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Abstract
A three-species cooperative system with time delays and Lévy jumps is proposed in
this paper. Firstly, by comparison method and inequality techniques, we discuss the
stability in mean and extinction of species, and the stochastic permanence of this
system. Secondly, by applying asymptotic method, we investigate the stability in
distribution of solutions. Thirdly, utilizing ergodic method, we obtain the optimal
harvesting policy of this system. Finally, some numerical examples are given to
illustrate our main results.
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1 Introduction
The Lotka–Volterra model, proposed by Lotka [1] and Volterra [2], is used to describe the
evolutionary process in population dynamics, physics, and economics. In the last decades,
many modifications of it have been investigated (see, for example, [3–7]).

In [3], Goh proposed the following typical cooperative Lotka–Volterra system:

⎧
⎨

⎩

dx1(t)
dt = x1(t)(r1 – a11x1(t) + a12x2(t)),

dx2(t)
dt = x2(t)(r2 + a21x1(t) – a22x2(t)),

(1.1)

where xi(t) denotes the density of the ith species at time t, ri > 0 is its intrinsic growth
rate, aii is the intra-specific competition rate (i = 1, 2), a12 and a21 are the inter-specific
cooperation rates. The author obtained the globally asymptotic attractivity of the positive
equilibrium point of this system.

However, on the one hand, in the real world, the growth of a population is often subject
to environmental perturbations, and hence it is necessary to consider stochastic perturba-
tions in the progress of mathematical modeling [8–15]. There are many kinds of stochastic
perturbations. When the stochastic influence on the intrinsic growth rates in (1.1) is con-
sidered, one way is

ri → ri + σiω̇i(t), i = 1, 2,
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where ω1(t) and ω2(t) are independent Brownian motions, and the parameters σ 2
1 and σ 2

1

represent the intensities of the white noises. Then the following stochastic Lotka–Volterra
cooperative system:

⎧
⎨

⎩

dx1(t) = x1(t)(r1 – a11x1(t) + a12
∫ t

–∞ f2(t – s)x2(s) ds) dt + σ1 dω1(t),

dx2(t) = x2(t)(r2 + a21
∫ t

–∞ f1(t – s)x1(s) ds – a22x2(s)) dt + σ2 dω2(t),

was studied by Zuo et al. [16].
On the other hand, a population’s growth is also affected by some sudden random per-

turbations such as earthquakes, epidemics, hurricanes, harvesting, and so on. To deal with
such phenomena, Lévy jump processes are introduced [17–20]. Generally, a Lévy process
can be decomposed into the sum of a linear drift, a Brownian motion, and a superpo-
sition of independent Poisson processes with different jump sizes. For example, Liu and
Wang [20] proposed and investigated a stochastic and cooperative model with Lévy jumps
as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t–)(r1 – a11x1(t–) + a12x2(t–)) dt + σ1x1(t–) dω1(t)

+ x1(t–)
∫

Z
γ1(u)Ñ(du, dt),

dx2(t) = x2(t–)(r2 + a21x1(t–) – a22x2(t–)) dt + σ2x2(t–) dω2(t)

+ x2(t–)
∫

Z
γ2(u)Ñ(du, dt),

where xi(t–) is the left limit of xi(t) (i = 1, 2), Ñ(du, dt) = N(du, dt) – λ(du) dt is a com-
pensated Poisson process, N represents a Poisson counting measure with characteristic
measure λ on a measurable subset Z of R+ = (0,∞) with λ(Z) < ∞. For more details of the
Lévy jump process, see Gihman and Skorohod [21]. The authors considered the persis-
tence in mean and extinction of species.

As we know, time delays are very important in ecosystem models. They may cause
populations to fluctuate. Time delays can reflect natural phenomena more authentically.
Kuang [22] has pointed out that ignoring time delays means ignoring the reality. There-
fore, it is essential to take into account the influence of time delays in the biological mod-
eling [22–26].

Moreover, in ecological managing, harvesting often appears. Since over-harvesting or
unreasonable harvesting may cause a number of detrimental effects including ecological
destruction and species extinction, it is important for us to study the optimal harvesting
policies for sustainable development.

Finally, it has been recognized that single-species or two-species ecological models can-
not describe the natural phenomena accurately, and many vital behaviors can only be ex-
hibited by a system with three or more species [27–30].
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Motivated by the above discussions, in this paper, we propose and consider the following
three-species stochastic cooperative system with time delays and Lévy jumps:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t–)(r1 – c1 – a11x1(t–) + a12x2(t– – τ12) + a13x3(t– – τ13)) dt

+ σ1x1(t–) dω1(t) + x1(t–)
∫

Z
γ1(u)Ñ(du, dt),

dx2(t) = x2(t–)(r2 – c2 + a21x1(t– – τ21) – a22x2(t–) + a23x3(t– – τ23)) dt

+ σ2x2(t–) dω2(t) + x2(t–)
∫

Z
γ2(u)Ñ(du, dt),

dx3(t) = x3(t–)(r3 – c3 + a31x1(t– – τ31) + a32x2(t– – τ32) + a33x3(t–)) dt

+ σ3x3(t–) dω3(t) + x3(t–)
∫

Z
γ3(u)Ñ(du, dt),

(1.2)

with initial data

xi(θ ) = φi(θ ) > 0 for θ ∈ [–τ , 0] and i = 1, 2, 3,

where τ = max{τ12, τ13, τ21, τ23, τ31, τ32}, xi(t) stands for the population size of the ith
species at time t, xi(t–) is the left limit of xi(t), ri > 0 is the growth rate of xi(t), ci is the har-
vesting effort of xi(t), aii > 0 represents the intra-specific competitive coefficient of xi(t), aij

is the interspecific cooperative rate, τij > 0 is the time delay, φ = (φ1,φ2,φ3) ∈ C([–τ , 0], R3
+)

(the set of all continuous functions from [–τ , 0] into R3
+), σ 2

i denotes the intensity of the
white noise, ωi(t)t>0 is the standard independent Brownian motion defined on a complete
probability space (Ω ,F ,Ft≥0, P) (i �= j, i, j = 1, 2, 3). The Lévy jump is the same as before.
γi(u) is the effect of the Lévy noise on the ith species. γi(u) > 0 means that the Lévy jump
brings increasing of the species, whereas γi(u) < 0 represents the decreasing of the species.
Hence we always suppose that 1 + γi(u) > 0, u ∈ Z, i = 1, 2, 3.

Our main aims are as follows. Firstly, since time delays, white noises, and Lévy jumps
are included in (1.2), it is of great significance to study their effects on dynamics. By use
of comparison methods and some inequality techniques, we obtain the stability in mean,
extinction of populations, and stochastic permanence.

Secondly, a stochastic model cannot tend to a positive fixed point, i.e., there exists no
traditional positive equilibrium state. It is necessary to study the convergence in distri-
bution of solutions. Because of time delays, we cannot apply the traditional method like
using the explicit solution by solving the corresponding Fokker–Planck equation. Here we
will apply an asymptotic approach to get the convergence.

