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Abstract
A finite difference scheme, based upon the Crank–Nicolson scheme, is applied to the
numerical approximation of a two-dimensional time fractional non-Newtonian fluid
model. This model not only possesses a multi-term time derivative, but also contains
a special time fractional operator on the spatial derivative. And a very important
lemma is proposed and also proved, which plays a vital role in the proof of the
unconditional stability. The stability and convergence of the finite difference scheme
are discussed and theoretically proved by the energy method. Numerical experiments
are given to validate the accuracy and efficiency of the scheme, and the results
indicate that this Crank–Nicolson difference scheme is very effective for simulating
the generalized non-Newtonian fluid diffusion model.

Keywords: Finite difference method; Crank–Nicolson difference scheme; Energy
method; Caputo fractional derivative; Multi-term time derivative; Generalized
non-Newtonian fluid

1 Introduction
Fractional partial differential equations have been applied to many anomalous phenom-
ena and complex systems in natural science and engineering technology fields [1–3]. They
have some advantages in describing real processes or phenomena with memory [4, 5]
over the integer-order ones. Many existing models have used single-term time-fractional
derivatives to describe anomalous diffusion phenomena [6, 7], optimum control [8, 9],
ecological system [10, 11]. In recent years, the extension to multi-term time fractional dif-
fusion equations has been considered. Liu et al. [12] derived the analytical solutions for
the multi-time time-fractional diffusion-wave equations with nonhomogeneous bound-
ary conditions by using the method of separating variables. Daftardar–Gejji et al. [13]
obtained the solutions of multi-term time fractional diffusion wave equations under dif-
ferent homogeneous or non-homogeneous boundary conditions. Some numerical treat-
ment of multi-term fractional diffusion equations is also an active area of current research.
The Galerkin finite element method was discussed in [14]. Liu et al. [15] found numerical
solutions for the multi-term fractional diffusion-wave diffusion whose fractional orders
belong to the intervals [0, 1), [1, 2), [0, 2), [0, 3), [2, 3), and [2, 4), separately. In [16], they
handled the multi-term fractional wave equations with a meshless collocation method

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1876-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1876-4&domain=pdf
mailto:yqliumath@163.com


Liu et al. Advances in Difference Equations        (2018) 2018:442 Page 2 of 16

and applied the moving least squares reproducing kernel particle approximation to con-
struct the shape functions for spatial approximation of the equations in two dimensions.
An implicit compact difference scheme based on the L2 approximation was constructed
to simulate the solution of the two-dimensional multi-term fractional equations in [17].

Fractional equations also have many other applications, such as continuous time random
walks in external fields [18], fractal mobile/immobile solute transport [19], attenuation
coefficient for power-law biological tissue [20]. In the last few decades, non-Newtonian
fluids have been widely applied in engineering and industry. The constitutive equation of
non-Newtonian fluids is much more complex than its Newtonian counterparts, and the
constitutive equations involving fractional derivative have been proved to be a valuable
tool to handle viscoelastic properties [21], and the obtained results show that they are in
good agreement with the experimental data [22].

The generalized Oldroyd-B fluid is a particular subclass of non-Newtonian fluids. Some
recent papers about the generalized Oldroyd-B fluids can be found in references [23, 24].
The fundamental electromagnetic relations have been summarized by Sutton [25]. One
important part is the incompressible Oldroyd-B fluid which is bounded by two infinite
rigid plates, when a magnetic field is imposed on the above flow under the assumption
of low magnetic Reynolds number. Khan et al. [26] considered the generalized Oldroyd-B
fluid in a porous medium with the influence of Hall current. For the MHD flow, Zheng et
al. [27] discussed the flow between two plates with slip boundary conditions and obtained
the exact solution using some transform techniques. There are some literature works [27,
28] that give the exact solution of the generalized Oldroyd-B fluid, and they are typically
given in generalized G or H-function. Fetecau et al. [29] considered the two-dimensional
fluid model and also obtained the exact solution.

