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Abstract
Considered herein is the periodic μ-Degasperis–Procesi equation, which is an
evolution equation on the space of tensor densities over the Lie algebra of smooth
vector fields. First two conditions on the initial data that lead to breaking waves in
finite time are formulated. The first breaking-wave result relies on the refined analysis
on the evolution of the Lyapunov function V(t) =

∫
S
u3x (t, x)dx; while the second result

is based on the delicate comparison of the evolution of the solution u and its gradient
ux . Second the existence of permanent waves is obtained by using an ‘invariant’
property of the momentum. Last the blow-up rate of breaking wave is determined by
the argument of Constantin and Escher’s well-known result on the evolution of the
minimum of the gradient of the solution u.
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1 Introduction
The Degasperis–Procesi equation (DP)

ut – utxx + 4uux = 3uxuxx + uuxxx (1.1)

was originally derived by Degasperis and Procesi [18, 19] using the method of asymptotic
integrability up to third order as one of three equations in the family of third order disper-
sive PDE

ut – α2uxxt + γ0uxxx + c0ux =
(
c1u2 + c2u2

x + c3uuxx
)

x.

The other two integrable equations in the family, after rescaling and applying a Galilean
transformation, are the Korteweg–de Vries (KdV) equation

ut + uxxx + uux = 0 (1.2)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1873-7
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1873-7&domain=pdf
mailto:guof@njnu.edu.cn


Guo Advances in Difference Equations        (2018) 2018:422 Page 2 of 16

and the Camassa–Holm (CH) shallow water equation [5, 16, 23]

ut – utxx + 3uux = 2uxuxx + uuxxx. (1.3)

The CH and DP equations have attracted a lot of attention among the integrable systems
and the PDE communities due to their two non-standard properties. The first most re-
markable is the presence of “peakons” solutions [5, 19]. These peakons are weak solutions
in the distributional sense and shown to be stable in [17, 28]. Another remarkable prop-
erty is the occurrence of wave-breaking phenomena (i.e., a solution that remains bounded
while its slope becomes unbounded in finite time) [11–14, 25, 29, 30].

It is noted that, for the CH equation, a solution after breaking can be continued as ei-
ther a global conservative solution [2] or as a global dissipative solution [3], while for the
DP equation shock waves possibly appear afterwards [32]. By now, there have been many
papers devoted to the study of the DP equations, see, for example, [1, 6–9, 15, 21, 22, 26,
28–31, 33].

The CH and DP equations are the cases λ = 2 and λ = 3, respectively, of the following
family of equations:

ut – utxx + (λ + 1)uux = λuxuxxx + uuxxx, λ ∈ Z. (1.4)

Each equation in the family admits peakons [18] although only λ = 2 and λ = 3 are believed
to be integrable [19]. Lenells, Misiolek, and Tiğlay [27] showed that each equation in the
corresponding μ-version of the family (1.4) given by

μ(ut) – utxx + λμ(u)ux = λuxuxxx + uuxxx, λ ∈ Z (1.5)

also admits peakon solutions, in which μ(u) =
∫
S

u(t, x) dx is its mean and μ(ut) has
the similar meaning. The choices λ = 2 and λ = 3 yield the μ-Camassa–Holm and μ-
Degasperis–Procesi (μ-DP) equations, respectively.

The μ-DP equation can be formally described as an evolution equation on the space
of tensor densities over the Lie algebra of smooth vector fields on the circle S. As men-
tioned in [27], such geometric interpretation is not completely satisfactory. Recently, Es-
cher, Kohlmann, and Kolev [20] verified that the periodic μ-DP equation describes the
geodesic flow of a right-invariant affine connection on the Frechet Lie group Diff∞(S) of
all smooth and orientation-preserving diffeomorphisms of the circle S. The μ-DP equa-
tion admits the Lax pair

Ψxxx = –ξmΨ ,

Ψt = –
1
ξ
Ψxx – uΨx + uxΨ ,

where ξ ∈ C is a spectral parameter and m = μ(u) – uxx. Moreover, the μ-DP equation also
has a bi-Hamiltonian structure and an infinite hierarchy of conservation laws, therefore it
is formally integrable.

It is easy to check that the μ-DP equation is reversible, i.e., invariant under transfor-
mation u �→ –u, t �→ –t. However, it is not Galilean invariant, i.e., not invariant under
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u �→ u + κ , t �→ t, x �→ x + κt. It lies in a family of equations parameterized by the critical
shallow water speed κ ∈R of the Galilean frame, i.e., the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

μ(ut) – uxxt + 3μ(u)ux – 3uxuxx – uuxxx + 2κux = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈R.