Lastly, in view of the importance of optimal harvesting policy, by applying the ergodic
methods, we get the optimal harvesting effort (OHE) C∗ = (c∗

1, c∗
2, c∗

3)T such that the ex-
pectation of sustainable yield (ESY) Y (C) = limt→∞

∑3
i=1 E(cixi(t)) is the maximum and

all species are still persistent.
The rest of this paper is organized as follows. Section 2 begins with some notations,

definitions, and some important lemmas which are essential in our discussion. Section 3
focuses on the dynamical behavior of (1.2) including persistence, extinction of species,
and stochastic permanence. Section 4 is devoted to the stability in distribution. Section 5
considers the existence of optimal harvesting policy and obtains the maximum of ESY
(MESY). Some numerical examples are given in Sect. 6 to demonstrate the obtained the-
oretical results. The paper concludes with a brief conclusion and discussion.
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2 Preliminaries
For simplicity of notations, we introduce

α1 = (a11, –a12, –a13)T ,

α2 = (–a21, a22, –a23)T ,

α3 = (–a31, –a32, a33)T ,

bi = σ 2
i /2 +

∫

Z

γi(u) – ln(1 + γi(u)λ(du), i = 1, 2, 3,

βi = ri – ci – bi, i = 1, 2, 3,

b = (b1, b2, b3)T ,

A = det(α1,α2,α3),

A1 = det(R,α2,α3),

A2 = det(α1, R,α3),

A3 = det(α1,α2, R),

Ã1 = det(b,α2,α3),

Ã2 = det(α1, b,α3),

Ã3 = det(α1,α2, b),

�ij = akk(rj – cj) + ajk(rk – ck), i, j, k = 1, 2, 3, i �= j �= k,

�̃ij = akkbj + ajkbk , i, j, k = 1, 2, 3, i �= j �= k,

R = (r1 – c1, r2 – c2, r3 – c3)T ,

R1 = det(α1, R, b),

R2 = det(R,α2, b),

R3 = det(R, b,α3).

Moreover, for a 3 × 3 matrix C = (cij), Cij denotes the complement minor of cij in the
determinant of C, i, j = 1, 2, 3. For any function x(t), t > 0, we let

〈
x(t)

〉
= t–1

∫ t

0
x(s) ds, x∗ = lim sup

t→∞
x(t), x∗ = lim inf

t→∞ x(t).

Throughout this paper, we always assume that A > 0 and Ai > 0 (i = 1, 2, 3). This means
that when there are no stochastic perturbations, a positive equilibrium state exists for
model 1.2 (1.2). Furthermore, we always assume that K stands for a generic positive con-
stant whose value may be different at different places.

On the parameters, we make the following assumptions.

Assumption 2.1 R1 > 0, R2 > 0, and R3 > 0.

Remark 2.1 Under Assumption 2.1, an easy computation yields �ij
�̃ij

> Ai
Ãi

, i, j = 1, 2, 3, i �= j.
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Assumption 2.2 aii >
∑3

j=1,j �=i aij and aii >
∑3

j=1,j �=i aji, i, j = 1, 2, 3.

Assumption 2.3 There exists a constant K such that
∫

Z

[
ln
(
1 + γi(u)

)]2
λ(du) < K , i = 1, 2, 3.

Now we give some definitions and lemmas which will be used in stating and proving our
main results.

Definition 2.1 ([20, 24]) Let x(t) = (x1(t), x2(t), x3(t))T ∈ R3
+ be a solution of system (1.2).

Then
(a) the population x(t) is said to go to extinction if limt→∞ x(t) = 0;
(b) the population x(t) is said to be stable in mean if limt→∞〈x(t)〉 = K a.s., where K is a

constant.

Definition 2.2 ([20]) System (1.2) is said to be stochastically permanent if, for any ε ∈
(0, 1), there exists a pair of positive constants ς = ς (ε) and χ = χ (ε) such that, for any
initial data, the solution x(t) of (1.2) has the following property:

lim inf
t→∞ P

{∣
∣x(t)

∣
∣≤ ς

}≥ 1 – ε and lim inf
t→∞ P

{∣
∣x(t)

∣
∣≥ χ

}≥ 1 – ε.

Lemma 2.1 ([20]) Let Z(t) ∈ C[Ω × R+, R+] and Assumption 2.3 hold.
(i) If there exist some constants T > 0, λ0 > 0, λ, σi, and λi such that, for all T > 0,

ln Z(t) ≤ λt –λ0

∫ t

0
z(s) ds +

n∑

i=1

σiBi(t) +
n∑

i=1

λi

∫ t

o

∫

Z

ln(1 +γi(v)Ñ(ds, dv) a.s.,

then
⎧
⎨

⎩

〈Z〉∗ ≤ λ/λ0 a.s. if λ ≥ 0,

limt→∞ Z(t) = 0 a.s. if λ < 0.

(ii) If there exist some constants T > 0, λ0 > 0, λ, σi, and λi such that, for all T > 0,

ln Z(t) ≥ λt –λ0

∫ t

0
z(s) ds+

n∑

i=1

σiBi(t)+
n∑

i=1

λi

∫ t

o

∫

Z

ln(1+γi(v)Ñ(ds, dv), a.s.,

then

〈Z〉∗ ≥ λ/λ0 a.s.

Lemma 2.2 If Assumption 2.2 holds, then for any given initial data φ = (φ1,φ2,φ3) ∈
C([–τ , 0], R3

+), system (1.2) has a unique solution x(t) = (x1(t), x2(t), x3(t))T ∈ R3
+ a.s.

Proof Define

V
(
x(t)

)
=

3∑

i=1

xi(t) +
3∑

i=1

( 3∑

j=1,j �=i

aij

∫ t

t–τij

xi(s) ds

)

.
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Applying Itô’s formula to V (x), we can verify that LV (x) ≤ 0. The remaining proof is very
standard. One can refer to [18, 20] and hence we omit it here. �

Remark 2.2 Actually, by Corollary 3.5 of Hu et al. [8], the condition 2aii >
∑3

j �=i,j=1 aij

can ensure that system (1.2) has a unique positive solution for any initial data φ ∈
C([–τ , 0], R3

+). But for the proof of the latter global attractivity, we conduct our study al-
ways under Assumption 2.2 in this paper.

Lemma 2.3 Under Assumptions 2.2 and 2.3, the solution x(t) of (1.2) satisfies

lim sup
t→∞

ln xi(t)
ln t

≤ 1 a.s.,

and there exists a positive constant K such that

lim sup
t→∞

E
(
xi(t)

)≤ K , i = 1, 2, 3.

Proof The proof is motivated by that of Lemma 4 in [20]. By using Itô’s formula to the
function etV (x), where V is the function defined in the proof of Lemma 2.2, one can get
lim supt→∞ EV (x(t)) ≤ K and lim supt→∞ E|(x(t))| ≤ K . The rest of the proof is similar to
that in [20] and hence is omitted. �

Lemma 2.4 If limt→∞〈x(t)〉 = K , where K is a constant, then

lim
t→∞ t–1

∫ t

t–τ

x(s) ds = 0.