But these multi-term fractional fluid models are difficult to get their exact solution,
therefore, many researchers look for other solutions [30, 31]; numerical method is a
promising tool to solve these equations. And up to now, numerical methods to solve
fractional equations mainly are finite difference methods [32–34], finite element methods
[35, 36], finite volume methods [37, 38], and spectral methods [39–41]. For these multi-
term fractional fluid models, Bazhlekova et al. [42] proposed a finite difference method
to solve the viscoelastic flow with generalized fractional Oldroyd-B model, and they uti-
lized the Grünwald–Letnikov formula to approximate the Riemann–Liouville time frac-
tional derivative; the results were low accuracy and lacked theoretical analysis. Recently,
Feng et al. [43] gave the numerical solution of these problems, but it was confined to
a one-dimensional case. We use finite difference method to solve the generalized two-
dimensional multi-term time fractional Oldroyd-B fluid equation. We get that the tempo-
ral convergence order is min{3 – γ , 2 – α, 2 – β}, this result is better than [43] where the
convergence rate in time is only first order, and we also propose and prove a vital lemma.
It will help us to prove the unconditional stability of the Crank–Nicolson finite differ-
ence scheme, but in literature [44], they only proved that this Crank–Nicolson difference
scheme is conditionally stable.

Inspired by the above works and motivated by potential applications, we will consider
the following generalized two-dimensional multi-term time fractional non-Newtonian
fluid diffusion equation:

c1
C
0 Dγ

t u + c2
∂u
∂t

+ c3
C
0 Dα

t u + c4u = c5�u + c6
C
0 Dβ

t �u + f (x, t), (1)
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where u = u(x, t), x = (x, y) ∈ Ω = (0, Lx) × (0, Ly) ⊂ �2, 0 < t ≤ T , and the following initial
conditions:

u(x, 0) = ϕ(x), ut(x, 0) = φ(x), x ∈ Ω

and Dirichlet boundary condition

u(x, t) = 0, x ∈ ∂Ω ⊂ �2, 0 < t ≤ T ,

where ci > 0, i = 1, . . . , 6, and 1 < γ < 2, 0 < α,β < 1, here ∂Ω is the boundary of Ω . � is the
Laplace operator �u = ∂2u

∂x2 + ∂2u
∂y2 , ϕ(x) and φ(x) are sufficiently smooth functions, f (x, t)

is a known source term function. C
0 Dθ

t u is the Caputo time fractional derivative of order
θ (θ > 0, n – 1 ≤ θ < n) with respect to t [45, 46]

C
0 Dθ

t u(x, t) =

⎧
⎨

⎩

1
Γ (n–θ )

∫ t
0 (t – s)n–1–θ ∂nu(x,s)

∂sn ds, θ /∈ z+,
∂θ u(x,t)

∂tθ , θ ∈ z+,

where Γ (·) is the gamma function.
The outline of this paper is organized as follows. First, preliminary knowledge is given,

and the numerical discretization of the time fractional derivative is proposed. Then, we
develop the finite difference method for the generalized non-Newtonian fluid model and
derive the implicit scheme. After that, we proceed with the proof of the stability and con-
vergence of the scheme by energy method and discuss the solvability of the numerical
scheme. Finally, we present a numerical example to demonstrate the effectiveness of our
method and draw some conclusions.

2 Preliminary
In the x-direction [0, Lp], we take the mesh points xp = ph1, p = 0, 1, . . . , M1, in the y-
direction [0, Lq], we take the mesh points yq = qh1, q = 0, 1, . . . , M1, and tn = nτ , n =
0, 1, . . . , N , where hx = Lp/M1, hy = Lq/M1, τ = T/N are the uniform spatial step size and
temporal step size, respectively. Denote Ωτ ≡ {tn | 0 ≤ n ≤ N}, Ωh ≡ {(xp, yq) | 0 ≤ p ≤
M1, 0 ≤ q ≤ M2}. Suppose un

pq = u(xp, yq, tn), un
pq is a grid function on Ωh × Ωτ . We intro-

duce the following notations:

∇tun
pq =

un
pq – un–1

pq

τ
, un– 1

2
pq =

un
pq + un–1

pq

2
, ∇xun

pq =
un

pq – un
p–1q

h
,

δ2
x un

pq =
un

p–1q – 2un
pq + un

p+1q

h2
x

, δ2
y un

pq =
un

pq–1 – 2un
pq + un

pq+1

h2
y

.

We define Vh = {v | v is a grid function on Ωh and v0q = vMxq = vp0 = vpMy = 0}. For any
u, v ∈ Vh, we also define the following discrete inner products and induced norms:

(u, v) = hxhy

Mx–1∑

p=1

My–1
∑

p=1

upqvpq,

〈
(∇x + ∇y)u, (∇x + ∇y)v

〉
= hxhy

Mx∑

p=1

My∑

p=1

(∇x + ∇y)upq · (∇x + ∇y)vpq,
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‖v‖0 =
√

(v, v), ‖v‖∞ = max
1≤p≤Mx
1≤q≤My

| v |, |v|1 =
√〈

(∇x + ∇y)v, (∇x + ∇y)v
〉
.