(1.6)

If κ = 0 and μ(u) = 0, then Eq. (1.6) reduces to the short wave limit of the Degasperis–
Procesi equation [19] or the μ-Burgers equation [27].

The goal of the present paper is to study the initial-value problem of the periodic Eq. (1.6)
in the Sobolev space Hs(S), where S = R/Z. The Cauchy problem associated with Eq. (1.6)
in the limiting case κ = 0 was studied in [24, 27]. We consider here the case κ �= 0. Com-
pared with the limiting case κ = 0 (see [24, 27]), the difficulty we encounter is that the
quantity μ(u) – uxx cannot be conserved along the trajectory of the solution (cf., for ex-
ample, the equation below (5.17) in [27]); as a replacement, we prove a similar conser-
vation law (see Lemma 2.3). Based on this result, we can show that Eq. (1.6) has peri-
odic waves that propagate at all times, as well as periodic waves that break in finite time,
in the sense that the solution u ∈ ([0, T), Hs(S)), s > 3

2 with finite time T < ∞ satisfying
lim inft↑T (infx∈S ux(t, x)) = –∞.

To analyze the breaking weaves, we provide two different approaches. The first one is
based on a refined analysis on the evolution of the Lyapunov function V (t) =

∫
S

u3
x(t, x) dx,

where some conserved quantities are involved (Theorem 3.1). The second one is based
on the delicate comparison of the evolution of the solution u and its gradient ux. To our
best knowledge, this approach was inspired by Constantin and Escher [11, 14]. We will
use a continuous family of diffeomorphisms of the line associated with Eq. (1.6) to show
that, for some “large” enough initial data, the corresponding solutions break in finite time.
More precisely, by using an a priori estimate for the L∞-norm of the solution (Lemma 2.4),
we find that the slope of the solution approaches infinitely in finite time or infinite time
much faster than the solution itself even if it is unbounded. As a result, this leads to wave
breaking (Theorem 3.2).

By virtue of an “invariant” property (Lemma 2.3), we can prove that if the initial data
does not change its sign (Theorem 4.1), or its some Sobolev norm is appropriately “small”
(Theorem 4.2), then the waves will exist permanently in time. In Constantin and Escher’s
pioneering paper [13], they proved that the “blow-up” quantity m(t) := infx∈S[ux(x, t)] is
almost everywhere differential and the infimum can be obtained at points relying on the
variable t. By this argument, we will determine the blow-up rate of the solutions (Theo-
rem 5.1).

Throughout the paper, we identify all spaces of periodic functions with function spaces
over S = R/Z, and for simplicity we drop S in our notation.

2 Preliminaries
The initial-value problem (1.6) can be rewritten as

⎧
⎪⎪⎨

⎪⎪⎩

ut + uux + A–1∂x(3μ0u + 2κu) = 0, t > 0, x ∈R,

u(0, x) = u0(x), x ∈R,

u(t, x + 1) = u(t, x), t ≥ 0, x ∈R,

(2.1)
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where μ0 is defined by (2.8), A = μ – ∂2
x is an isomorphism between Hs and Hs–2 with the

inverse v = A–1w given explicitly by

v(x) =
(

x2

2
–

x
2

+
13
12

)

μ(w) +
(

x –
1
2

)∫ 1

0

∫ y

0
w(s) ds dy

–
∫ x

0

∫ y

0
w(s) ds dy +

∫ 1

0

∫ y

0

∫ s

0
w(r) dr ds dy. (2.2)

Since A–1 and ∂x commute, the following identities hold:

A–1∂xw(x) =
(

x –
1
2

)∫ 1

0
w(x) dx –

∫ x

0
w(y) dy +

∫ 1

0

∫ x

0
w(y) dy dx (2.3)

and

A–1∂2
x w(x) = –w(x) +

∫ 1

0
w(x) dx. (2.4)

With m = (μ – ∂2
x )u, Eq. (1.6) can also be rewritten as

mt + umx + 3mux + 2κux = 0. (2.5)

This will be used in the proof of the second breaking result (Theorem 3.2).
In the following, we establish some a priori estimates for Eq. (2.1). It is easy to verify that

the first two conserved quantities for (2.1) are

H0 =
∫

S

m dx =
∫

S

(
μ(u) – uxx

)
dx = μ(u) (2.6)

and

H1 =
1
2

∫

S

u2 dx. (2.7)

Let

μ0 = μ
(
u(0)

)
=

∫

S

u(t, x) dx (2.8)

and

μ2 =
(∫

S

u2(0, x) dx
) 1

2
=

(∫

S

u2(t, x) dx
) 1

2
. (2.9)

Then μ0 and μ2 are constants and independent of time t due to (2.6) and (2.7).