Proof Obviously, we have

lim
t→∞ t–1

∫ t

t–τ

x(s) ds = lim
t→∞ t–1

(∫ t

0
x(s) ds –

∫ t–τ

0
x(s) ds

)

= 0. �

3 Dynamical analysis of system (1.2)
Firstly, we give our main results on the stability in mean and extinction of species for
model (1.2).

Theorem 3.1 Let Assumptions 2.1, 2.2, and 2.3 hold. Then the following statements for
system (1.2) are valid.

(i) If Ai > Ãi for i = 1, 2, 3, then

lim
t→∞

〈
xi(t)

〉
=

Ai – Ãi

A
for i = 1, 2, 3.

(ii) For i ∈ {1, 2, 3}, if Ai < Ãi and �ij > �̃ij for all j �= i, then

lim
t→∞ xi(t) = 0 and lim

t→∞
〈
xj(t)

〉
=

�ij – �̃ij

Aii
for j �= i.
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(iii) For i ∈ {1, 2, 3}, if ri > bi and Aj < Ãj for all j �= i, then

lim
t→∞

〈
xi(t)

〉
=

βi

aii
and lim

t→∞ xj(t) = 0 for j �= i.

(iv) If ri < bi (i = 1, 2, 3), then limt→∞ xi(t) = 0, while if ri > bi (i = 1, 2, 3), then the
conclusions of case (i) also hold.

Proof For system (1.2), by utilizing Itô’s formula to functions ln xi(t), i = 1, 2, 3, and then
integrating both sides of every equation from 0 to t, we have

t–1[ln x1(t) – ln x1(0)
]

= β1 – a11
〈
x1(t)

〉
+ a12

〈
x2(t)

〉
+ a13

〈
x3(t)

〉
+ t–1ϑ1(t), (3.1)

t–1[ln x2(t) – ln x2(0)
]

= β2 + a21
〈
x1(t)

〉
– a22

〈
x2(t)

〉
+ a23

〈
x3(t)

〉
+ t–1ϑ2(t), (3.2)

t–1[ln x3(t) – ln x3(0)
]

= β3 + a31
〈
x1(t)

〉
+ a32

〈
x2(t)

〉
– a33

〈
x3(t)

〉
+ t–1ϑ3(t), (3.3)

where ϑi(t) = σiωi(t) +
∫ t

0
∫

Z
ln(1 + γi(u))Ñ(ds, du) + ϑ̆i(t) for i = 1, 2, 3 with

ϑ̆i(t) =
3∑

j=1,j �=i

aij

(∫ 0

–τij

xi(s) ds –
∫ t

t–τij

xi(s) ds
)

.

Now we eliminate 〈x1(t)〉 and 〈x2(t)〉 from (3.1)–(3.3) by the elimination method. Note
that we can show p = A13/A33 > 0 and q = –A23/A33 > 0. Multiplying both sides of (3.1)–
(3.3) respectively by p, q, and 1 and adding the resulting three equalities give us

t–1[ln x3(t) – ln x3(0)
]

+ t–1(p
[
ln x1(t) – ln x1(0)

]
+ q

[
ln x2(t) – ln x2(0)

])

= β1p + β2q + β3 – (a13p + a23q – a33)
〈
x3(t)

〉
+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)

)

=
A3 – Ã3

A33
–

A
A33

〈
x3(t)

〉
+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)

)
. (3.4)

Similarly, we have

t–1[ln x1(t) – ln x1(0)
]

+ t–1(p̃
[
ln x2(t) – ln x2(0)

]
+ q̃

[
ln x3(t) – ln x3(0)

])

=
A1 – Ã1

A11
–

A
A11

〈
x1(t)

〉
+ t–1(ϑ1(t)p̃ + ϑ2(t)q̃ + ϑ3(t)

)
(3.5)

and

t–1[ln x2(t) – ln x2(0)
]

+ t–1(p̄
[
ln x1(t) – ln x1(0)

]
+ q̄

[
ln x3(t) – ln x3(0)

])

=
A2 – Ã2

A22
–

A
A22

〈
x2(t)

〉
+ t–1(ϑ1(t)p̄ + ϑ2(t)q̄ + ϑ3(t)

)
, (3.6)

where

p̃ =
–A21

A11
> 0, q̃ =

A31

A11
> 0, p̄ =

–A12

A22
> 0, q̄ =

–A32

A22
> 0.
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Moreover, it follows from (3.1)–(3.3) and Lemma 2.1 that, for sufficiently large t,

t–1[ln x1(t) – ln x1(0)
]≤ β1 + ε + a12

〈
x2(t)

〉∗ + a13
〈
x3(t)

〉∗ – a11
〈
x1(t)

〉

+ t–1(ϑ1(t)p̃ + ϑ2(t)q̃ + ϑ3(t)
)
, (3.7)

t–1[ln x2(t) – ln x2(0)
]≤ β2 + ε + a21

〈
x1(t)

〉∗ + a23
〈
x3(t)

〉∗ – a22
〈
x2(t)

〉

+ t–1(ϑ1(t)p̄ + ϑ2(t)q̄ + ϑ3(t)
)
, (3.8)

t–1[ln x3(t) – ln x3(0)
]≤ β3 + ε + a31

〈
x1(t)

〉∗ + a32
〈
x2(t)

〉∗ – a33
〈
x3(t)

〉

+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)
)
. (3.9)

(i) First assume that A3 > Ã3. Then applying Lemma 2.3 to equality (3.4) yields that, for
arbitrary ε > 0, there exists T > 0 such that, for all t > T ,

t–1(p
[
ln x1(t) – ln x1(0)

]
+ q

[
ln x2(t) – ln x2(0)

])≤ pt–1 ln x1(t) + qt–1 ln x2(t) + ε ≤ ε.

Substituting it into (3.4) gives

t–1[ln x3(t) – ln x3(0)
]≥ A3 – Ã3

A33
– ε –

A
A33

〈
x3(t)

〉
+ t–1(ϑ1(t)p + ϑ2(t)q + ϑ3(t)

)
.

Since A3 > Ã3, we can choose ε > 0 small enough such that A3 – Ã3 –ε > 0. Then Lemma 2.1
implies that

〈
x3(t)

〉

∗ ≥ A3 – Ã3

A
.

Similarly, if A1 > Ã1 and A2 > Ã2, then we can get 〈x1(t)〉∗ ≥ A1–Ã1
A and 〈x2(t)〉∗ ≥ A2–Ã2

A ,
respectively.

We claim that

β1 + ε + a12
〈
x2(t)

〉∗ + a13
〈
x3(t)

〉∗ > 0,

β2 + ε + a21
〈
x1(t)

〉∗ + a23
〈
x3(t)

〉∗ > 0,

β3 + ε + a31
〈
x1(t)

〉∗ + a32
〈
x2(t)

〉∗ > 0.

