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Abstract
In this paper, we study the uniqueness problems of meromorphic functions and their
difference operators. Our main result is a difference analogue of a result of
Jank–Mues–Volkmann, which is concerned with the uniqueness of an entire function
sharing one finite value with its derivatives. Some recent papers studied the case of
entire functions of finite order sharing a periodic small function to f . We consider the
case of meromorphic functions of finite order sharing a polynomial, which is a more
popular case. Examples are provided for our results.
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1 Introduction and main results
Let C denote the complex plane and f a meromorphic function in the whole complex
plane C. We use the following standard notations of the Nevanlinna value distribution
theory (see [11, 15, 16]):

m(r, f ), N(r, f ), N(r, f ), T(r, f ),ρ(f ), S(r, f ), . . . ,

where

m(r, f ) =
1

2π

∫ 2π

0
log+∣∣f (reiθ ∣∣)dθ ,

N(r, f ) =
∫ r

0

n(t, f ) – n(0, f )
t

dt + n(0, f ) log r,

N(r, f ) =
∫ r

0

n(t, f ) – n(0, f )
t

dt + n(0, f ) log r,

T(r, f ) = m(r, f ) + N(r, f ).

Among them, m(r, f ) is the average of the positive logarithm of |f (z)| on the circle |z| =
r, N(r, f ) is called the counting function of poles of f , and N(r, f ) is called the reduced
counting function of poles of f . T(r, f ) is called the characteristic function of f , and it
plays a cardinal role in the whole theory of meromorphic functions.
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The order of growth of f is denoted by ρ(f ) as follows:

ρ(f ) = lim
r→∞

log+ T(r, f )
log r

.

If ρ(f ) < ∞, then we say that f is a meromorphic function of finite order.
For a meromorphic function a, if T(r, a) = S(r, f ), where S(r, f ) = o(T(r, f )), as r → ∞,

possibly outside of an exceptional set of finite logarithmic measure, then we say that a is
a small function of f . We use S(f ) to denote the set of the small functions of f .

For a meromorphic function f (z), we define its shift by fc(z) = f (z + c) and its difference
operators by

�cf (z) = f (z + c) – f (z), �n
c f (z) = �n–1

c
(
�cf (z)

)
, n ∈N, n ≥ 2.

Let f and g be two meromorphic functions, and let P(z) be a polynomial. We say that f
and g share P(z) CM, provided that f (z) – P(z) and g(z) – P(z) have the same zeros counting
multiplicities.

In 1986, Jank et al. proved the following.

Theorem 1 ([12]) Let f be a nonconstant meromorphic function, and let a be a nonzero
finite complex number. If f , f ′, and f ′′ share a CM, then f ≡ f ′.

Later on, the uniqueness theorem of entire functions sharing a constant with its kth and
(k + 1)th derivatives was proved by Li and Yang in 2001.

Theorem 2 ([14]) Let f be a nonconstant entire function; let a be a finite nonzero constant,
and let k be a positive integer. If f , f (k), f (k+1) share the value a CM, then f ≡ f ′.

In 2004, Chang and Fang extended Theorem 2 to the case of sharing small functions.

Theorem 3 ([2]) Let f be a nonconstant entire function; let a �≡ 0 be a small function
related to f ; and let k ≥ 2 be a positive integer. If f , f (k), and f (k+1) share a CM, then f ≡ f ′.

In recent years, the value distribution of meromorphic functions with respect to differ-
ence has become a subject of some interests (see [1, 3–5, 7–10, 13]). Chen et al. [3] proved
a similar result analogue of Theorem 1 concerning difference. In 2015, Latreuch et al. stud-
ied the case of entire function with its difference analogue of Theorem 2 and Theorem 3
and proved the following.

Theorem 4 ([13]) Let f be a nonconstant entire function of finite order, and let a(z) ( �≡ 0)
∈ S(f ) be a periodic entire function with period c. If f , �n

c f , and �n+1
c f (n ≥ 1) share a(z)

CM, then �n+1
c f ≡ �n

c f .

Theorem 5 ([13]) Let f be a nonconstant entire function of finite order. If f , �n
c f , and �n+1

c f
(n ≥ 1) share 0 CM, then �n+1

c f ≡ C�n
c f , where C is a nonzero constant.

Remark 1 There are examples to show that the conclusion �n
c f ≡ �n+1

c f in Theorem 4
cannot be replaced by f ≡ �cf , and the condition a(z) �≡ 0 is necessary.
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In 2016, El Farissi et al. successfully proved the relation between f and �cf under the
condition that a(z) is a periodic function.

Theorem 6 ([8]) Let f (z) be a nonconstant entire function of finite order such that �n
c f (z) �≡

0, and let a(z) ( �≡ 0) ∈ S(f ) be a periodic entire function with period c. If f , �n
c f , and �n+1

c f
(n ≥ 1) share a(z) CM, then �cf (z) ≡ f (z).

For other related results, see Latreuch, El Farissi, Belaïdi [13], El Farissi, Latreuch, Asiri
[7], El Farissi et al. [8].

By Theorems 4 and 6, we naturally have the following problems:
(i) Can we get rid of the condition that a(z) is a periodic entire function with period c

in Theorem 6?
(ii) Since the case n = 1 has been proved by Deng, Liu, and Fang [6] under the condition

that a(z) is a polynomial, can we still deduce that f ≡ �cf for n ≥ 2?