The ‖ · ‖1 norm of the grid function v ∈ Vh is given as

‖v‖1 =
√

c4‖v‖2
0 + c5‖v‖2

1. (2)

For the two-dimensional case, we can get the following properties:

((
δ2

x + δ2
y
)
vk , vn) = –

〈
(∇x + ∇y)vk , (∇x + ∇y)vn〉,

((
δ2

x + δ2
y
)
vk ,∇tvn) = –

1
τ

〈
(∇x + ∇y)vk , (∇x + ∇y)vn – (∇x + ∇y)vn–1〉

= –
〈
(∇x + ∇y)vk ,∇t(∇x + ∇y)vn〉, (3)

(∇t
((

δ2
x + δ2

y
)
vk),∇tvn) = –

〈∇t
(
(∇x + ∇y)vk),∇t

(
(∇x + ∇y)vn)〉. (4)

Proof We only give the proof of formula (4), similar to the one-dimensional case, it is easy
to get

(∇t
((

δ2
x + δ2

y
)
vk),∇tvn)

=
1
τ

〈
(∇x + ∇y)vk – (∇x + ∇y)vk–1,∇tvn〉

= –
1
τ

(〈
(∇x + ∇y)vk ,∇t(∇x + ∇y)vn〉 –

〈
(∇x + ∇y)vk–1,∇t(∇x + ∇y)vn〉)

= –
〈∇t

(
(∇x + ∇y)vk),∇t

(
(∇x + ∇y)vn)〉. �

Next we will give the Crank–Nicolson scheme of fractional derivative.

2.1 Crank–Nicolson discretization of Dβ
t u (0 < β < 1)

From the Crank–Nicolson scheme in [44, 47], we give the discretization scheme at grid
points (xp, yq, tn– 1

2
) directly

Dβ
t u(xp, yq, tn– 1

2
) =

τ–β

Γ (2 – β)

[

d(β)
0 un

pq –
n–1∑

k=1

(
d(β)

n–k–1 – d(β)
n–k

)
uk

pq – d(β)
n–1u0

pq

]

+ R1

=
τ 1–β

Γ (2 – β)

n∑

k=1

d(β)
n–k∇tuk

pq + R1, (5)

where R1 ≤ C(τ 2–β ), and

d(β)
k =

⎧
⎨

⎩

(k + 1
2 )1–β – (k – 1

2 )1–β , k = 1, 2, 3, . . . ,

2β–1, k = 0.
(6)

Lemma 1 The coefficients d(β)
k satisfy the following properties:

(1) d(β)
k > 0, limk→∞ d(β)

k = 0,
(2) d(β)

k > d(β)
k+1, k ≥ 1,

(3) d(β)
k+1 – 2d(β)

k + d(β)
k–1 > 0, k ≥ 2.
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Remark 1 When 0 < β < 0.4811, d(β)
2 – 2d(β)

1 + d(β)
0 < 0. Regarding these coefficients’ prop-

erty, literature [44] proved that this Crank–Nicolson difference scheme is only condition-
ally stable. Next, we will give the following important lemma, which is a valuable tool to
prove the unconditional stability of this Crank–Nicolson difference scheme.

Lemma 2 For 0 < β < 1, d(β)
k are defined as (5), (6), and for any positive integer N and real

vector Q = (v1, v2, . . . , vN–1, vN ) ∈ RN+1, we have

N∑

n=1

n∑

k=1

d(β)
n–kvkvn ≥ 0. (7)

Proof From Remark 1, when 0 < β < 0.4811, the coefficient d(β)
2 – 2d(β)

1 + d(β)
0 < 0. Next, we

will give the proof that it does not affect the results. Then, similar to Feng’s proof [48], we
will first prove the following results. We can rewrite (7) in the following form:

N∑

n=1

n∑

k=1

d(β)
n–kvkvn =

N∑

n=1

n–1∑

k=0

d(β)
n–kvn–kvn = QWQT ,

where

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

d(β)
0 0 0 · · · 0 0

d(β)
1 d(β)

0 0 · · · 0 0
d(β)

2 d(β)
1 d(β)

0 · · · 0 0
...

...
...

. . .
...

...
d(β)

N–2 d(β)
N–3 d(β)

N–4 · · · d(β)
0 0

d(β)
N–1 d(β)

N–2 d(β)
N–3 · · · d(β)

1 d(β)
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

To prove (7) is equivalent to proving that Matrix W is positive definite. So we only need
to prove TN = W+WT

2 is positive definite [43]. TN is a real symmetric Toeplitz matrix and
has the form

TN =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

2d(β)
0 d(β)

1 d(β)
2 · · · d(β)

N–2 d(β)
N–1

d(β)
1 2d(β)

0 d(β)
1 · · · d(β)

N–3 d(β)
N–2

d(β)
2 d(β)

1 2d(β)
0 · · · d(β)

N–4 d(β)
N–3

...
...