Otherwise, by Lemma 2.1, we can obtain that 〈x1(t)〉∗ = 〈x2(t)〉∗ = 〈x3(t)〉∗ = 0, which
contradicts with the above just obtained results. This proves the claim. Again applying
Lemma 2.1 to (3.7)–(3.9) gives us

〈
x1(t)

〉∗ ≤ β1 + ε + a12〈x2(t)〉∗ + a13〈x3(t)〉∗
a11

,

〈
x2(t)

〉∗ ≤ β2 + ε + a21〈x1(t)〉∗ + a23〈x3(t)〉∗
a22

,

〈
x3(t)

〉∗ ≤ β3 + ε + a31〈x1(t)〉∗ + a32〈x2(t)〉∗
a33

.
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Letting ε → 0 and solving the resultants produce

〈
x1(t)

〉∗ ≤ A1 – Ã1

A
,

〈
x2(t)

〉∗ ≤ A2 – Ã2

A
,

〈
x3(t)

〉∗ ≤ A3 – Ã3

A
.

To summarize, we have shown

lim
t→∞

〈
x1(t)

〉
=

A1 – Ã1

A
, lim

t→∞
〈
x2(t)

〉
=

A2 – Ã2

A
, lim

t→∞
〈
x3(t)

〉
=

A3 – Ã3

A
.

(ii) We only consider the case where A1 < Ã1, �12 > �̃12, and �13 > �̃13 as the other
two cases can be dealt with similarly. In this case, first by case (i), limt→∞ x1(t) = 0. Next,
from (3.2) and (3.3), we have

t–1[ln x2(t) – ln x2(0)
]

= β2 – a22
〈
x2(t)

〉
+ a23

〈
x3(t)

〉
+ t–1ϑ2(t), (3.10)

t–1[ln x3(t) – ln x3(0)
]

= β3 + a32
〈
x2(t)

〉
– a33

〈
x3(t)

〉
+ t–1ϑ3(t). (3.11)

Then adding (3.10) multiplied by a33 and (3.11) multiplied by a23 yields

t–1a33
[
ln x2(t) – ln x2(0)

]
+ t–1a23

[
ln x3(t) – ln x3(0)

]

= β2a33 + β3a23 – (a22a33 – a32a23)
〈
x2(t)

〉
+ t–1(a33ϑ2(t) + a23ϑ3(t)

)
.

According to Lemma 2.3, for arbitrarily small ε > 0, there exists T > 0 such that
t–1a23[ln x3(t) – ln x3(0)] ≤ ε for any t > T . It follows that

t–1a33
[
ln x2(t) – ln x2(0)

]

≥ β2a33 + β3a23 – ε – (a22a33 – a32a23)
〈
x2(t)

〉
+ t–1(a33ϑ2(t) + a23ϑ3(t)

)
. (3.12)

Since �̃12 < �12, β2a33 + β3a23 – ε > 0 for ε > 0 small enough. By Lemma 2.1 again and
letting ε → 0, it follows from (3.12) that

〈
x2(t)

〉

∗ ≥ �12 – �̃12

A11
.

In the same manner, we can obtain

〈
x3(t)

〉

∗ ≥ �13 – �̃13

A11
.

Moreover, by (3.10) and (3.11), we have

t–1[ln x2(t) – ln x2(0)
]≤ β2 – a22

〈
x2(t)

〉
+ a23

〈
x3(t)

〉∗ + t–1ϑ2(t) (3.13)

and

t–1[ln x3(t) – ln x3(0)
]≤ β3 + a32

〈
x2(t)

〉∗ – a33
〈
x3(t)

〉
+ t–1ϑ3(t). (3.14)
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Also, by Lemma 2.1 again, we can get from (3.13) and (3.14) that

〈
x2(t)

〉∗ ≤ β2 + a23〈x3(t)〉∗
a22

,
〈
x3(t)

〉∗ ≤ β3 + a32〈x2(t)〉∗
a33

.

Solving these two inequalities produces

〈
x2(t)

〉∗ ≤ �12 – �̃12

A11
,

〈
x3(t)

〉∗ ≤ �13 – �̃13

A11
.

To summarize, we have shown

lim
t→∞

〈
x2(t)

〉
=

β2a33 + β3a23

a22a33 – a23a32
=

�12 – �̃12

A11

and

lim
t→∞

〈
x3(t)

〉
=

β2a32 + β3a22

a22a33 – a23a32
=

�13 – �̃13

A11
.

(iii) Again, we only consider the case where A1 < Ã1, A2 < Ã2, and r3 > b3 as the other
two cases can be dealt with similarly. When A1 < Ã1 and A2 < Ã2, we have limt→∞ x1(t) = 0
and limt→∞ x2(t) = 0 respectively by (3.5) and (3.6). Then (3.3) becomes

t–1[ln x3(t) – ln x3(0)
]

= β3 – a33
〈
x3(t)

〉
+ t–1ϑ3(t).

In view of β3 > 0, by employing Lemma 2.1, we have limt→∞〈x3(t)〉 = β3/a33.
(iv) Obviously, when ri – bi < 0, by an easy computation, we have Ai – Ãi < 0. By

Lemma 2.1, it follows from (3.1)–(3.3) that limt→∞ x1(t) = limt→∞ x2(t) = limt→∞ x3(t) = 0,
which means that all species go extinct. When ri –bi > 0, by a similar computation, we have
Ai – Ãi > 0, i = 1, 2, 3. This completes the proof. �

Next we consider the stochastic permanence of system (1.2).

Theorem 3.2 Then model (1.2) is stochastically permanent provided that the following
assumption holds.

Assumption 3.1 mini=1,2,3 ri – maxi=1,2,3 σ 2
i –

∫

Z maxi=1,2,3(γi – ln(1 + γi(u)))λ(du) > 0.

Proof Define

V1(x) =
1

x1(t) + x2(t) + x3(t)
.

With the help of Itô’s formula, we have

dV1(x) = –V1(x)2

[ 3∑

i=1

xi(t)

(

ri – ci – aiixi(t) +
3∑

j=1,j �=i

aijxj(t – τij)

)]

+ V 3
1 (x)

3∑

i=1

σ 2
i x2

i (t)

+
∫

Z

(
1

∑3
i=1 xi(t)(1 + γi(u))

– V1(x) – V 2
1 (x)

3∑

i=1

xi(t)γi(u)

)

λ(du) dt
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– V 2
1 (x)

3∑

i=1

σixi(t) dωi(t) +
∫

Z

(
1

∑3
i=1 xi(t)(1 + γi(u))

– V1(x)
)

Ñ(du, dt).

