 34], proves that x∗(t) is an almost periodic
solution of (1.1)0.

Now, let x(t) be an arbitrary solution of the initial value problem (1.1) and (2.1), we turn
to demonstrate that limt→+∞ x(t) = x∗(t). Set y(t) = {yj(t)} = {xj(t) – x∗

j (t)} = x(t) – x∗(t) and

Bi(t) = –a1
i (t)bi

(
xi(t)

)
+

n∑

j=1

α1
ij(t)fj

(
xj(t)

)
+

n∑

j=1

β1
ij(t)hj

(
xj

(
t – σij(t)

))

+
n∑

j=1

β0
ij(t)

[
hj

(
xj

(
t – σij(t)

))
– hj

(
xj

(
t – σ 0

ij (t)
))]

+
n∑

j=1

γ 1
ij (t)

∫ +∞

0
Kij(μ)gj

(
xj(t – μ)

)
dμ + I1

i (t), i ∈ S.

Thus

y′
i(t) = –a0

i (t)
[
bi

(
xi(t)

)
– bi

(
x∗

i (t)
)]

+
n∑

j=1

α0
ij(t)

(
fj
(
yj(t) + x∗

j (t)
)

– fj
(
x∗

j (t)
))

+
n∑

j=1

β0
ij(t)

(
hj

(
yj

(
t – σ 0

ij (t)
)

+ x∗
j
(
t – σ 0

ij (t)
))

– hj
(
x∗

j
(
t – σ 0

ij (t)
)))
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+
n∑

j=1

γ 0
ij (t)

∫ +∞

0
Kij(μ)

(
gj
(
yj(t – μ) + x∗

j (t – μ)
)

– gj
(
x∗

j (t – μ)
))

dμ

+ Bi(t), i ∈ S.

Since a1
i ,σ 1

ij ∈ C0(R+,R+), I1
i ,α1

ij,β1
ij ,γ 1

ij ∈ C0(R+,R) and x is uniformly continuous on R,
one can take a constant Tϕ

0 > 0 to satisfy that, for every ε > 0,

∣
∣Bi(t)

∣
∣ < ξ

ε

2 maxi∈S ηi
for all t > Tϕ

0 , i ∈ S,

and

D–(
eλs∣∣yis (s)

∣∣)∣∣
s=t

≤ eλt

{

–
[
a0

it (t)bit – λ
]∣∣yit (t)

∣
∣η–1

it ηit +
n∑

j=1

α0
it j(t)Lf

j
∣
∣yj(t)

∣
∣η–1

j ηj

+
n∑

j=1

β0
it j(t)Lh

j
∣∣yj

(
t – σ 0

it j(t)
)∣∣η–1

j ηj

+
n∑

j=1

γ 0
it j(t)

∫ +∞

0

∣∣Kitj(μ)
∣∣Lg

j
∣∣yj(t – μ)

∣∣η–1
j ηj dμ

}

+ eλt∣∣Bit (t)
∣∣ for all t > Tϕ

0 .

Define

Γ (t) = sup
s≤t

{
eλs∥∥y(s)

∥∥
η

}
for all t ∈R.

Then, an argument similar to that used in Lemma 2.2 shows that there exists Tϕ ≥ Tϕ
0

satisfying

∥∥y(t)
∥∥

η
<

ε

2 maxi∈S ηi
for all t ≥ Tϕ ,

which implies

lim
t→+∞ x(t) = x∗(t), and x(t) ∈ AAP

(
R,Rn).

Therefore, (1.1)0 has a unique almost periodic solution N∗(t). The proof is finished. �

Remark 3.1 Under the conditions in Lemma 2.2, from Lemma 2.1 and Lemma 2.2, by ap-
plying a similar way as that in Theorem 3.1 of [13], one can show that every solution x(t)
of (1.1)0 converges exponentially to x∗(t) as t → +∞. Since AP(R,R) is a proper subspace
of AAP(R,R), one can easily see that all the results on (1.1)0 in [13] are special ones of
Theorem 3.1 in this paper. Most recently, the authors in [36] established asymptotically
almost periodicity on shunting inhibitory cellular neural networks with time-varying de-
lays and continuously distributed delays. However, the asymptotically almost periodicity
on recurrent neural networks without the assumption E and the condition bi(u) = u has
not been explored in [36]. This implies that Theorem 3.1 generalizes and complements
the main results of [13, 36].
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4 A numerical example
Example 4.1 Regard the following asymptotically almost periodic recurrent neural net-
works:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′
1(t) = –(10 + cos

√
2t + 1

1+|t| )(20x1(t) + arctan x1(t))