Theorem 7 ([6]) Let f be a nonconstant meromorphic function of finite order, and let p(z)
( �≡ 0) be a polynomial. If f , �cf , and �2

c f share ∞ and p(z) CM, then either f ≡ �cf or
f (z) = eAz+B + b, where p(z) �≡ b ( �= 0), and A �= 0 satisfying eAc = 1.

In this paper, we study these problems and give an affirmative answer to them.

Theorem 8 Let f be a nonconstant meromorphic function of finite order, let n ∈ N
+ be a

positive integer, and let P(z) ( �≡ 0) be a polynomial. If f , �n
c f , and �n+1

c f share ∞ and P(z)
CM, then one of the following three cases must occur:

(i) f ≡ �cf ;
(ii) f = (1 – eα(z))P(z), where eα(z) is a periodic function of period c with degα = 1, and

P(z) is a polynomial of degree less than n;
(iii) f (z) = AP(z), where A ( �= 0, 1) is a constant, and P(z) is a polynomial of degree less

than n.

Corollary 1 Let f be a transcendental entire function of finite order, and let P(z) ( �≡ 0) be a
polynomial. If f , �n

c f , and �n+1
c f share P(z) CM, then either f ≡ �cf , or f = (1 – eα(z))P(z),

where eα(z) is a periodic function of period c with degα = 1, and P(z) is a polynomial with
deg P ≤ n.

Problem 1 In this paper, we study the uniqueness of meromorphic functions of finite
order sharing a polynomial with its differences. We have the following question: What
can we say if sharing a meromorphic function? What is more, does this result still hold for
meromorphic functions of arbitrary order?

In the following, we give three cases to show that all these cases may occur.

Example 1 Let A, c be two nonzero finite complex numbers satisfying eAc = 2, and let
f (z) = eAz . Then f (z) = �n

c f = �n+1
c f = eAz (n ≥ 1), and for any polynomial P(z), we have f ,

�n
c f , and �n+1

c f share ∞ and P(z) CM. This example satisfies Case (i) of Theorem 8.

Example 2 Let P(z) be a polynomial with deg P ≤ n – 1, f (z) = (eπ iz + 1)P(z), and c = 2.
Then �

j
cf = (eπ iz + 1)�j

cP for each j ∈ N
+, it follows that �n

c f ≡ �n+1
c f ≡ 0 since �n

c P ≡
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�n+1
c P ≡ 0. Therefore, f – P = eπ izP, �n

c f – P = –P, and �n+1
c f – P = –P have the same zeros

with the same multiplicities, and f = (1 + eπ iz)P(z), where eπ iz is a periodic function of
period c = 2. This example shows that Case (ii) in Theorem 8 exists.

Example 3 Let f (z) = 2zn–1, P(z) = zn–1. It is obvious that f (z) – P(z) = zn–1, �n
c f (z) – P(z) =

�n+1
c f (z) – P(z) = –zn–1 have the same zeros. Thus f (z), �n

c f (z), and �n+1
c f (z) share P(z),

∞ CM. This example shows that Case (iii) in Theorem 8 exists.

2 Some lemmas
Lemma 1 ([5, 9]) Let f (z) be a meromorphic function of finite order, and let c be a nonzero
complex constant. Then

T
(
r, f (z + c)

)
= T(r, f ) + S(r, f ).

Lemma 2 ([9, 10]) Let c ∈C, k be a positive integer, and let f (z) be a meromorphic function
of finite order. Then

m
(

r,
�k

c f (z)
f (z)

)
= S(r, f ).

Lemma 3 ([16]) Suppose that f (z) is a meromorphic function in the complex plane and
P(z) = a0f n + a1f n–1 + · · · + an, where a0 ( �≡ 0), a1, . . . , an are small functions of f (z). Then

T
(
r, P(f )

)
= nT(r, f ) + S(r, f ).

Lemma 4 ([15, 16]) Suppose that fi(z) (i = 1, 2, . . . , n) are meromorphic functions and gi(z)
(i = 1, 2, . . . , n), n ≥ 2 are entire functions satisfying

(i)
∑n

i=1 fi(z)egi(z) ≡ 0,
(ii) the orders of fi are less than those of egk –gl for 1 ≤ i ≤ n, 1 ≤ k < l ≤ n.

Then fi(z) ≡ 0 (i = 1, 2, . . . , n).

Lemma 5 ([15, 16]) Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 3) are meromorphic functions
which are not constants except for fn(z). Furthermore, let

∑n
j=1 fj(z) = 1. If fn(z) �≡ 0 and

n∑
j=1

N
(

r,
1
fj

)
+ (n – 1)

n∑
j=1

N(r, fj) <
(
λ + o(1)

)
T(r, fk),

where λ < 1 and k = 1, 2, . . . , n – 1, then fn ≡ 1.

Lemma 6 ([16]) Suppose that f (z) and g(z) are two nonconstant meromorphic functions
in the complex plane with ρ(f ) and ρ(g) as their orders, respectively. Then

ρ(f · g) ≤ max
{
ρ(f ),ρ(g)

}
,

and

ρ(f + g) ≤ max
{
ρ(f ),ρ(g)

}
.
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Using the ideas of Chang and Fang [2] and El Farissi et al. [7, 8], we prove the following
lemma.