...
. . .

...
...

d(β)
N–2 d(β)

N–3 d(β)
N–4 · · · 2d(β)

0 d(β)
1

d(β)
N–1 d(β)

N–2 d(β)
N–3 · · · d(β)

1 2d(β)
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Next, we will prove det (TN) > 0. It is easy to verify that det (T1) = 2d(β)
0 > 0, and det (T2) =

2(d(β)
0 )2 – 1

2 d(β)
1 > 0, for a finite integer N , we explicitly calculate the value of det (TN) > 0.

When N is sufficiently large, according to [49], we have

det (TN)
det (TN+1)

> 0,
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then we can conclude that det (TN+1) > 0. As matrix Tk, k = 1, 2, . . . , N are the principal
minors of matrix HN+1 and det (Tk) > 0, k = 1, 2, . . . , N +1, then the real symmetric Toeplitz
matrix TN+1 is positive definite, matrix W is positive definite, so (7) is proved. �

In this part, we will give the scheme of the fractional derivative Dβ
t �u, 0 < β < 1.

Since

�u(xp, yq, tn– 1
2

) =
(
δ2

x + δ2
y
)
u(xp, yq, tn– 1

2
)

–
h2

x
12

∂4u(ξp, yq, tn– 1
2

)

∂x4 –
h2

y

12

∂4u(xp,ςq, tn– 1
2

)

∂y4 ,

where xp–1 ≤ ξp ≤ xp, yq–1 ≤ ςq ≤ yq, then

Dβ
t �u(xp, yq, tn– 1

2
) =

τ 1–β

Γ (2 – β)

n∑

k=1

d(β)
n–k∇t

(
δ2

x + δ2
y
)
uk

pq + R2,

where |R2| ≤ Cτ 2–β + h2
x + h2

y .
Next we give the following lemmas [50].

Lemma 3 Discretization of the time fractional derivative Dγ
t u(x, y, t) (1 < γ < 2). From the

results in [50], at mesh points (xp, yq, tn– 1
2

) we get

Dγ
t u(xp, yq, tn– 1

2
) ≈ 1

2
[
Dγ

t u(xp, yq, tn) + Dγ
t u(xp, yq, tn–1)

]

=
τ 1–γ

Γ (3 – γ )

[

a(γ )
0 ∇tun

pq –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k

)∇tuk
pq

– a(γ )
n–1

∂u(xp, yq, 0)
∂t

]

+ R3, (8)

where R3 = O(τ 3–γ ), the coefficients a(γ )
k = (k + 1)2–γ – k2–γ , k = 0, 1, 2, . . . , and they satisfy

the following properties:
(1) a(γ )

k > 0, a(γ )
0 = 1, a(γ )

k > a(γ )
k+1, limk→∞a(γ )

k = 0,
(2)

∑n–1
k=0(a(γ )

k – a(γ )
k+1) + a(γ )

n = 1,
(3) (2 – γ )(k + 1)1–γ ≤ a(γ )

k ≤ (2 – γ )k1–γ .

Lemma 4 ([43, 50]) For 1 < γ < 2, define a(γ )
k = (k + 1)2–γ – k2–γ , k = 0, 1, 2, . . . , n, and

S = {S1, S2, S3, . . .} and P, then it holds that

τ 1–γ

Γ (3 – γ )

N∑

n=1

[

a(γ )
0 Sn –

n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k

)
Sk – a(γ )

n–1P

]

Sn

≥ T1–γ

2Γ (2 – γ )

N∑

n=1

S2
n –

T2–γ

2τΓ (3 – γ )
P2, N = 1, 2, 3, . . . .
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3 The derivation of the difference scheme
We assume u(x, y, t) ∈ C4,4,3

x,y,t (Ω × (0, T]) and define the grid function f n
pq = f (xp, yq, tn), ϕpq =

ϕ(xp, yq), φpq = φ(xp, yq), (xp, yq) ∈ Ωh, 0 ≤ n ≤ N . Now, we will present the finite difference
scheme for the two-dimensional generalized non-Newtonian fluid model (1)

c1Dγ
t u(xp, yq, tn– 1

2
) + c2

∂u(xp, yq, tn– 1
2

)

∂t
+ c3Dα

t u(xp, yq, tn– 1
2

) + c4u(xp, yq, tn– 1
2

)