+ (cos
√

3t + 1
|t|+3 )f1(x1(t)) + (cos

√
3t + 1

|t|+3 )f2(x2(t))

+ (cos
√

5t + 1
|t|+2 )h1(x1(t – 2)) + (cos

√
5t + 1

|t|+2 )h2(x2(t – 2))

+ (cos
√

7t + 1
|t|+2 )

∫ +∞
0 e–2μg1(x1(t – μ)) dμ + (cos

√
7t

+ 1
|t|+2 )

∫ +∞
0 e–2μg2(x2(t – μ)) dμ + 100 sin t + 1

5|t|+1 ,

x′
2(t) = –(10 + sin

√
2t + 1

1+|t| )(30x2(t) + arctan x2(t))

+ (cos
√

11t + 1
|t|+3 )f1(x1(t)) + (cos

√
11t + 1

|t|+3 )f2(x2(t))

+ (cos
√

15t + 1
|t|+2 )h1(x1(t – 2)) + (cos

√
15t + 1

|t|+2 )h2(x2(t – 2))

+ (cos
√

17t + 1
|t|+2 )

∫ +∞
0 e–2μg1(x1(t – μ)) dμ + (cos

√
17t

+ 1
|t|+2 )

∫ +∞
0 e–2μg2(x2(t – μ)) dμ + 100 cos t + 1

25|t|+1 .

(4.1)

Here h1(x) = h2(x) = 1
20 arctan x, f1(x) = f2(x) = g1(x) = g2(x) = 1

20 x,

a1(t) = (10 + cos
√

2t) +
1

1 + |t| , a2(t) = (10 + sin
√

2t) +
1

1 + |t| ,

b1(u) = (20u + arctan u), b2(u) = (30u + arctan u)

and

(
α11(t) α12(t)
α21(t) α22(t)

)

=

(
(cos

√
3t + 1

|t|+3 ) (cos
√

3t + 1
|t|+3 )

(cos
√

11t + 1
|t|+3 ) (cos

√
11t + 1

|t|+3 )

)

,

(
β11(t) β12(t)
β21(t) β22(t)

)

=

(
(cos

√
5t + 1

|t|+2 ) (cos
√

5t + 1
|t|+2 )

(cos
√

15t + 1
|t|+2 ) (cos

√
15t + 1

|t|+2 )

)

,

(
γ11(t) γ12(t)
γ21(t) γ22(t)

)

=

(
(cos

√
7t + 1

|t|+2 ) (cos
√

7t + 1
|t|+2 )

(cos
√

17t + 1
|t|+2 ) (cos

√
17t + 1

|t|+2 )

)

.

Let ηi = 1, Lf
j = Lh

j = Lg
j = 1

20 , b1 = 20, b2 = 30, ξ = 5, i, j = 1, 2, we can see that system (4.1)
obeys all the conditions in Theorem 3.1. Therefore, each solution of (4.1) is convergent
to the same almost periodic function as t → +∞, which is also an asymptotically almost
periodic function on R

+. This fact can be revealed in Fig. 1: Numerical solutions of system
(4.1) with initial values (10, –30), (–30, 40), (30, –60), respectively.

Remark 4.1 Clearly,

a1(t) = (10 + cos
√

2t) +
1

1 + |t| and a2(t) = (10 + sin
√

2t) +
1

1 + |t|

are not almost periodic functions, and b1(u) = (20u + arctan u) and b2(u) = (30u + arctan u)
do not satisfy that bi(u) = u (i ∈ S). Thus, all the results established in [13–32, 36] cannot be
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Figure 1 Numerical solutions of system (4.1) with different initial values

applied to imply that all the solutions of (4.1) converge globally to the almost periodic so-
lution. On the other hand, to the best of the authors’ knowledge, there is no research work
concerning the asymptotically almost periodicity on recurrent neural networks without
the assumption E and the condition bi(u) = u. Therefore, the results established in this
paper are essentially new.

5 Conclusions
In this paper, avoiding the exponential dichotomy theory, the asymptotically almost peri-
odicity on recurrent neural networks involving mixed delays has been explored. By com-
bining the Lyapunov function method with differential inequality approach, some suf-
ficient assertions have been gained to validate the global convergence of the addressed
model. Particularly, our conditions are easily checked in practice by simple inequality
methods, and the approach adopted in this paper provides a possible way to research the
topic on asymptotically almost periodic dynamics of other nonlinear neural network mod-
els. In future research, we will research the dynamics for asymptotically almost periodic
Cohen–Grossberg neural network models.
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