Lemma 2.1 ([10]) If f ∈ H3 is such that
∫
S

f (x) dx = a0/2, then for every ε > 0, we have

max
x∈S

f 2(x) ≤ ε + 2
24

∫

S

f 2
x (x) dx +

ε + 2
4ε

a2
0. (2.10)
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Remark 2.1 Since H3 is dense in H1, Lemma 2.1 also holds for every f ∈ H1. Moreover, if
∫
S

f (x) dx = 0, from the deduction of this lemma we arrive at the following inequality:

max
x∈S

f 2(x) ≤ 1
12

∫

S

f 2
x (x) dx, f ∈ H1. (2.11)

Lemma 2.2 ([4]) For every f (x) ∈ H1(a, b) periodic and with zero average, i.e.,
∫ b

a f (x) dx =
0, we have

∫ b

a
f 2(x) dx ≤

(
b – a
2π

)2 ∫ b

a

∣
∣fx(x)

∣
∣2 dx, (2.12)

and equality holds if and only if

f (x) = A cos

(
2πx
b – a

)

+ B sin

(
2πx
b – a

)

. (2.13)

The following proposition concerns the local well-posedness of (2.1), which was ob-
tained in [27] (up to a slight modification, so the proof is omitted here).

Proposition 2.1 Let u0 ∈ Hs, s > 3
2 . Then there exist a maximal T = T(u0,κ) > 0 and a

unique solution u to (2.1) such that

u = u(·, u0) ∈ C
(
[0, T

)
, Hs) ∩ C1([0, T

)
, Hs–1).

Moreover, the solution depends continuously on the initial data, that is, the mapping u0 �→
u(·, u0) : Hs → C([0, T), Hs) ∩ C1([0, T), Hs–1) is continuous.

Proposition 2.2 The maximal T in Proposition 2.1 can be chosen independent of s in
the following sense. If u = u(·, u0) ∈ C([0, T), Hs) ∩ C1([0, T), Hs–1) and u0 ∈ Hs′ for some
s′ �= s, s′ > 3

2 , then u ∈ C([0, T), Hs′ ) ∩ C1([0, T), Hs′–1) and with the same T . In particular,
if u0 ∈ H∞ =

⋂
s≥0 Hs, then u ∈ C([0, T), H∞).

We now introduce Lagrangian coordinates for (2.1) in the following way. Assume that u
is the solution of (2.1). Given x ∈ R, we associate with u the following Cauchy problem:

⎧
⎨

⎩

qt = u(t, q), t ∈ [0, T),

q(0, x) = x, x ∈R.
(2.14)

Applying classical results in the theory of ordinary differential equations, we have the fol-
lowing properties of q which are crucial in the proof of permanent waves.

Lemma 2.3 Let u0 ∈ Hs, s > 3
2 , and let T > 0 be the maximal existence time of the corre-

sponding solution u to (2.1). Then (2.14) has a unique solution q ∈ C1([0, T) × R,R) such
that the map q(t, ·) is an increasing diffeomorphism of R with

qx(t, x) = exp

(∫ t

0
ux

(
s, q(s, x)

)
ds

)

> 0, ∀(t, x) ∈ [0, T) ×R.
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Furthermore, setting m = μ(u) – uxx, we have

(

m
(
t, q(t, x)

)
+

2
3
κ

)

q3
x(t, x) = m0(x) +

2
3
κ , ∀(t, x) ∈ [0, T) ×R.

Proof Since u ∈ C1([0, T), Hs–1) and Hs ↪→ C1(S), we see that both functions u(t, x) and
ux(t, x) are bounded, Lipschitz in the space variable x, and of class C1 in time. Therefore, for
fixed x ∈ R, (2.14) is an ordinary differential equation. Then, by the well-known classical
results in the theory of ordinary differential equations, (2.14) has a unique solution q(t, x) ∈
C1([0, T) ×R,R).

Differentiating (2.14) with respect to x yields

⎧
⎨

⎩

d
dt qx = ux(t, q)qx, t ∈ [0, T),

qx(0, x) = 1, x ∈R.
(2.15)

The solution is given by

qx(t, x) = exp

(∫ t

0
ux

(
s, q(s, x)

)
ds

)

> 0, (t, x) ∈ [0, T) ×R. (2.16)

For every T ′ < T , it follows from the Sobolev embedding theorem that

sup
(s,x)∈[0,T ′)×R

∣
∣ux(s, x)

∣
∣ < ∞.