Then, for an arbitrarily small positive constant ι > 0,

dV ι
1(x) = ιV ι–1

1 (x)

{

–V1(x)2

[ 3∑

i=1

xi(t)

(

ri – ci – aiixi(t) +
3∑

j=1,j �=i

aijxj(t – τij)

)]

+ V 3
1 (x)

3∑

i=1

σ 2
i x2

i (t)

+
∫

Z

(
1

∑3
i=1 xi(t)(1 + γi(u))

– V1(x) + V 2
1 (x)

( 3∑

i=1

xi(t)γi(u)

))

λ(du)

}

dt

+
ι(ι – 1)

2
V ι+2

1 (x)
3∑

i=1

σ 2
i x2

i (t) dt – ιV ι+1
1 (x)

3∑

i=1

σixi(t) dωi(t)

+
∫

Z

[
1

∑3
i=1[xi(t)(1 + γi)]ι

– V ι
1(x)

– ιV ι–1
1 (x)

(
1

∑3
i=1 xi(t)(1 + γi(u))

– V1(x)
)

)λ(du)
]

dt

+
∫

Z

(
1

∑3
i=1[xi(t)(1 + γi)]ι

– V ι
1(x)

)

Ñ(du, dt)

≤ ιV ι–2
1 (x)

{

–V 3
1 (x)

( 3∑

i=1

(
ri – aiixi(t)

)
xi(t) – V1(x)

3∑

i=1

σ 2
i x2

i (t)

)

–
ι – 1

2
V1(x)

3∑

i=1

σ 2
i x2

i (t)))

– V1(x)
∫

Z

(
1

∑3
i=1 xi(t)(1 + γi(u))

– V1(x) – V 2
1 (x)

3∑

i=1

xi(t)ri(u)

)

λ(du)

}

dt

– ιV ι+1
1 (x)

3∑

i=1

σixi(t) dωi(t) +
∫

Z

(
1

∑3
i=1[xi(t)(1 + γi)]ι

– V ι
1(x)

)

Ñ(du, dt)

+
∫

Z

(
1

∑3
i=1 xi(t)(1 + γi(u))ι

– V ι
1(x)

– ιV ι–1
1 (x)

(
1

∑3
i=1 xi(t)(1 + γi)

– V1(x)
))

λ(du)) dt

≤ ιV ι–2
1 (x)G(x) dt – ιV ι+1

1 (x)
3∑

i=1

σixi(t) dωi(t)

+
∫

Z

(
1

∑3
i=1[xi(t)(1 + γi(u))]ι

– V ι
1(x)

)

Ñ(du, dt),

where

G(x) = – V 2
1 (x)

[

min
i=1,2,3

ri –
1 + ι

2
max
i=1,2,3

σ 2
i –

∫

Z

max
i=1,2,3

γi(u)λ(du)
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–
∫

Z

(
1

ιmini=1,2,3(1 + γi(u)ι)
–

1
ι

)

λ(du)
]

+ max
i=1,2,3

aiiV1(x).

Note that, by the definition of derivative, we can derive that

lim
t→∞

(

ι max
i=1,2,3

(
σ 2

i
)
/2 +

∫

Z

(
1

ι(mini=1,2,3(1 + γi(u))ι
–

1
ι

)

λ(du) dt
)

=
∫

Z

ln
1

mini=1,2,3(1 + γi(u))
λ(du)

= –
∫

Z

ln
[

min
i=1,2,3

(
1 + γi(u)

)]
λ(du).

By Assumption 3.1, we can choose ι small enough such that

min
i=1,2,3

ri –
1 + ι

2
max
i=1,2,3

σ 2
i –

∫

Z

max
i=1,2,3

γi(u)λ(du)–
∫

Z

(
1

ιmini=1,2,3(1 + γi(u)ι)
–

1
ι

)

λ(du) > 0.

Hence G(x) is bounded above. Then let η > 0 such that

η

ι
< min

i=1,2,3
ri –

1 + ι

2
max
i=1,2,3

σ 2
i –

∫

Z

max
i=1,2,3

γi(u)λ(du)

–
∫

Z

(
1

ιmini=1,2,3(1 + γi(u)ι)
–

1
ι

)

λ(du). (3.15)

Define V2(x) = eηtV ι
1(x). Then

dV2(x) ≤ ηeηtV ι
1 dt + eηtιV ι–2

1 G(x) dt – ιeηtV ι+1
1

3∑

i=1

σixi(t) dωi(t)

+ eηt
∫

Z

(
1

∑3
i=1[xi(t)(1 + γi)]ι

– V ι
1(x)

)

Ñ(du, dt)

= eηtH
(
x(t)

)
dt – ιeηtV ι+1

1

3∑

i=1

σixi(t) dωi(t)

+ eηt
∫

Z

(
1

∑3
i=1[xi(t)(1 + γi)]ι

– V ι
1(x)

)

Ñ(du, dt), (3.16)

where

H
(
x(t)

)
= ιV ι–2

1 (x)
{

–V 2
1 (x)

[

min
i=1,2,3

ri –
1 + ι

2
max
i=1,2,3

σ 2
i – max

i=1,2,3
γi(u)λ(du)

–
∫

Z

(
1

ιmini=1,2,3(1 + γi(u)ι)
–

1
ι

)]

λ(du) – η/ι
}

+ max
i=1,2,3

aiiV1(x).

By (3.15), we know that H(x(t)) is bounded above, that is, supx∈R3
+

H(x) = K for some con-
stant K . Then integrate both sides of inequality (3.16) from 0 to t and take the expectations
to get

E
(
V2(x)

)
= E

(
eηtV ι

1(x)
)≤ V ι

1(0) +
K(eηt – 1)

η
,
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which gives

lim
t→∞EV ι

1(t) ≤ K
η

� H̆.

Clearly

(
x1(t) + x2(t) + x3(t)

)ι ≤
(

3 max
i=1,2,3

xi(t)
)ι ≤ 3

(
max
i=1,2,3

x2
i (t)

)ι/2 ≤ 3ι
∣
∣x(t)

∣
∣ι.

For any given ε > 0, let ε = ( ε

H̆
)1/ι. By Chebyshev’s inequality, we have

P
(∣
∣x(t)

∣
∣ < ε

)
= P

(
1

|x(t)|ι >
1
ει

)

≤ ε,

which means lim supt→∞ P{|x(t)| ≥ ε} ≥ 1 – ε.
Next we prove that there exists a constant M > 0 such that P(|x| ≤ M) ≥ 1 – ε for ε > 0

small enough. Define

U(x) =
3∑

i=1

xi(t) +
3∑

j=1,j �=i

aij

∫ t

t–τij

xi(s) ds.