= c5�u(xp, yq, tn– 1
2

) + c6Dβ
t �u(xp, yq, tn– 1

2
) + f (xp, yq, tn– 1

2
). (9)

From Eqs. (5) and (8), one gets

c1μ1

[

a(γ )
0 ∇tun

pq –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k

)∇tuk
pq – a(γ )

n–1φpq

]

+ c2∇tun
pq + c3μ2

n∑

k=1

d(α)
n–k∇tuk

pq + c4un– 1
2

pq

= c5
(
δ2

x + δ2
y
)
un– 1

2
pq + c6μ3

n∑

k=1

d(β)
n–k∇t

(
δ2

x + δ2
y
)
uk

pq

+ f n– 1
2

pq + Rn
pq, (10)

where μ1 = τ1–γ

Γ (3–γ ) , μ2 = τ1–α

Γ (2–α) , μ3 = τ1–β

Γ (2–β) , and u(xp, yq, tn– 1
2

) = u(xp ,yq ,tn)+u(xp ,yq ,tn–1)
2 +O(τ 2),

∂
∂t u(xp, yq, tn– 1

2
) = u(xp ,yq ,tn)–u(xp ,yq ,tn–1)

τ
+ O(τ 2), so |Rn

pq| ≤ C(τmin(3–γ ,2–α,2–β) + h2
1 + h2

2), in
which C is independent of τ , h1, and h2. Omitting the error term, we use Un

pq as the nu-
merical solution, then we obtain the implicit finite difference scheme for generalized non-
Newtonian fluid Eq. (1)

clμl

[

a(γ )
0 ∇tUn

pq –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k

)∇tUk
pq – a(γ )

n–1φpq

]

+ c2∇tUn
pq + c3μ2

n∑

k=1

d(α)
n–k∇tUk

pq + c4Un– 1
2

pq

= c5
(
δ2

x + δ2
y
)
Un– 1

2
pq + c6μ3

n∑

k=1

c(β)
n–k∇t

(
δ2

x + δ2
y
)
Uk

pq + f n– 1
2

pq , (11)

with the initial and boundary conditions

U0
pq = ϕpq, (xp, yq) ∈ Ωh,

Un
pq = 0, (xp, yq) ∈ Vh, 1 ≤ n ≤ N .

4 Analysis of the numerical scheme
4.1 Solvability of the scheme
Theorem 1 The implicit finite difference scheme (11) is uniquely solvable.
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Proof At each time level, the coefficient matrix A is

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

B C 0 · · · 0 0
C B C · · · 0 0
0 C B · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · B C
0 0 0 · · · C B

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where B and C are block matrixes,

B =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

r1 + 2r2 + 2r3 –r3 0 · · · 0 0
–r3 r1 + 2r2 + 2r3 –r3 · · · 0 0
0 –r3 r1 + 2r2 + 2r3 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · r1 + 2r2 + 2r3 –r3
0 0 0 · · · –r3 r1 + 2r2 + 2r3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

and

C =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

–r2 0 0 · · · 0 0
0 –r2 0 · · · 0 0
0 0 –r2 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · –r2 0
0 0 0 · · · 0 –r2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

where r1 = c1k1+c2+c3k2d(α)
0

τ
+ c4

2 > 0, r2 =
c5
2 +c6k3d(β)

0
h2

1
> 0, r3 =

c5
2 +c6k3d(β)

0
h2

2
> 0, r4 = c1k1+c2

τ
– b2

2 ,
and r5 = c5

2 . Then A is a strictly diagonally dominant matrix. Therefore A is nonsingular,
which means that the numerical scheme (11) is uniquely solvable. �

4.2 Stability
Theorem 2 The implicit finite difference scheme (11) is unconditionally stable.

Proof Multiplying Eq. (11) by h1h2τ∇tUn
pq and summing p from 1 to M1 – 1, q from 1 to

M2 – 1 and summing n from 1 to N , we obtain

c1k1τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2

[

a(γ )
0 ∇tUn

pq –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k

)∇tUk
pq – a(γ )

n–1φpq

]

∇tUn
pq

+ c2τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(∇tUn

pq
)2

+ c3k2τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2

n∑

k=1

d(α)
n–k∇tUk

pq∇tUn
pq

+ c4τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2Un– 1
2

pq ∇tUn
pq
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= c5τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(
δ2

x + δ2
y
)
Un– 1

2
pq ∇tUn

pq

+ c6k3τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2

n∑

k=1

d(β)
n–k∇t

(
δ2

x + δ2
y
)
Uk

pq∇tUn
pq

+ τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2f n– 1
2

pq ∇tUn
pq. (12)