We infer from (2.16) that there exists a constant K > 0 such that qx(t, x) ≥ e–Kt , (t, x) ∈
[0, T ′) ×R, which implies that the map q(t, ·) is an increasing diffeomorphism of R before
blow-up.

On the other hand, using (2.5) and (2.14), we have

d
dt

(

m
(
t, q(t, x)

)
+

2
3
κ

)

q3
x(t, x) = (mt + mxqt)q3

x + 3
(

m +
2
3
κ

)

q2
xqxt

= q3
x(mt + mxu + 3mux + 2κux) = 0.

So,

(

m
(
t, q(t, x)

)
+

2
3
κ

)

q3
x(t, x) = m0(x) +

2
3
κ , ∀(t, x) ∈ [0, T) ×R. �

Remark 2.2 Lemma 2.3 shows that if m0(x) + 2
3κ = μ(u0) – u0xx + 2

3κ does not change sign,
then m(t) + 2

3κ will not change sign as long as m(t) exists.

Remark 2.3 Since q(t, ·) : R → R is a diffeomorphism of the line for every t ∈ [0, T), the
L∞-norm of any function u(t, ·) ∈ L∞, t ∈ [0, T) is preserved under the family of diffeo-
morphisms q(t, ·) with t ∈ [0, T), that is,

∥
∥u(t, ·)∥∥L∞ =

∥
∥u

(
t, q(t, ·))∥∥L∞ , t ∈ [0, T).
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The next result shows that, when a solution of (2.1) breaks in finite time or exists per-
manently, however, the solution itself remains bounded while the slope of the solution
approaches infinitely in finite or infinite time much faster than the solution itself, in finite
time this is just the wave-breaking phenomena. Based on this result, we can formulate a
breaking result (Theorem 3.2).

Lemma 2.4 Assume u0 ∈ Hs, s > 3
2 . Let T be the maximal time of the solution u(t, x) to

(2.1). Then we have

∥
∥u(t, ·)∥∥L∞ ≤ |3μ0 + 2κ|

(
1
2
|μ0| + 2μ2

)

t + ‖u0‖L∞ , ∀t ∈ [0, T).

Proof Since the existence time T is independent of the choice of s by Proposition 2.2,
applying a simple density argument, we only need to consider the case s = 3. Let T be the
maximal existence time of the solution u(t, x) to the initial-value problem (2.1) with the
initial data u0 ∈ H3.

In view of (2.3), (2.8)–(2.9), we have

∣
∣A–1∂xu

∣
∣ ≤ 1

2
|μ0| + 2μ2.

From (2.14) it follows that

du(t, q(t, x))
dt

= ut
(
t, q(t, x)

)
+ ux

(
t, q(t, x)

)dq(t, x)
dt

= (ut + uux)
(
t, q(t, x)

)
.

Combining the above estimates yields

–|3μ0 + 2κ|
(

1
2
|μ0| + 2μ2

)

≤ du(t, q(t, x))
dt

≤ |3μ0 + 2κ|
(

1
2
|μ0| + 2μ2

)

.

Integrating gives

–|3μ0 + 2κ|
(

1
2
|μ0|+ 2μ2

)

t + u0(x) ≤ u
(
t, q(t, x)

) ≤ |3μ0 + 2κ|
(

1
2
|μ0|+ 2μ2

)

t + u0(x).

So

∣
∣u

(
t, q(t, x)

)∣∣ ≤ ∥
∥u

(
t, q(t, ·))∥∥L∞ ≤ |3μ0 + 2κ|

(
1
2
|μ0| + 2μ2

)

t + ‖u0‖L∞ .

In view of the diffeomorphism property of q(t, ·), we obtain

∣
∣u(t, ·)∣∣ ≤ ∥

∥u
(
t, q(t, ·))∥∥L∞ ≤ |3μ0 + 2κ|

(
1
2
|μ0| + 2μ2

)

t + ‖u0‖L∞ . �

Constantin and Escher proved that the “blow-up” quantity m(t) := infx∈S[ux(x, t)] is al-
most everywhere differential and the infimum can be obtained at points relying on the
variable t [13]. We will determine the blow-up rate of the solutions of (2.1) using this ar-
gument (Theorem 5.1).
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Lemma 2.5 ([12, 13]) Let T > 0 and u ∈ C1([0, T); H2). Then, for every t ∈ [0, T), there
exists at least one point ξ (t) ∈ S with

ω(t) := inf
x∈S

[
ux(t, x)

]
= ux

(
t, ξ (t)

)
,

and the function ω(t) is almost everywhere differentiable on (0, T) with

dω

dt
= utx

(
t, ξ (t)

)
a.e. on (0, T).