Lemma 7 Let f be a nonconstant meromorphic function of finite order, and let P(z) ( �≡ 0)
be a polynomial, n be a positive integer. Suppose that

�n
c f (z) – P(z)
f (z) – P(z)

= eα(z),
�n+1

c f (z) – P(z)
f (z) – P(z)

= eβ(z), (2.1)

where α(z) and β(z) are two polynomials. If

T
(
r, eα

)
+ T

(
r, eβ

)
= S(r, f ),

then either f (z) = AP(z), where α, β , A = eα–1
eα are constants and P(z) is a polynomial with

degree less than n, or f ≡ �cf .

Proof Two cases will be discussed in the following.
Case 1. f (z) is a rational function.
Firstly, we claim that f (z) cannot be a non-polynomial rational function. Otherwise, sup-

pose that f (z) = a(z)
b(z) , where a(z) and b(z) are two co-prime polynomials. By equation (2.1),

we can get that f , �n
c f , and �n+1

c f share ∞ CM. Then �n
c f and �n+1

c f are rational func-
tions, too. Suppose that �n

c f = g(z)
b(z) , where g(z) and b(z) are two co-prime polynomials. We

claim that b(z) is a constant. Otherwise, suppose that there exists z0 such that b(z0 + c) = 0.
Since �n

c f and �n+1
c f share ∞ CM, and

�n+1
c f = �n

c f (z + c) – �n
c f (z) =

g(z + c)
b(z + c)

–
g(z)
b(z)

=
g(z + c)b(z) – g(z)b(z + c)

b(z)b(z + c)
,

then all zeros of b(z + c) must be the zeros of b(z). Otherwise, if there exists z1 such that
b(z1 + c) = 0 but b(z1) �= 0, then z1 is one pole of �n+1

c f but not the pole of �n
c f , a contra-

diction. So we get

b(z0 + c) = 0 ⇒ b(z0) = 0 ⇒ b(z0 – c) = 0 ⇒ ·· · ⇒ b(z0 – kc) = 0,

k ∈N
+,

which implies that b(z) has infinitely many zeros, a contradiction.
Therefore, f (z) is a nonconstant polynomial.
Without loss of generality, we assume that

f (z) = alzl + al–1zl–1 + · · · + a1z + a0 (al �= 0),

P(z) = bmzm + bm–1zm–1 + · · · + b1z + b0 (bm �= 0).

By equation (2.1), it is easy to prove that α(z), β(z) are two constants, then

⎧⎨
⎩

�n
c f – P(z) = eαf – eαP(z),

�n+1
c f – P(z) = eβ f – eβP(z).
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If eα = 1 (or eβ = 1), then f ≡ �n
c f (or f ≡ �n+1

c f ), which contradicts deg f > deg�n
c f (or

deg f > deg�n+1
c f ). Thus eα , eβ �= 1.

Comparing the degree of two equations, it follows that deg f = l ≤ m = deg P.
If deg f = l < m = deg P, then eα = eβ = 1, then f ≡ �n

c f ≡ �n+1
c f , which is a contradiction.

If deg f = l = m = deg P, comparing the coefficients of zm of both sides of equation (2.1),
we immediately have

aleα =
(
eα – 1

)
bm, aleβ =

(
eβ – 1

)
bm,

it follows that eα = eβ , then we get �n
c f ≡ �n+1

c f .
Since f (z) is a polynomial, then �n

c f ≡ �n+1
c f ≡ 0, which means f (z) is a polynomial with

degree less than n.
By equation (2.1), we have

–P(z) = eαf (z) – eαP(z),

then f (z) = AP(z), where A = eα–1
eα ( �= 0, 1) is a constant, P(z) is a polynomial with degree

less than n.
Case 2. f (z) is a transcendental meromorphic function, then T(r, P) = S(r, f ). By equation

(2.1), we have

�n
c f = eαf (z) –

(
eα – 1

)
P(z); (2.2)

�n+1
c f = eβ f (z) –

(
eβ – 1

)
P(z), (2.3)

then

�n+1
c f = �n

c f (z + c) – �n
c f (z)

= eα(z+c)f (z + c) –
(
eα(z+c) – 1

)
P(z + c) – eα(z)f +

(
eα – 1

)
P

= eβ(z)f –
(
eβ – 1

)
P. (2.4)

Therefore,

fc(z) = f (z + c)

=
(
eα–αc + eβ–αc

)
f +

(
1 – e–αc

)
Pc –

(
eα–αc + eβ–αc – 2e–αc

)
P

= A(z)f (z) + B(z),

where A(z) = (eα–αc + eβ–αc ), B(z) = (1 – e–αc )Pc – (eα–αc + eβ–αc – 2e–αc )P.
Then

f2c(z) = fc(z + c)

= A(z + c)f (z + c) + B(z + c)

= A(z + c)
(
A(z)f (z) + B(z)

)
+ B(z + c)

= A(z + c)A(z)f (z) + A(z + c)B(z) + B(z + c)

= A2(z)f (z) + B2(z),
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where A2(z) = A(z + c)A(z) = (eαc–α2c + eβc–α2c )(eα–αc + eβ–αc ) = e–(αc+α2c)(eαc + eβc )(eα + eβ ),
and B2(z) = A(z + c)B(z) + B(z + c).