By using Itô’s formula to the function etU(t), we get

d
(
etU(x)

)
= etU(x) dt + et dU

= et(
3∑

i=1

xi(t) +
3∑

i=1

3∑

j=1,j �=i

xi(ri – ci – aiixi(t) + aijxj
(
t – τij(t)

)
dt

+ et
3∑

i=1

(

σixi(t) dωi(t) + xi(t)
∫

Z

γi(u)Ñ(du, dt)
)

≤ et

( 3∑

i=1

xi(t) + a12
x2

1(t) + x2
2(t)

2
+ a13

x2
1(t) + x2

3(t)
2

+ a21
x2

1(t) + x2
2(t)

2

+ a23
x2

3(t) + x2
2(t)

2
+ a31

x2
1(t) + x2

3(t)
2

+ a32
x2

3(t) + x2
2(t)

2

)

dt

+ et
3∑

i=1

(

σixi(t) dωi(t) + xi(t)
∫

Z

γi(u)Ñ(du, dt)
)

≤ Ket dt + et
3∑

i=1

(

σixi(t) dωi(t) + xi(t)
∫

Z

γi(u)Ñ(du, dt)
)

.

Computing the expectation E(etU(x(t))) gives

lim sup
t→∞

E
(
U
(
x(t)

))≤ K and lim sup
t→∞

E
(
x(t)

)≤ K .

By use of Chebyshev’s inequality again, we can obtain that P(|x| ≤ M) ≥ 1 – ε for ε > 0
small enough. This completes the proof. �
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Remark 3.1 It is clear from Assumption 3.1 that the Lévy noise is harmful to the perma-
nence of system (1.2). Furthermore, for the case of one species, our obtained result is in
accordance with that of Liu and Wang [20].

4 Stability in distribution
Theorem 4.1 Model (1.2) is stable in distribution if Assumption 2.2 holds.

Proof Firstly, let x(t) = x(t,φ) and x̌(t) = x(t, φ̌) be any two solutions of model (1.2) with
initial data φ ∈ C([–τ , 0], R3

+) and φ̌ ∈ C([–τ , 0], R3
+), respectively. For i = 1, 2, 3, we denote

x̄i(t) = xi(t) – x̌i(t) and prove limt→∞ E|x̄i(t)| = 0, that is, system (1.2) is globally attractive.
Define

V (t) =
3∑

i=1

∣
∣ln xi(t) – ln x̌i(t)

∣
∣ +

3∑

i=1

3∑

j=1,j �=i

aij

∫ t

t–τij

∣
∣x̄j(t)

∣
∣.

By computing the upper right derivative of V (t), we have

D+V (t) =
3∑

i=1

sgn x̄i(t)

( 3∑

j=1,j �=i

(
aijx̄j(t – τij) – aiix̄j(t)

)
)

dt

+
3∑

i=1

3∑

j=1,j �=i

aij
∣
∣x̄j(t)

∣
∣dt –

3∑

i=1

3∑

j=1,j �=i

aij
∣
∣x̄j(t – τij)

∣
∣dt

≤ –
3∑

i=1

aiix̄i(t) dt +
3∑

j=1,j �=i

aijx̄j(t) dt.

Integrating both sides of the above inequality from 0 to t and taking expectations give us

E
(
V (t)

)≤ V (0) – (a11 – a12 – a13)
∫ t

0
Ex̄1(s) ds

– (a22 – a21 – a23)
∫ t

0
Ex̄2(s) ds

– (a33 – a31 – a32)
∫ t

0
Ex̄3(s) ds,

which implies that

(a11 – a12 – a13)
∫ t

0
Ex̄1(s) ds

+ (a22 – a21 – a23)
∫ t

0
Ex̄2(s) ds

+ (a33 – a31 – a32)
∫ t

0
Ex̄3(s) ds

≤ V (0)

< ∞.
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By Assumption 2.2, we have

E
∣
∣x̄i(t)

∣
∣ ∈ L1[0,∞).

Moreover, by (1.2), we obtain

Ex1(t) = x1(0) +
∫ t

0

[
Eβ1x1(s) – a11E

(
x1(s)

)2

– a12Ex1(s)x2(s – τ12) – a13Ex1(s)x3(s – τ13)
]

ds.

It implies that Ex1(t) is differentiable. This, combined with Lemma 2.3, gives

dEx1(t)
dt

= Eβ1x1(s) – a11E
(
x1(s)

)2 – a12Ex1(s)x2(s – τ12) – a13Ex1(s)x3(s – τ13)

≤ Eβ1x1(s)

≤ β1K .

Hence Ex1(t) is uniformly continuous. Similarly, Ex2(t) and Ex3(t) are also uniformly con-
tinuous. Now, it follows from Barbalat lemma [31] that

lim
t→∞E

∣
∣x̄i(t)

∣
∣ = 0, i = 1, 2, 3.

Secondly, denote by p(t,φ, dy) the transition probability of the process x(t,φ) and denote
by P(t,φ, R3

+) the probability of event x(t,φ) ∈ R3
+ with the initial data φ ∈ C([–τ , 0]; R3

+). Let
P(C([–τ , 0]; R3

+)) be the space of all probability measure on C([–τ , 0]; R3
+). Then it follows

from Lemma 2.3 and Chebyshev’s inequality that the family {p(t,φ, dy)} is tight, that is, for
any arbitrarily given ε > 0, there exists a compact subsetK ⊆ R3

+ such that P(t,φ,K) ≥ 1–ε.
We prove that the series {p(x(t,φ, R3

+))} is Cauchy in P(C([–τ , 0]; R3
+)).

For any P1, P2 ∈ P(C([–τ , 0]; R3
+)), we define the metric of P1 and P2 by

dF (P1, P2) = sup
f ∈F

∣
∣
∣
∣

∫

R3
+

f (x)P1(dx) –
∫

R3
+

f (x)P2(dx)
∣
∣
∣
∣,

where

F =
{

f : C
(
[–τ , 0]; R3

+
)→ R|∣∣f (x1) – f (x2)

∣
∣≤ ‖x1 – x2‖, f (·) ≤ 1

}
.

For any f ∈ F and s, t > 0, we have

∣
∣Ef

(
x(t + s,φ)

)
– Ef

(
x(t,φ)

)∣
∣

=
∣
∣E
[
Ef
(
x(t + s,φ)|Fs

)]
– Ef

(
x(t,φ)

)∣
∣

=
∣
∣
∣
∣

∫

R3
+

Ef
(
x(t, ξ )

)
p(s,φ, dξ ) – Ef

(
x(t,φ)

)
∣
∣
∣
∣

≤
∫

R3
+

∣
∣Ef

(
x(t, ξ )

)
– Ef

(
x(t,φ)

)∣
∣p(s,φ, dξ )
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=
∫

ŪK

∣
∣Ef

(
x(t, ξ )

)
– Ef

(
x(t,φ)

)∣
∣p(s,φ, dξ )

+
∫

R3
+/ŪK

∣
∣Ef

(
x(t, ξ )

)
– Ef

(
x(t,φ)

)∣
∣p(s,φ, dξ ),

where ŪK = {x ∈ R3
+ : |x| ≤ K}. Because of the tightness of {p(t,φ, dy)}, we can find suffi-

ciently large K such that P(s,φ, R3
+/ŪK ) < ε for any s > 0. Then

∫

R3
+/ŪK

∣
∣Ef

(
x(t, ξ )

)
– Ef

(
x(t,φ)

)∣
∣p(s,φ, dξ ) ≤ 2P

(
s,φ, R3

+/ŪK
)≤ 2ε.