3 Breaking waves
In this section, we derive some sufficient conditions for the breaking waves to the initial-
value problem (2.1). We first state the precise wave-breaking scenario for problem (2.1).

Proposition 3.1 ([24]) Let u0 ∈ Hs, s > 3
2 , and u(t, x) be the solution of the initial-value

problem (2.1) with lifespan T . Then T is finite if and only if

lim inf
t↑T

(
inf
x∈S

ux(t, x)
)

= –∞. (3.1)

In what follows, we establish some sufficient conditions guaranteeing the development
of singularities by means of the wave-breaking scenario. The first result is based on the
delicate analysis on the evolution of the Lyapunov function V (t) =

∫
S

u3
x(t, x) dx.

Theorem 3.1 Let u0 ∈ Hs, s > 3
2 , u0 �= 0, and T > 0 be the maximal time of existence of the

corresponding solution u(t, x) to (2.1) with the initial data u0. If

μ2
2

8π2|μ0|(μ2
2 – μ2

0)
<

4
|9μ0 + 6κ| < ∞, (3.2)

where μ0, μ2 are defined by (2.8) and (2.9), respectively, then u(t, x) must blow up in finite
time T > 0 with the estimate

0 < T

≤ inf
α∈I

(
6

4 – |9μ0 + 6κ|α + 2α
1 + | ∫

S
u3

0x(x) dx|
8π2α|μ0||9μ0 + 6κ|(μ2

2 – μ2
0) – |9μ0 + 6κ|μ2

2

)

, (3.3)

where I = ( μ2
2

8π2|μ0|(μ2
2–μ2

0) , 4
|9μ0+6κ| ).

Proof Again as discussed previously, it suffices to prove the theorem only with s = 3. We
argue by contradiction. Assume that the solution exists globally. Differentiating Eq. (2.1)
with respect to x yields

utx + u2
x + uuxx + A–1∂2

x (3μ0u + 2κu) = 0. (3.4)

By (2.4) we deduce that

utx = –u2
x – uuxx + (3μ0 + 2κ)u –

(
3μ2

0 + 2κμ0
)
. (3.5)
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Multiplying the equation by 3u2
x and integrating on S with respect to x, after integration

by parts we obtain

d
dt

∫

S

u3
x dx = –3

∫

S

u4
x dx –

∫

S

3uu2
xuxx dx + (9μ0 + 6κ)

∫

S

uu2
x dx

–
(
9μ2

0 + 6κμ0
)
∫

S

u2
x dx

= –2
∫

S

u4
x dx + (9μ0 + 6κ)

∫

S

uu2
x dx –

(
9μ2

0 + 6κμ0
)
∫

S

u2
x dx. (3.6)

It follows from Lemma 2.3 that
∫

S

(u – μ0)2 dx ≤ 1
4π2

∫

S

u2
x dx. (3.7)

Obviously

∫

S

(u – μ0)2 dx =
∫

S

(
u2 – 2μ0u + μ2

0
)

dx = μ2
2 – μ2

0. (3.8)

So
∫

S

u2
x dx ≥ 4π2(μ2

2 – μ2
0
)
. (3.9)

For any α > 0 (to be determined later), it is easy to see that

∫

S

uu2
x dx ≤

(∫

S

u2 dx
) 1

2
(∫

S

u4
x dx

) 1
2 ≤ α

2

∫

S

u4
x dx +

1
2α

∫

S

u2 dx

=
α

2

∫

S

u4
x dx +

1
2α

μ2
2. (3.10)

Substituting (3.9)–(3.10) back into (3.6) gives

d
dt

∫

S

u3
x dx

≤
( |9μ0 + 6κ|

2
α – 2

)∫

S

u4
x dx + |9μ0 + 6κ|

(
μ2

2
2α

– 4π2|μ0|
(
μ2

2 – μ2
0
)
)

. (3.11)

Set

|9μ0 + 6κ|
2

α – 2 < 0, (3.12)

i.e., α < 4
|9μ0+6κ| . If α > 0 also satisfies

|9μ0 + 6κ|
2α

μ2
2 – 4π2|μ0||9μ0 + 6κ|(μ2

2 – μ2
0
)