By mathematical induction, we can deduce that

fic(z) = Ai(z)f (z) + Bi(z) (i ≥ 1), (2.5)

where Ai(z) =
∏i–1

k=0 Akc(z) =
∏i

k=1 e–αkc (eβ(k–1)c + eα(k–1)c ), Bi(z) is a meromorphic function
depending on P(z), eα(z), eβ(z) and their differences.

By equation (2.5),

�n
c f =

n∑
i=0

Ci
n(–1)n–ific(z)

= (–1)nf (z) +
n∑

i=1

Ci
n(–1)n–i

[( i∏
k=1

e–αkc
(
eβ(k–1)c + eα(k–1)c

))
f (z) + Bi(z)

]

= eαf –
(
eα – 1

)
P(z). (2.6)

Then
[ n∑

i=1

Ci
n(–1)n–i

( i∏
k=1

e–αkc
(
eβ(k–1)c + eα(k–1)c

))
+ (–1)n – eα

]
f (z)

+
n∑

i=1

Ci
n(–1)n–iBi(z) +

(
eα – 1

)
P(z) = 0. (2.7)

We rewrite (2.7) as follows:

S(z)f (z) + T(z) = 0, (2.8)

where S(z) =
∑n

i=1 Ci
n(–1)n–i(

∏i
k=1 e–αkc (eβ(k–1)c + eα(k–1)c )) + (–1)n – eα ,

T(z) =
n∑

i=1

Ci
n(–1)n–iBi(z) +

(
eα – 1

)
P(z).

It is obvious that S(z) and T(z) are all small functions with respect to f (z). If S(z) �≡ 0, we
can deduce from equation (2.8) that

T(r, f ) = S
(

r, –
T(z)
S(z)

)
= S(r, f ),

a contradiction.
Hence S(z) ≡ 0, that is,

n∑
i=1

Ci
n(–1)n–i

( i∏
k=1

e–αkc
(
eβ(k–1)c + eα(k–1)c

))
+ (–1)n – eα = 0,

n∑
i=1

Ci
n(–1)n–i

( i∏
k=1

e–αkc
(
eβ(k–1)c + eα(k–1)c

))
= eα – (–1)n,
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n∑
i=1

Ci
n(–1)n–ie–

∑i
k=1 αkc e

∑i
k=1 α(k–1)c

i∏
k=1

(
1 + eβ(k–1)c–α(k–1)c

)

= eα – (–1)n,

and

n∑
i=1

Ci
n(–1)n–ieα–αic

i–1∏
k=0

(
1 + eβkc–αkc

)
= eα – (–1)n. (2.9)

Let γkc(z) = βkc(z) – αkc(z), k ∈ {1, 2, . . . , n}, and γ (z) = β(z) – α(z) when k = 0.
So equation (2.9) can be written as follows:

n∑
i=1

Ci
n(–1)n–ieα–αic

i–1∏
k=0

(
1 + eγkc

)
= eα – (–1)n. (2.10)

For

i–1∏
k=0

(
1 + eγkc

)

=
(
1 + eγ

)(
1 + eγc

)(
1 + eγ2c

) · · · (1 + eγ(i–1)c
)

= 1 +
(
eγ + eγc + · · · + eγ(i–1)c

)
+

(
eγ +γc + eγ +γ2c + · · · + eγ(i–2)c+γ(i–1)c

)

+ · · · + eγ +γc+···+γ(i–1)c .

Next, we discuss two cases.
Case 2.1. γ (z) is a nonconstant polynomial.
Set γ (z) = amzm + am–1zm–1 + · · · + a1z + a0, and am �= 0.
Since γ (z) = β(z) – α(z), we claim that degγ (z) ≥ degα(z).
When degα �= degβ , then degγ = max{degα, degβ};
When degα = degβ , then degγ ≤ degα.
If degγ < degα, by equation (2.10), the order of the left-hand side

ρ

(
C1

n(–1)n–1eα–αic
(
1 + eγ

)
+ C2

n(–1)n–2eα–α2c
(
1 + eγ

)(
1 + eγc

)

+ · · · + Cn
neα–αnc

n–1∏
k=0

(
1 + eγkc

))

≤ degα – 1,

but the order of the right-hand side ρ(eα – (–1)n) = degα, a contradiction.
Thus m = degγ ≥ degα.
By equation (2.10), we have

α0 + α1eamzm
+ α2e2amzm

+ · · · + αnenamzm
= eα , (2.11)



Liu et al. Advances in Difference Equations        (2018) 2018:428 Page 9 of 27

where α0 = (–1)n +
∑n

i=1 Ci
n(–1)n–ieα–αic = eα[(–1)n +

∑n
i=1 Ci

n(–1)n–ie–αic ] = eα ×∑n
i=0 Ci

n(–1)n–ie–αic = eα�n
c e–α , and αn = eα–αnc . We consider two subcases as follows.

Case 2.1.1. degα < m.
It is obvious that αn �≡ 0, by Lemma 1 and (2.11), we can get

degα = ρ
(
eα

)
= ρ

(
α0 + α1eamzm

+ α2e2amzm
+ · · · + αnenamzm)

= m,

which is a contradiction.
Case 2.1.2. degα = m.
Set α(z) = bmzm + α∗(z), where bm �= 0, and degα∗(z) ≤ m – 1. We claim that there exists

at least j ∈ {1, 2, . . . , n} such that bm = jam.
Otherwise, d �= iam, i ∈ {1, 2, . . . , n}, then by (2.11),

α1eamzm
+ α2e2amzm

+ · · · + αnenamzm
– ebmzm

eα∗(z) = –α0.