Using Lemma 3, we have

c1k1τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2

[

a(γ )
0 ∇tUn

pq –
n–1∑

k=1

(
a(γ )

n–k–1 – a(γ )
n–k

)∇tUk
pq – a(γ )

n–1φpq

]

∇tUn
pq

≥ c1
τT1–γ

2Γ (2 – γ )

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(∇tUn

pq
)2 – c1

a1T2–γ

2Γ (3 – γ )

M1–1∑

p=1

M2–1∑

q=1

h1h2φ
2
pq

= c1
τT1–γ

2Γ (2 – γ )

N∑

n=1

∥
∥∇tUn∥∥2

0 – c1
T2–γ

2Γ (3 – γ )
‖φ‖2

0. (13)

For the second term, we obtain

c2τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(∇tUn

pq
)2 = c2τ

N∑

n=1

∥
∥∇tUn∥∥2

0. (14)

Using Lemma 2, we get

c3k2τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2

n∑

k=1

d(α)
n–k∇tUk

pq∇tUn
pq

= c3k2

N∑

n=1

n∑

k=1

d(αm)
n–k

(∇Uk ,∇Un) ≥ 0. (15)

For the forth term, we have

c4τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2Un– 1
2

pq ∇tUn
pq =

c4

2

N∑

n=1

(
Un + Un–1, Un – Un–1)

=
c4

2

N∑

n=1

(∥
∥Un∥∥2

0 –
∥
∥Un–1∥∥2

0

)
=

c4

2
(∥
∥UN∥

∥2
0 –

∥
∥U0∥∥2

0

)
. (16)

Applying (3) and using the inequality a(a – b) ≥ 1
2 (a2 – b2), we obtain

c5τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(
δ2

x + δ2
y
)
Un

pq∇tun
pq

= c5τ

N∑

n=1

((
δ2

x + δ2
y
)
Un,∇tUn)
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= –c5

N∑

n=1

〈
(∇x + ∇y)Un, (∇x + ∇y)Un – (∇x + ∇y)Un–1〉

≤ –
c5

2

N∑

n=1

(∣
∣Un∣∣2

1 –
∣
∣Un–1∣∣2

1

)
=

c5

2
(∣
∣U0∣∣2

1 –
∣
∣UN ∣

∣2
1

)
. (17)

Combining (4) and Lemma 2, we have

c6k3τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2

n∑

k=1

c(β)
n–k∇t

(
δ2

x + δ2
y
)
Uk

pq∇tUn
pq

= c6k3τ

N∑

n=1

n∑

k=1

c(β)
n–k

(∇t
((

δ2
x + δ2

y
)
Uk),∇tUn)

= –c6k3τ

N∑

n=1

n∑

k=1

c(β)
n–k

〈∇t
(
(∇x + ∇y)Uk),∇t

(
(∇x + ∇y)Un)〉 ≤ 0. (18)

For the last term and using the important inequality ab ≤ εa2 + b2

4ε
, we have

τ

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2f n– 1
2

pq ∇tUn
pq

≤ τ

(
c1T1–γl

2Γ (2 – γl)
+ c2

) N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(∇tU

n– 1
2

pq
)2

+
τ

4( c1T1–γl
2Γ (2–γl)

+ c2)

N∑

n=1

M1–1∑

p=1

M2–1∑

q=1

h1h2
(
f n– 1

2
pq

)2

= τ

(
c1T1–γl

2Γ (2 – γl)
+ c2

) N∑

n=1

∥
∥∇tUn∥∥2

0 +
τ

4( c1T1–γl
2Γ (2–γl)

+ c2)

N∑

n=1

∥
∥f n– 1

2
∥
∥2

0. (19)

Substituting (13)–(19) into (12), we have

τ

(
c1T1–γl

2Γ (2 – γl)
+ c2

) N∑

n=1

∥
∥∇tUn∥∥2

0 –
c1T2–γl

2Γ (3 – γl)
‖φ‖2

0 +
c4

2
(∥
∥UN∥

∥2
0 –

∥
∥u0∥∥2

0

)

≤ c5

2
(∣
∣U0∣∣2

1 –
∣
∣UN ∣

∣2
1

)

+ τ

(
c1T1–γl

2Γ (2 – γl)
+ c2

) N∑

n=1

∥
∥∇tUn∥∥2

0 +
τ

4( c1T1–γl
2Γ (2–γl)

+ c2)