< 0, (3.13)

then one finds that

α >
μ2

2
8π2|μ0|(μ2

2 – μ2
0)

. (3.14)
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Assumption (3.2) implies

μ2
2

8π2|μ0|(μ2
2 – μ2

0)
<

4
|9μ0 + 6κ| . (3.15)

Let

c1 = 2 –
|9μ0 + 6κ|

2
α > 0 (3.16)

and

c2 = 4π2|μ0||9μ0 + 6κ|(μ2
2 – μ2

0
)

–
|9μ0 + 6κ|

2α
μ2

2 > 0. (3.17)

Then (3.11) becomes

d
dt

∫

S

u3
x dx ≤ –c1

∫

S

u4
x dx – c2 ≤ –c1

(∫

S

u3
x dx

) 4
3

– c2. (3.18)

For any t ≥ 0, define V (t) =
∫
S

u3
x dx. Then (3.18) becomes

d
dt

V (t) ≤ –c1
(
V (t)

) 4
3 – c2 ≤ –c2 < 0, ∀t ≥ 0. (3.19)

This implies that V (t) decreases strictly for all t ≥ 0. Let t1 = (1 + |V (0)|)/c2. Integrating
(3.19) yields

V (t1) = V (0) +
∫ t1

0
V ′(t) dt ≤ ∣

∣V (0)
∣
∣ – c2t1 = –1. (3.20)

Again by (3.19), we have

d
dt

V (t) ≤ –c1
(
V (t)

) 4
3 , t ≥ t1, (3.21)

this implies that

–3
d
dt

(
1

(V (t)) 1
3

)

=
(
V (t)

)– 4
3 d

dt
V (t) ≤ –c1, ∀t ≥ t1. (3.22)

Integrating and noting V (t1) ≤ –1 leads to

–
1

(V (t)) 1
3

– 1 ≤ –
1

(V (t)) 1
3

+
1

(V (t1)) 1
3

≤ –
c1

3
(t – t1), t ≥ t1. (3.23)

Thus

(
c1

3
(t – t1) +

1
(V (t1)) 1

3

)3

≤ 1
V (t)

< 0, ∀t ≥ t1. (3.24)

We can derive a contradiction from the above inequality as t ≥ t1 is large enough. �
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We now give the second blow-up result. For any ε > 0, let

a = 4(3μ0 + 2κ)2
(

1
2
|μ0| + 2μ2

)

, (3.25)

b = 4|3μ0 + 2κ|(‖u0‖L∞ – μ0
)
, (3.26)

d = – ln2
(

1 +
2
ε

)

, (3.27)

p = –
b2

3a2 , (3.28)

q =
2b3

27a3 +
d
a

, (3.29)

T1 = –
b

3a
+

3

√√
√
√–

q
2

+

√(
q
2

)2

+
(

p
3

)3

+
3

√√
√
√–

q
2

–

√(
q
2

)2

+
(

p
3

)3

(3.30)

and

P(t) =
(

1
4

at +
1
4

b
) 1

2
. (3.31)

Actually, it is easy to check that T1 is the only positive solution of the equation 4P2(t)t2 +
d = 0.

Theorem 3.2 Let ε > 0. Assume that the initial profile u0 ∈ Hs, s > 3
2 has at some point

x0 ∈ S such that

u′(x0) ≤ –(1 + ε)P(T1).

Then the solution of (2.1) breaks and the maximal time of existence is estimated above by
T1.

Proof As discussed earlier, it suffices to consider the case s = 3. Let T > 0 be the maximal
time of existence of the solution u to (2.1) with the initial data u0 ∈ H3.

Let ω(t) = ux(t, q(t, x0)), where q(t, x0) is the flow of u(t, q(t, x0)). Then

dω(t)
dt

= (utx + uxxqt)
(
t, q(t, x0)

)
= (utx + uuxx)

(
t, q(t, x0)

)
. (3.32)

Substituting (t, q(t, x0)) into (3.5) and using Lemma 2.5, we obtain

dω(t)
dt

= –ω2(t) + (3μ0 + 2κ)
(
u
(
t, q(t, x0)

)
– μ0

)

≤ –ω2(t) + |3μ0 + 2κ|
[

|3μ0 + 2κ|
(

1
2
|μ0| + 2μ2

)

t + ‖u0‖L∞ – μ0

]

:= –ω2(t) + P2(t). (3.33)
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By the definitions of P(t) and T1, we have