Then by Lemma 4, we deduce that

αi = eα∗(z) = 0 (i = 1, 2, . . . , n),

a contradiction.
Thus there exists j ∈ {1, 2, . . . , n} such that bm = jam. Without loss of generality, we as-

sume that bm = nam, then

α1eamzm
+ α2e2amzm

+ · · · +
(
αn – eα∗(z))enamzm

+ α0 = 0.

By Lemma 4, we have α0 ≡ 0, that is, eα�n
c e–α ≡ 0, then

�n
c e–α =

n∑
i=0

Ci
n(–1)n–ie–αic ≡ 0. (2.12)

We claim that degα = degγ = m = 1. Otherwise, suppose that degα = degγ = m > 1. Let
α(z) = bmzm + bm–1zm–1 + · · · + b1z + b0, and bm �= 0.

Then

α(z + jc) = bm(z + jc)m + bm–1(z + jc)m–1 + · · · + b1(z + jc) + b0

= bmzm + (bm–1 + mbmjc)zm–1 + μj(z),

where μj(z) is a polynomial with degμj < m – 1.
Hence equation (2.12) can be written as follows:

e–μn(z)e–bmzm–(bm–1+mbmnc)zm–1
– C1

ne–μn–1(z)e–bmzm–(bm–1+mbm(n–1)c)zm–1

+ · · · + (–1)ne–μ0(z)e–bmzm–bm–1zm–1 = 0.

It is obvious that

ρ
(
e–bmzm–(bm–1+mbmkc)zm–1+bmzm+(bm–1+mbmlc)zm–1)

= ρ
(
embm(l–k)zm–1)

= m – 1

for any 0 ≤ l < k ≤ n.
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Since ρ(e–μj(z)) < m – 1 for j = 1, 2, . . . , n, then by Lemma 4

e–μ0(z) = · · · = e–μn(z) ≡ 0,

which is a contradiction. We thus proved that degα = degγ = 1. Then degβ ≤ 1 for β =
α + γ .

Without loss of generality, we may assume that

α(z) = λ1z + η1, β(z) = λ2z + η2,

where λ1 ( �= 0), λ2, η1, η2 are constants.
Thus α(z + jc) = α(z) + jλ1c,
and

�n
c e–α =

n∑
i=1

Ci
n(–1)n–ie–αic

=
n∑

i=1

Ci
n(–1)n–ie–αe–iλ1c

= e–α

n∑
i=1

Ci
n(–1)n–ie–iλ1c

= e–α
(
e–λ1c – 1

)n.

For �n
c e–α ≡ 0, that is, e–α(e–λ1c – 1)n ≡ 0, then eλ1c ≡ 1.

Therefore,

eα(z+ic) = eα(z)+iλ1c = eα(z),

which implies that eα(z) is a periodic function with period c.
We claim that eβ(z) is also a periodic function with period c, and eλ2c = 1.
Otherwise, suppose that eλ2c �= 1.
Since γ (z) = β(z) – α(z) = (λ2 – λ1)z + (η2 – η1), and γjc(z) = γ (z) + jc(λ2 – λ1).
Then by equation (2.11), we have

α1e(λ2–λ1)z + α2e2(λ2–λ1)z + · · · + αnen(λ2–λ1)z = eλ1z+η1 , (2.13)

where α1,α2, . . . ,αn (= Cn
n = 1) are constants.

Noticing that eλ1c = 1, thus

α1 =
[
C1

n(–1)n–1

+ C2
n(–1)n–2 + C2

n(–1)n–2eλ2c

+ C3
n(–1)n–3 + C3

n(–1)n–3eλ2c + C3
n(–1)n–3e2λ2c + · · ·

+ Cn
n(–1)n–n + Cn

n (–1)n–neλ2c + · · · + Cn
n(–1)n–ne(n–1)λ2c]eη2–η1

=
[

C1
n(–1)n–1 eλ2c – 1

eλ2c – 1
+ C2

n(–1)n–2 e2λ2c – 1
eλ2c – 1

+ · · ·



Liu et al. Advances in Difference Equations        (2018) 2018:428 Page 11 of 27

+ Cn
n(–1)n–n enλ2c–1

eλ2c – 1

]
eη2–η1

=

[ n∑
i=0

Ci
n(–1)n–ieiλ2c – (–1)n –

n∑
i=1

Ci
n(–1)n–i

]
eη2–η1

eλ2c – 1

=

[ n∑
i=0

Ci
n(–1)n–ieiλ2c –

n∑
i=0

Ci
n(–1)n–i

]
eη2–η1

eλ2c – 1

=
(
eλ2c – 1

)n eη2–η1

eλ2c – 1

=
(
eλ2c – 1

)n–1eη2–η1 .