N∑

n=1

∥
∥f n– 1

2
∥
∥2

0,

then we have

c4
∥
∥UN∥

∥2
0 + c5

∣
∣UN ∣

∣2
1

≤ c4
∥
∥U0∥∥2

0 + c5
∣
∣U0∣∣2

1

+
c1T2–γl

Γ (3 – γl)
‖φ‖2

0 +
T

( c1T1–γl
2Γ (2–γl)

+ 2c2)
max

1≤n≤N

∥
∥f n– 1

2
∥
∥2

0. (20)
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Then we have

∥
∥UN∥

∥2
1 ≤ ∥

∥U0∥∥2
1

+ c1
T2–γl

Γ (3 – γl)
‖φ‖2

0 +
T

( c1T1–γl
Γ (2–γl)

+ 2c2)
max

1≤n≤N

∥
∥f n– 1

2
∥
∥2

0, (21)

which means that scheme (11) is unconditionally stable. �

4.3 Convergence
Theorem 3 Define un and Un as the exact solution and numerical solution vectors of
scheme (11), respectively. Suppose that the solution u(x, y, t) ∈ C4,4,3

x,y,t (Ω), then there exists a
positive constant C independent of h and τ such that

∥
∥un – Un∥∥

1 ≤ C

√
√
√
√

TLpLq
2c1T1–γ

Γ (2–γ ) + 4b1

(
τmin(3–γ ,2–α,2–β) + h2

1 + h2
2
)
.

Proof Similar to Theorem 2, it is easy to prove. �

5 Numerical example
In this section, we carry out numerical experiments using the proposed finite difference
schemes to illustrate our theoretical statements. Consider the following multi-term time
fractional diffusion equation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

c1Dγ
t u(x, y, t) + c2

∂u(x,y,t)
∂t + c3Dα

t u(x, y, t) + c4u(x, y, t)

= c5�u(x, y, t) + c6Dβ
t �u(x, y, t) + f (x, y, t),

u(x, y, 0) = sin(πx) sin(πy), ut(x, y, 0) = 0, 0 ≤ x ≤ a, 0 ≤ y ≤ b,

u(0, y, t) = 0, u(a, y, t) = 0; u(x, 0, t) = 0, u(x, b, t) = 0, 0 ≤ t ≤ T ,

where (x, y, t) ∈ [0, a] × [0, b] × [0, T], 0 < α,β < 1, 1 < γ < 2, the source term is f (x, y, t) =
sin(πx) sin(πy)[ Γ (p+1)tp–γ

Γ (p+1–γ ) + ptp + Γ (p+1)tp–α

Γ (p+1–α) + (1 + 2π2)(tp + 1) + 2π2Γ (p+1)tp–δ

Γ (p+1–δ) ]. And the exact
solution is u(x, y, t) = (tp + 1) sin(πx) sin(πy), p ≥ 2.

Case 1: In this simulation, we choose c1 = c2 = c3 = c4 = c5 = c6 = 1, a = b = 1, h1 = h2 = h.
Firstly, we use the implicit finite difference scheme (11) to solve the equation, and the
numerical results are given in Tables 1 and 2. Table 1 shows the L2 error and L∞ error
and the convergence order of h for different γ , α, β with τ = 1/1000 at t = 1. Table 2
shows the L2 error and L∞ error and the convergence order of τ for different γ , α, β with
τmin{3–γ ,2–α,2–β} ≈ h2 at t = 1.

From the tables, we can find that the numerical results are in good agreement with the
exact solution and reach the accuracy of τmin{3–γ ,2–α,2–β} + h2 order, which demonstrates
the effectiveness of our numerical method and confirms the theoretical analysis.

Case 2: In this calculation, we choose a = b = 1, h1 = h2 = h = 1/20, τ = 1/100. In order to
observe the effects of different physical parameters on the velocity field, we plot some fig-
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Table 1 The spacial error and convergence order of the scheme for different γ , α , β with τ = 1/1000

γ = 1.7, α = 0.8, β = 0.6 L2 error Order L∞ error Order

h = 1/4 3.5954E–02 7.1908E–02
h = 1/8 8.8281E–03 2.03 1.7656E–02 2.03
h = 1/16 2.1957E–03 2.01 4.3914E–03 2.01
h = 1/32 5.4676E–04 2.01 1.0935E–03 2.01
h = 1/64 1.3510E–04 2.02 2.7020E–04 2.02