2P(T1)T1 – ln

(

1 +
2
ε

)

= 0 (3.34)

and

ω(0) < –(1 + ε)P(T1). (3.35)

This implies that

0 <
ω(0) – P(T1)
ω(0) + P(T1)

= 1 –
2P(T1)

ω(0) + P(T1)
≤ 1 +

2
ε

. (3.36)

Combining this inequality with (3.35) gives

1
2P(T1)

ln
ω(0) – P(T1)
ω(0) + P(T1)

≤ T1. (3.37)

By (3.33) and the definitions of T1 and P(T1), we have

dω(t)
dt

≤ –ω2(t) + P2(T1), ∀t ∈ [0, T1) ∩ [0, T). (3.38)

Note that ω(0) < –(1 + ε)P(T1) < –P(T1) and (3.36) for all t ∈ [0, T1) ∩ [0, T), we can prove
that ω(t) < –P(T1) by the argument of continuous deduction. To this end, since ω(t) is
continuous on [0, T1), failure of the above inequality would ensure the existence of some
t0 ∈ [0, T1) such that P2(T1) < ω2(t) on [0, t0), while P2(T1) = ω2(t0). But then we would
have by (3.38)

dω(t)
dt

< 0 a.e. t ∈ (0, t0). (3.39)

Being locally Lipschitz, the function ω is absolutely continuous on [0, t0], and therefore an
integration of the previous inequality would lead us to

ω(t0) ≤ m(0) < –P(T1), (3.40)

which contradicts our assumption P2(T1) = ω2(t0).
Solving inequality (3.38) yields

ω(0) + P(T1)
ω(0) – P(T1)

e2P(T1)t – 1 ≤ 2P(T1)
ω(t) – P(T1)

≤ 0. (3.41)

In view of 0 < ω(0)+P(T1)
ω(0)–P(T1) < 1, we deduce that there exists T satisfying

0 < T <
1

2P(T1)
ln

ω(0) + P(T1)
ω(0) – P(T1)

≤ T1 (3.42)

such that limt↑T ω(t) = –∞, which completes the proof of this theorem. �
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4 Permanent waves
In this section, attention is now turned to specifying conditions under which the local
solution to the initial-value problem (2.1) can be extended to a global one.

Theorem 4.1 If the initial potential value m0 ∈ H1(S) satisfies that m0 + 2
3κ does not

change its sign, then the solution u(t, x) to the initial-value problem (2.1) exists permanently
in time.

Proof Let T be the maximal time of existence of the solution u to (2.1) with the initial data
u0 guaranteed by Proposition 2.2.

Assume m0 + 2
3κ ≥ 0, we prove that the solution u(t, x) exists globally in time. Indeed,

owing to Lemma 2.3 and Remark 2.2, we find m(t) + 2
3κ ≥ 0 on [0, T) ×S. Given t ∈ [0, T),

by the periodicity in the x-variable, there is ξ (t) ∈ (0, 1) such that ux(t, ξ (t)) = 0. Therefore,
for x ∈ [ξ (t), ξ (t) + 1], we have

– ux(t, x)

= –
∫ x

ξ (t)
∂2

x u(t, x) dx =
∫ x

ξ (t)

(

m(t, x) +
2
3
κ

)

dx –
∫ x

ξ (t)

[

μ(u) +
2
3
κ

]

dx

≤
∫ ξ (t)+1

ξ (t)

(

m(t, x) +
2
3
κ

)

dx –
(

μ0 +
2
3
κ

)
(
x – ξ (t)

)

=
(

μ0 +
2
3
κ

)
(
1 – x + ξ (t)

) ≤
∣
∣
∣
∣μ0 +

2
3
κ

∣
∣
∣
∣. (4.1)

Similarly, if m0 + 2
3κ ≤ 0, then m(t) + 2

3κ ≤ 0 on [0, T) × S. Using the same notation as
above, we find that

– ux(t, x)

= –
∫ x

ξ (t)
∂2

x u(t, x) dx =
∫ x

ξ (t)

(

m(t, x) +
2
3
κ

)

dx –
∫ x

ξ (t)

[

μ(u) +
2
3
κ

]

dx

= –
(

μ0 +
2
3
κ

)
(
x – ξ (t)

)

≤
∣
∣
∣
∣μ0 +

2
3
κ

∣
∣
∣
∣. (4.2)

Combining (4.1) with (4.2), we deduce that u exists permanently as a consequence of
Proposition 3.1. �

Theorem 4.2 If the initial profile u0 ∈ H3(S) is such that

∥
∥∂3

x u0
∥
∥

L2 ≤ 2
√

3
∣
∣
∣
∣u0 +

2
3
κ

∣
∣
∣
∣, (4.3)

then the wave of (2.1) exists permanently.