If λ1 = λ2, then eβ(z+jc) = eβ(z), a contradiction.
If λ1 �= λ2, we can rewrite equation (2.13) as follows:

α1e(λ2–2λ1)z + α2e(2λ2–3λ1)z + · · · + αne(nλ2–(n+1)λ1)z = eη1 . (2.14)

If iλ2 – (i + 1)λ1 �= 0 for each i = 1, 2, . . . , n, it is obvious that, for 1 ≤ l < m ≤ n,

ρ
(
e[mλ2–(m+1)λ1–lλ2+(l+1)λ1]z) = ρ

(
e(m–l)(λ2–λ1)z) = 1,

then by Lemma 4, we get

αi = eη1 = 0, i = 1, 2, . . . , n,

which is a contradiction.
So there exists one integer j ∈ {1, 2, . . . , n} such that jλ2 – (j + 1)λ1 = 0. Without loss of

generality, we assume that nλ2 – (n + 1)λ1 = 0.
Thus (2.14) can be rewritten as follows:

α1e(λ2–2λ1)z + α2e(2λ2–3λ1)z + · · · + αn–1e((n–1)λ2–nλ1)z = eη1 – αn.

Since αn = 1, thus eη1 –αn �= 0. We also can deduce by Lemma 4 that α1 = 0, which means
(eλ2c – 1)n–1eη2–η1 = 0, thus eλ2c = 1, a contradiction.

Thus

eβ(z+jc) = eβ(z)ejλ2c = eβ(z),

so eβ(z) is also a periodic function with period c.
Therefore, we can deduce by equation (2.1) that

�n+1
c f = �n

c f (z + c) – �n
c f (z)

= eα�cf –
(
eα – 1

)
�cP

= eβ f –
(
eβ – 1

)
P, (2.15)

thus

�cf = eβ–αf +
(
1 – e–α

)
�cP –

(
eβ–α – e–α

)
P.
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By mathematical induction, we have

�2
c f = e2(β–α)f +

(
1 – e–α

)
�2

c P +
[
eβ–α

(
1 – e–α

)
–

(
eβ–α – e–α

)]
× �cP – eβ–α

(
eβ–α – e–α

)
P,

�3
c f = e3(β–α)f +

(
1 – e–α

)
�3

c P +
[
eβ–α

(
1 – e–α

)
–

(
eβ–α – e–α

)]
× �2

c P +
[
eβ–α

(
eβ–α – e–α

)
– e2(β–α)(1 – e–α

)]
�cP

– e2(β–α)(eβ–α – e–α
)
P,

· · · ,

�n
c f = en(β–α)f +

(
1 – e–α

)
�n

c P +
[
eβ–α

(
1 – e–α

)
–

(
eβ–α – e–α

)]
× �n–1

c P + · · · +
[
e(n–1)(β–α)(1 – e–α

)
– e(n–2)(β–α)(eβ–α – e–α

)]
× �cP – e(n–1)(β–α)(eβ–α – e–α

)
P

= en(β–α)f +
(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P

–
(
eβ–α – e–α

) n–1∑
i=0

ei(β–α)�n–i–1
c P.

And by (2.1)

�n
c f = eαf –

(
eα – 1

)
P.

Therefore

eαf –
(
eα – 1

)
P = en(β–α)f +

(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P

–
(
eβ–α – e–α

) n–1∑
i=0

ei(β–α)�n–i–1
c P. (2.16)

Hence

[
eα – en(β–α)]f =

(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P

–
(
eβ–α – e–α

) n–1∑
i=0

ei(β–α)�n–i–1
c P +

(
eα – 1

)
P. (2.17)

If eα – en(β–α) �≡ 0, by the above equation, T(r, f ) = S(r, f ), a contradiction.
Thus eα ≡ en(β–α), that is, enβ ≡ e(n+1)α .
At the same time,

(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P –

(
1 – e–β

) n–1∑
i=0

e(i+1)(β–α)�n–i–1
c P

+
(
eα – 1

)
P = 0,
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(
1 – e–α

)
�n

c P +
(
1 – e–α

) n–1∑
i=1

ei(β–α)�n–i
c P –

(
1 – e–β

)
(2.18)

×
n–1∑
i=1

ei(β–α)�n–i
c P – en(β–α)(1 – e–β

)
P +

(
eα – 1

)
P = 0,

(
1 – e–α

)
�n

c P +
(
e–β – e–α

) n–1∑
i=1

ei(β–α)�n–i
c P

+
[(

eα – 1
)

– en(β–α)(1 – e–β
)]

P = 0.

If P(z) is a constant, then �i
cP = 0 for any i ∈ N

+, then by (2.18),

[(
eα – 1

)
– en(β–α)(1 – e–β

)]
P = 0,

thus

eα – 1 = en(β–α)(1 – e–β
)
.

Noticing that eα ≡ en(β–α), we have eα–β = 1, which implies that eα = en(β–α) = 1, a con-
tradiction.

So P(z) is a nonconstant polynomial, we deduce by Nevanlinna’s first fundamental the-
orem that

T(r, P) = S
(
r, eα

)
;

T(r, P) = S
(
r, eβ

)
;

deg�i
cP < deg P

for each i ∈N
+.

Since α(z) and β(z) are both polynomials satisfying e(n+1)α = enβ , set

α1(z) =
α(z)

n
, β1(z) =

β(z)
n + 1

,

hence α1(z), β1(z) are polynomials of degree 1 satisfying

eα1 = eβ1 , eα = enα1 , eβ = e(n+1)β1 ,

and

T(r, P) = S
(
r, eα1

)
, T(r, P) = S

(
r, eβ1

)
.