γ = 1.5, α = 0.6, β = 0.4 L2 error Order L∞ error Order

h = 1/4 3.5339E–02 7.0678E–02
h = 1/8 8.6774E–03 2.03 1.7355E–02 2.03
h = 1/16 2.1590E–03 2.01 4.3181E–03 2.01
h = 1/32 5.3849E–04 2.00 1.0770E–03 2.00
h = 1/64 1.3392E–04 2.01 2.6784E–04 2.01

γ = 1.2, α = 0.4, β = 0.2 L2 error Order L∞ error Order

h = 1/4 3.4841E–02 6.9682E–02
h = 1/8 7.7561E–03 2.03 1.7108E–02 2.03
h = 1/16 1.9248E–03 2.01 4.2575E–03 2.01
h = 1/32 4.7517E–04 2.02 1.0628E–03 2.00
h = 1/64 1.1326E–04 2.00 2.6526E–04 2.00

Table 2 The temporal error and convergence order of the scheme for different γ , α , β with
τmin{3–γ ,2–α,2–β} ≈ h2

γ = 1.7, α = 0.8, β = 0.6 L2 error Order L∞ error Order

τ = 1/20 1.5314E–02 3.0629E–02
τ = 1/40 6.7733E–03 1.18 1.3138E–02 1.22
τ = 1/80 2.7946E–03 1.28 5.5893E–03 1.23
τ = 1/160 1.2456E–03 1.17 2.4773E–03 1.17
τ = 1/320 5.3792E–04 1.21 1.0758E–03 1.20

γ = 1.5, α = 0.6, β = 0.4 L2 error Order L∞ error Order

τ = 1/20 8.3425E–03 1.6685E–02
τ = 1/40 3.1492E–03 1.41 6.2069E–03 1.43
τ = 1/80 1.2085E–03 1.38 2.4035E–03 1.37
τ = 1/160 4.6230E–04 1.39 9.2459E–04 1.38
τ = 1/320 1.7080E–04 1.44 3.4159E–04 1.44

γ = 1.2, α = 0.4, β = 0.2 L2 error Order L∞ error Order

τ = 1/20 4.3678E–03 8.5587E–03
τ = 1/40 1.4595E–03 1.58 2.8991E–03 1.56
τ = 1/80 4.8352E–04 1.59 9.6484E–04 1.59
τ = 1/160 1.5651E–04 1.63 3.1303E–04 1.62
τ = 1/320 5.2751E–05 1.57 1.0550E–04 1.57

ures to demonstrate the dynamic characteristics of the generalized non-Newtonian fluid.
Figure 1 shows the influence of time on the velocity and the flow velocity increase with
t = 0.5 and t = 1 respectively, and coefficients ci = 1, i = 1, . . . , 6. In order to show the dif-
ference clearly, we choose y = 1, and the variations of u(x, y, t) with x for different values
of λ, α, β , p, ci = 1, i = 1, . . . , 6 at a fixed time (t = 1) are illustrated in Figs. 2–5. From
the figures, we can conclude that the coefficients ci = 1, i = 1, . . . , 6, parameter p, and the
fractional order γ , α, β have effects on the velocity function u(x, y, t).

6 Conclusion
In this paper, we proposed the finite difference method, based on the Crank–Nicolson
method, to solve the multi-term time fractional generalized non-Newtonian fluid equa-
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Figure 1 Numerical solution profiles of velocity u(x, y, t) with γ = 1.7, α = 0.8, β = 0.6

Figure 2 Numerical solution profiles of velocity u(x,
y, t) with different γ , α , β with c1 = 1, c2 = 5, c3 = 3,
c4 = 1, c5 = 5, c6 = 5, p = 3

Figure 3 Numerical solution profiles of velocity u(x,
y, t) with different p with γ = 1.6, α = 0.5, β = 0.3,
c1 = 1, c2 = 5, c3 = 3, c4 = 2, c5 = 4, c6 = 3

tion. This is a finite difference scheme with accuracy of O(τmin{3–γ ,2–α,2–β} + h2
x + h2

y). And
we established the unconditional stability and convergence analysis for this implicit dif-
ference scheme. Numerical experiments were exhibited to verify the effectiveness and re-
liability of this method. We can conclude that this numerical method is robust and can be
extended to other multi-term time fractional diffusion equations, multi-term time frac-
tional diffusion-wave equations.
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Figure 4 Numerical solution profiles of velocity u(x,
y, t) with different c1, c3, c6 with γ = 1.2, α = 0.5,
β = 0.8, c2 = c4 = c5 = 1, p = 3

Figure 5 Numerical solution profiles of velocity u(x,
y, t) with different c2, c4, c5 with γ = 1.2, α = 0.5,
β = 0.8, c1 = c3 = c6 = 1, p = 3
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