Proof Let T be the maximal time of existence of the solution u to (2.1) with initial data u0

guaranteed by Proposition 2.2.
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By Remark 2.1 we get

max
(
∂2

x u0
)2 ≤ 1

12

∫

S

(
∂3

x u0
)2 dx, (4.4)

so

∥
∥∂2

x u0
∥
∥

L∞ ≤
√

3
6

∥
∥∂3

x u0
∥
∥

L2 . (4.5)

If μ0 + 2
3κ ≥ 0, it is inferred from (4.3) and (4.5) that

m0 +
2
3
κ = μ0 +

2
3
κ – ∂2

x u0 ≥ μ0 +
2
3
κ –

√
3

6
∥
∥∂3

x u0
∥
∥

L2 ≥ 0. (4.6)

Similarly, if u0 + 2
3κ ≤ 0, one obtains from (4.3) and (4.5) that

m0 +
2
3
κ = μ0 +

2
3
κ – ∂2

x u0 ≤ μ0 +
2
3
κ +

√
3

6
∥
∥∂3

x u0
∥
∥

L2 ≤ 0. (4.7)

Therefore, in view of Theorem 4.1, the proof of this theorem is completed. �

5 Blow-up rate
Our attention is now turned to the problem of the blow-up rate of the slope to a breaking
wave for the initial-value problem (2.1).

Theorem 5.1 Let u(t, x) be the solution to the initial-value problem (2.1) with initial data
u0 ∈ Hs, s > 3

2 . Let T > 0 be the maximal time of existence of the solution u(t, x). If T < ∞,
we have

lim
t↑T

{
inf
x∈S

[
ux(t, x)(T – t)

]}
= –1, (5.1)

while the solution remains uniformly bounded.

Proof Again we may assume s = 3 to prove this theorem. The uniform boundedness of the
solution can be easily obtained as a consequence of the a priori estimate in Lemma 2.4.

By Lemma 2.5, the function

ω(t) := inf
x∈R

[
ux(t, x)

]
= ux

(
t, ξ (t)

)
(5.2)

is locally Lipschitz with ω(t) < 0, t ∈ [0, T). Note that uxx(t, ξ (t)) = 0 for a.e. t ∈ [0, T). Then

ω′(t) = –ω2(t) + (3μ0 + 2κ)u
(
t, ξ (t)

)
–

(
3μ2

0 + 2κμ0
)
, t ∈ [0, T). (5.3)
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By Lemma 2.9 we obtain

∣
∣(3μ0 + 2κ)

[
u
(
t, ξ (t)

)
– μ0

]∣∣

≤ |3μ0 + 2κ|(∥∥u(t, ·)∥∥L∞ + |μ0|
)

≤ |3μ0 + 2κ|
[

|3μ0 + 2κ|
(

1
2
|μ0| + 2μ2

)

t + ‖u0‖L∞ + |μ0|
]

, t ∈ [0, T)

� N(t). (5.4)

Then we have

ω′(t) ≤ –ω2(t) + N(T), t ∈ [0, T). (5.5)

Now fix any ε ∈ (0, 1). In view of Proposition 3.1, there exists t0 ∈ (0, T) such that ω(t0) <
–
√

N(T) + N(T)
ε

. Notice that ω(t) is locally Lipschitz so that it is absolutely continuous on
[0, T). It then follows from (5.5) that ω(t) is decreasing on [t0, T) and satisfies that

ω(t) < –
√

N(T) +
N(T)

ε
< –

√
N(T)

ε
, t ∈ [t0, T). (5.6)

Since ω(t) is decreasing on [t0, T), it follows that

lim
t↑T

ω(t) = –∞. (5.7)

In view of (5.6), from (5.5) we deduce that

1 – ε ≤ d
dt

(
ω(t)–1) = –

ω′(t)
ω(t)2 ≤ 1 + ε. (5.8)

Integrating the above equation on (t, T) with t ∈ (t0, T) and noticing that limt↑T ω(t) = –∞,
we get

(1 – ε)(T – t) ≤ –
1

ω(t)
≤ (1 + ε)(T – t). (5.9)

Since ε ∈ (0, 1) is arbitrary, in view of the definition of ω(t), the above inequality implies
the desired result of Theorem 5.1. �
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