By the global attractivity, for arbitrarily given ε > 0 and sufficiently large t, we have
∫

ŪK

∣
∣Ef

(
x(t, ξ )

)
– Ef

(
x(t,φ)

)∣
∣p(s,φ, dξ )

≤
∫

ŪK

E
[∥
∥x(t, ξ ) – x(t,φ)

∥
∥
]
p(s,φ, dξ )

≤
∫

ŪK

εp(s,φ, dξ )

= εP(s,φ, ŪK )

≤ ε.

Consequently, for any s > 0 and sufficiently large t,

dF
(
p(t + s,φ, ·), p(t,φ, ·)) = sup

f ∈F

∣
∣Ef

(
x(t + s,φ)

)
– Ef

(
x(t,φ)

)∣
∣≤ 3ε.

Hence, for any initial data φ ∈ C([–τ , 0]; R3
+), {p(t,φ, ·) : t ≥ 0} is Cauchy inP(C([–τ , 0]; R3

+))
with respect to the metric dF and there exists a probability measure ν(·) such that, for fixed
initial data ψ ∈ C([–τ , 0]; R3

+),

lim
t→∞ dF

(
p(t,ψ , ·),ν(·)) = 0.

Finally, by the triangle inequality,

dF
(
p(t,φ, ·),ν(·))≤ dF

(
p(t,φ, ·), p(t,ψ , ·)) + dF

(
p(t,ψ , ·),ν(·)).

In view of the global attractivity, we can deduce that

dF
(
p(t,φ, ·), p(t,ψ , ·)) = sup

f ∈F
Ef
(
x(t,φ)

)
– Ef

(
x(t,ψ)

)

≤ sup
f ∈F

E
(
f
(
x(t,φ)

)
– f

(
x(t,ψ)

))

≤ E
∥
∥x(t,φ) – x(t,ψ)

∥
∥

→ 0.

Therefore, for any φ ∈ C([–τ , 0], R3
+), we have limt→∞ dF (p(t,φ, ·),ν(·)) = 0, which is the

required assertion. �
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5 Optimal harvesting effort
Denote

L =
(
r1 – σ 2

1 /2 – κ1, r2 – σ 2
2 /2 – κ2, r3 – σ 2

3 /2 – κ3
)T ,

G = (g1, g2, g3)T =
[
AA–1 + I

]–1L,

where κi =
∫

Z
(γi(u) – ln(1 + γi(u)))λ(du), i = 1, 2, 3. As for the OHE of (1.2), we have the

following result.

Theorem 5.1 Under Assumptions 2.1–2.3, the following statements are true.
(i) Suppose that β1|C=G > 0, β2|C=G > 0, β3|C=G > 0, A1|C=G > Ã1|C=G, A2|C=G > Ã2|C=G ,

A3|C=G > Ã3|C=G . Then the OHE is C∗ = G and the MESY is Y ∗ = GT A–1(L – G).
(ii) If conditions of (i) do not hold, then the OHE does not exist.

Proof Let

Ξ =
{

C = (c1, c2, c3)T ∈ R3|βi > 0, Ai > Ãi, ci ≥ 0, i = 1, 2, 3
}

.

If C∗ exists, then C∗ ∈ Ξ .
Firstly we prove (i). Obviously G ∈ Ξ and, for any C ∈ Ξ , we have

lim
t→∞ t–1

∫ t

0
CT x(s) ds =

3∑

i=1

ci lim
t→∞

∫ t

0
xi(s) ds = CT A–1(L – C) a.s.

By Theorem 4.1, (1.2) only has an invariant measure ν(·). By Corollary 3.4.3 of Prato
and Zabczyk [32], ν(·) is strong mixing. By Theorem 3.2.6 in [32], ν(·) is ergodic. Hence
limt→∞ t–1 ∫ t

0 CT x(s) ds =
∫

R3
+

CTν(dx).
Let �(x) be the stationary probability density of (1.2). Then

Y (C) = lim
t→∞

3∑

i=1

E
(
cixi(t)

)
= lim

t→∞E
(
CT x(t)

)
=
∫

R3
+

CT x�(x) dx.

Since the invariant measure of (1.2) is unique, by one-to-one correspondence between
�(x) and its invariant measure, we have

∫

R3
+

CT x�(x) dx =
∫

R3
+

CT xν(dx).

Therefore, we get Y (C) = CT A–1(L – C).
Let G = (g1, g2, g3)T be the unique solution of the following equation:

dY (C)
dC

=
dCT

dC
A–1(L – C) +

d(L – C)T (A–1)T

dC
C = A–1L –

[
A–1 +

(
A–1)T]C = 0. (5.1)

Then G = [A(A–1)T + I]–1L. Further, d(Y (C)/dC)
dCT = –[A–1 + (A–1)T ] is negative definite. Con-

sequently, G is the unique extreme point of Y (C). Hence if G ∈ Ξ , then C∗ = G and the
MESY is Y ∗ = GT A–1(L – G).
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Figure 1 System (1.2) is permanent with σ1 = σ2 = σ3 = 0.1, γ1(u) = 0.2, γ2(u) = 1, γ3(u) = 3. (a) shows the
stability of the equilibrium state of the corresponding deterministic system while (b), (c), (d) sketch the time
series of x1(t), x2(t), and x3(t), respectively

(ii) By contradiction, suppose that there exists an OHE C̃∗ = (C̃∗
1 , C̃∗

2 , C̃∗
3 )T . Then C̃∗ ∈

Ξ , which implies that β1|C=C̃∗ > 0, β2|C=C̃∗ > 0, β3|C=C̃∗ > 0, A1|C=C̃∗ > Ã1|C=C̃∗ , A2|C=C̃∗ >
Ã2|C=C̃∗ , A3|C=C̃∗ > Ã3|C=C̃∗ , g1, g2, g3 ≥ 0. Further, C̃∗ is a solution of (5.1). In view of the
uniqueness of its solutions, C̃∗ = G, which means that β1|C=G > 0, β2|C=G > 0, β3|C=G >
0, A1|C=G > Ã1|C=G, A2|C=G > Ã2|C=G, A3|C=G > Ã3|C=G. Clearly, they contradict with the
assumption. The proof is completed. �

6 Numerical simulations
In this section, we give some numerical simulations to demonstrate our theoretical re-
sults. For this purpose, we choose α1 = (0.8, –0.1, –0.15)T , α2 = (–0.15, 0.8, –0.1)T , α3 =
(–0.1, –0.15, 0.8)T , r1 = 0.5, r2 = 0.8, r3 = 1.8, c1 = c2 = c3 = 0.1, σ1 = σ2 = σ3 = 0.1, γ1(u) =
0.2, γ2(u) = 1, γ3(u) = 3, Z = (0,∞), λ(Z) = 1. Then x∗