Rewrite (2.18) as follows:

(
enα – e(n–1)α)

�n
c P +

(
enα–β – e(n–1)α) n–1∑

i=1

ei(β–α)�n–i
c P +

(
–enα + e(n–1)β)

P = 0,
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thus,

enα
(
�n

c P – P
)

= e(n–1)α(
�n

c P – �n–1
c P

)
+ eβ+(n–2)α(

�n–1
c P – �n–2

c P
)

+ · · ·
+ eα+(n–2)β(

�2
c P – �cP

)
+ e(n–1)β (P – �cP),

en2α1
(
�n

c P – P
)

= e(n2–n)α1
(
�n

c P – �n–1
c P

)
+ e(n2–n+1)α1

(
�n–1

c P – �n–2
c P

)

+ · · · + e(n2–2)α1
(
�2

c P – �cP
)

+ e(n2–1)α1 (P – �cP).

(2.19)

Since P(z) �≡ �i
cP for each i ∈N

+, by Nevanlinna’s first fundamental theorem and (2.19),

n2T
(
r, eα1

)
+ S

(
r, eα1

)

= T
(
r, en2α1

(
�n

c P – P
))

= T
(
r, e(n2–n)α1

(
�n

c P – �n–1
c P

)
+ · · · + e(n2–2)α1

(
�2

c P – �cP
)

+ e(n2–1)α1 (P – �cP)
)

≤ (
n2 – 1

)
T

(
r, eα1

)
+ S

(
r, eα

)
,

a contradiction.
Case 2.2. γ (z) is a constant.
We claim that α(z) is also a constant.
Suppose that degα(z) ≥ 1, thus deg(α – αic) ≤ degα – 1. Notice that β = α + γ and γkc =

βkc – αkc = γ . Then, by equation (2.10),

degα ≤ degα – 1,

which is impossible.
Hence α is a constant, so is β for β = α + γ .
Using the same method as the previous proof, we can deduce by equation (2.1) that

�cf = eβ–αf +
(
1 – e–α

)
�cP –

(
eβ–α – e–α

)
P. (2.20)

Thus

�n
c f = en(β–α)f +

(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P

–
(
eβ–α – e–α

) n–1∑
i=0

ei(β–α)�n–i–1
c P,

= eαf –
(
eα – 1

)
P(z), (2.21)

�n+1
c f = e(n+1)(β–α)f +

(
1 – e–α

) n∑
i=0

ei(β–α)�n+1–i
c P
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–
(
eβ–α – e–α

) n∑
i=0

ei(β–α)�n–i
c P

= eβ f –
(
eβ – 1

)
P(z).

Then

(
eα – en(β–α))f =

(
eα – 1

)
P(z) +

(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P

–
(
eβ–α – e–α

) n–1∑
i=0

ei(β–α)�n–i–1
c P,

(
eβ – e(n+1)(β–α))f =

(
eβ – 1

)
P(z) +

(
1 – e–α

) n∑
i=0

ei(β–α)�n+1–i
c P

–
(
eβ–α – e–α

) n∑
i=0

ei(β–α)�n–i
c P.

(2.22)

If either eα �= en(β–α), or eβ �= e(n+1)(β–α), we deduce by (2.22) that T(r, f ) = S(r, f ), a con-
tradiction. Thus

eα = en(β–α), eβ = e(n+1)(β–α).

By (2.1),

�n+1
c f – P

�n
c f – P

= eβ–α ,

then

�n+1
c f = eβ–α�n

c f +
(
1 – eβ–α

)
P. (2.23)

We claim that �n+1
c f ≡ �n

c f .
Suppose that �n+1

c f �≡ �n
c f , then by (2.21) and (2.23), we have

e(n+1)(β–α)f +
(
1 – e–α

) n∑
i=0

ei(β–α)�n+1–i
c P –

(
eβ–α – e–α

) n∑
i=0

ei(β–α)�n–i
c P

= eβ–α

[
en(β–α)f +

(
1 – e–α

) n–1∑
i=0

ei(β–α)�n–i
c P –

(
eβ–α – e–α

)

×
n–1∑
i=0

ei(β–α)�n–i–1
c P

]
+

(
1 – eβ–α

)
P,

and

(
1 – e–α

) n∑
i=0

ei(β–α)�n+1–i
c P –

(
eβ–α – e–α

) n∑
i=0

ei(β–α)�n–i
c P
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=
(
1 – e–α

) n–1∑
i=0

e(i+1)(β–α)�n–i
c P –

(
eβ–α – e–α

) n–1∑
i=0

e(i+1)(β–α)�n–i–1
c P

+
(
1 – eβ–α

)
P.

Hence,

(
1 – e–α

)
�n+1

c P –
(
eβ–α – e–α

)
�n

c P =
(
1 – eβ–α

)
P. (2.24)

We claim that 1 – eβ–α = 0.
Suppose 1 – eβ–α �= 0.
If P(z) is a constant, by (2.24), we have P ≡ 0, a contradiction.
If P(z) is a nonconstant polynomial, the degree of the left-hand side of (2.24) is less than

that of the right-hand side, a contradiction.
Thus eβ–α = 1, then eα = en(β–α) = 1, eβ = e(n+1)(β–α) = 1.
Then, by (2.23), we have proved �n

c f ≡ �n+1
c f , which is a contradiction to our assump-

tion.
Thus �n

c f ≡ �n+1
c f , and eα = en(β–α) = 1, eβ = e(n+1)(β–α) = 1.