1 = 1.0927, x∗
2 = 1.4832, x∗

3 = 2.5155,
r1 – c1 = 0.4, r2 – c2 = 0.7, r3 – c3 = 1.7, b1 = 0.0227, b2 = 0.3119, b3 = 1.6187, A = 0.4716,
A1 = 0.5153, A2 = 0.6995, A3 = 1.1863, Ã1 = 0.2207, Ã2 = 0.4077, Ã3 = 1.0466, A1 – Ã1 =
0.2946, A2 – Ã2 = 0.2918, A3 – Ã3 = 0.1397, β1 = 0.4723, β2 = 0.4881, β3 = 0.1813, A1–Ã1

A =
0.6246, A2–Ã2

A = 0.6187, A3–Ã3
A = 0.2961. By Theorem 3.1, we have limt→∞〈x1(t)〉 = 0.6246,

limt→∞〈x2(t)〉 = 0.6187, limt→∞〈x3(t)〉 = 0.2961 and hence (1.2) is permanent, Fig. 1 con-
firms it. Figure 1(a) is the equilibrium state of the corresponding deterministic system.
Figure 1(b), (c), (d) are the time series of x1(t), x2(t), and x3(t), respectively. The stochastic
permanence of system (1.2) is plotted in Fig. 2. The attractivity of solutions is plotted in
Fig. 3, while the distributions of x1(t), x2(t), and x3(t) are plotted in Fig. 4.

Furthermore, it is easy to verify that G = ((A(A–1)T + I)–1)L = (0.2345; 0.2480; 0.0908)T .
According to Theorem 5.1, the OHE is C∗ and the MESY is Y ∗ = GT A–1(L – G) = 0.2156.
Actually, if we take G1 = (0.25, 0.28, 0.01)T and G2 = (0.1, 0.01, 0.05)T as two examples, by
computation, we have Y∗ = GT

1 A–1(L – G1) = 0.2069 and Y ˜ = GT
2 A–1(L – G2) = 0.0911,

which are both less than the MESY Y ∗ = 0.2165. The numerical result is shown in Fig. 5.
Next we consider the effects of Lévy jumps by letting all parameters be the same as above

except the parameters γi(u), i = 1, 2, 3.
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Figure 2 System (1.2) is stochastically permanent when γ1(u) = 0.2, γ2(u) = 1, γ3(u) = 3

Figure 3 The attractivity of system (1.2) when σ1 = σ2 = σ3 = 0.1, γ1(u) = 0.2, γ2(u) = 1, γ3(u) = 3

Firstly, let γ1(u) = 1.4 with γ2(u) and γ3(u) being as before. Then b1 = 0.5295, Ã1 = 0.5374,
Ã2 = 0.4596, Ã3 = 1.1125; A1 – Ã1 = –0.0211; (A2 – Ã2)/A = 0.5087; (A3 – Ã3)/A = 0.1565.
Consequently, by Theorem 3.1, x1 is extinct. Further, �2 – �̃2 = 0.3186, �3 – �̃3 = 0.1233,
A11 = 0.6250, �2–�̃2

A11
= 0.5098, �3–�̃3

A11
= 0.1973. It follows that limt→∞〈x2(t)〉 = 0.5098 and

limt→∞〈x3(t)〉 = 0.1973, which is illustrated in Fig. 6.
Secondly, we take γ1(u) = 2.5, γ3(u) = 3.5, and γ2(u) as before. In this case, b1 = 1.2522,

b3 = 2.0009, Ã1 = 1.2083, Ã2 = 0.5834, Ã3 = 1.4453; A1 – Ã1 < 0; A3 – Ã3 < 0; A2–Ã2
A =

0.2439 > 0, r2–c2–b2
0.8 = 0.4851. By Theorem 3.1, we conclude that both x1 and x3 are extinct

and limt→∞〈x2(t)〉 = 0.4851, which is shown in Fig. 7.
Finally, with γ1(u) = 2.5, γ2(u) = 2, and γ3(u) = 3.5, we have b1 = 1.2522, b2 = 0.9064,

b3 = 2.0009, Ã1 = 1.1055, Ã2 = 0.9550, Ã3 = 1.5063. It follows that A1 – Ã1 < 0, A2 – Ã2 < 0,
A3 – Ã3 < 0. Theorem 3.1 tells us that all species are extinct (see Fig. 8).
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Figure 4 Distributions of x1(t), x2(t), x3(t) when σ1 = σ2 = σ3 = 0.1, γ1(u) = 0.2, γ2(u) = 1, γ3(u) = 3

Figure 5 The MESY Y∗ = 0.2165 of (1.2) when σ1 = σ2 = σ3 = 0.1, γ1(u) = 0.2, γ2(u) = 1, γ3(u) = 3

7 Discussion and conclusion
In this paper, we consider a three-species stochastic cooperative system with time delays
and Lévy noise. Theorem 3.1 gives some sufficient conditions on the stability in mean and
extinction of each population. Theorem 3.2 gives sufficient conditions on permanence.
The stability in distribution of each species is covered in Theorem 4.1. Finally, by use of
ergodic method, the optimal harvesting policy is established in Theorem 5.1.

Theorem 3.1 and Theorem 3.2 imply that Lévy jumps have key influence on the extinc-
tion, stability in mean, and the stochastic permanence of (1.2). In general, the impacts of
Lévy jumps on optimal harvesting are complicated since they are not constant usually. For
simplicity and convenience, we suppose that γi(u) = γi (i = 1, 2, 3) is a constant. Then, by

computing the value of
d Ai

Ãi
dγi

, we find that the permanence of (1.2) is dependent on all γi ’s.
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Figure 6 x1 dies out while x2 and x3 persist when γ1(u) = 1.4, γ2(u) = 1, γ3(u) = 3, and the other parameters
are the same as those for Fig. 1

Figure 7 Both x1 and x3 die out while x2 persists when γ1(u) = 2.5, γ2(u) = 1, γ3(u) = 3.5, and the other
parameters are the same as those for Fig. 1

For example, if limt→∞ x1(t) = 0, then

d(�12/�̃12)
dγ2

⎧
⎨

⎩

> 0 if –1 < γ2 < 0,

< 0 if γ2 > 0,

and

d(�12/�̃12)
dγ3

⎧
⎨

⎩

> 0 if –1 < γ3 < 0,

< 0 if γ3 > 0.

It follows that if γ2 > 0 or γ3 > 0, then species x2 will tend to extinction with the increasing
of γ2 or γ3, while if –1 < γ2 < 0 or –1 < γ3 < 0, then species x2 grows and becomes stable
with the increasing of γ2 or γ3.

Actually, time delays are considered in our research. They bring much difficulty for us,
and we successfully defined some complex functionals to overcome it. Though any con-
crete effects of time delays are not reflected in our obtained results, we believe that it is
very interesting to further explore them. This will be our future work.
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Figure 8 All species go to extinction with γ1(u) = 2.5, γ2(u) = 2, γ3 = 3.5, and the other parameters are the
same as those for Fig. 1
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