By (2.20), we have

f ≡ �cf ,

hence Lemma 7 is proved. �

3 Proof of Theorem 8

Proof Since f , �n
c f , and �n+1

c f share ∞ and P(z) CM, and the order of f is finite, then there
exist two polynomials α(z) and β(z) such that

⎧⎨
⎩

�n
c f (z)–P(z)
f (z)–P(z) = eα(z),

�n+1
c f (z)–P(z)
f (z)–P(z) = eβ(z).

(3.1)

By Lemma 7, two cases will be considered in the following.
Case 1. f is a rational function.
Using the same method as Lemma 7, we have

f (z) = AP(z),

where A �= 0, 1 is a constant, and P(z) is a polynomial with deg P(z) ≤ n – 1.
Case 2. f is a transcendental meromorphic function, then T(r, P) = S(r, f ).
Set

F(z) = f (z) – P(z),

then T(r, F) = T(r, f ) + S(r, f ), and T(r, P) = S(r, F).
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It follows that

�n
c f = �n

c F + �n
c P, �n+1

c f = �n+1
c F + �n+1

c P.

Then (3.1) can be written as

⎧⎨
⎩

�n
c F(z)+�n

c P(z)–P(z)
F(z) = eα(z),

�n+1
c F(z)+�n+1

c P(z)–P(z)
F(z) = eβ(z).

(3.2)

Since P(z) is a polynomial, then �n
c P(z) – P(z) �≡ 0 and �n+1

c P(z) – P(z) �≡ 0. Set

φ(z) =
(P(z) – �n+1

c P(z))�n
c F(z) – (P(z) – �n

c P(z))�n+1
c F(z)

F(z)
. (3.3)

Two cases will be discussed in the following.
Case 2.1. φ(z) �≡ 0.
For T(r, P) = S(r, F), by Lemma 2, we have m(r,φ) = S(r, F).
Since

(
P(z) – �n+1

c P(z)
)
�n

c F(z) –
(
P(z) – �n

c P(z)
)
�n+1

c F(z)

=
(
P(z) – �n+1

c P(z)
)(

�n
c F(z) + �n

c P(z) – P(z)
)

–
(
P(z) – �n

c P(z)
)

× (
�n+1

c F(z) + �n+1
c P(z) – P(z)

)
–

(
P(z) – �n+1

c P(z)
)

× (
�n

c P(z) – P(z)
)

+
(
P(z) – �n

c P(z)
)(

�n+1
c P(z) – P(z)

)

= eα(z)F(z)
(
P(z) – �n+1

c P(z)
)

– eβ(z)F(z)
(
P(z) – �n

c P(z)
)
,

then we can rewrite φ(z) as follows:

φ(z) =
(
P(z) – �n+1

c P(z)
)
eα(z) –

(
P(z) – �n

c P(z)
)
eβ(z), (3.4)

and it is obvious that N(r,φ) = S(r, F). Hence T(r,φ) = S(r, F).
By (3.4),

(
P(z) – �n+1

c P(z)
) eα(z)

φ(z)
= 1 +

(
P(z) – �n

c P(z)
) eβ(z)

φ(z)
, (3.5)

thus by Nevanlinna’s second fundamental theorem,

T
(

r,
(
P(z) – �n+1

c P(z)
) eα(z)

φ(z)

)

≤ N
(

r,
(
P(z) – �n+1

c P(z)
) eα(z)

φ(z)

)
+ N

(
r,

φ(z)
(P(z) – �n+1

c P(z))eα(z)

)

+ N
(

r,
1

(P(z) – �n+1
c P(z)) eα(z)

φ(z) – 1

)
+ S

(
r,

(
P(z) – �n+1

c P(z)
) eα(z)

φ(z)

)

≤ S(r, F) + S
(

r,
(
P(z) – �n+1

c P(z)
) eα(z)

φ(z)

)
.
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Noticing that T(r,φ) = S(r, F) and T(r, P) = S(r, F), we have T(r, eα(z)) = S(r, F), so
T(r, eα(z)) = S(r, f ).

And by (3.5), we also get T(r, eβ(z)) = S(r, f ).
Therefore, by Lemma 7, we have f ≡ �cf since f is a transcendental meromorphic func-

tion.
Case 2.2. φ(z) ≡ 0.
By the definition of φ(z), we have

(
P(z) – �n+1

c P(z)
)
�n

c F(z) =
(
P(z) – �n

c P(z)
)
�n+1

c F(z). (3.6)

For F(z) = f (z) – P(z), thus

(
P(z) – �n+1

c P(z)
)(

�n
c f (z) – �n

c P(z)
)

=
(
P(z) – �n

c P(z)
)(

�n+1
c f (z) – �n+1

c P(z)
)
,

× (
P(z) – �n+1

c P(z)
)
�n

c f – P�n
c P + P2

=
(
P(z) – �n

c P(z)
)
�n+1

c f (z) – P�n+1
c P + P2,

× (
P(z) – �n+1

c P(z)
)(

�n
c f – P

)
=

(
P(z) – �n

c P(z)
)(

�n+1
c f – P

)
,

× (
P(z) – �n+1

c P(z)
)
eα =

(
P(z) – �n

c P(z)
)
eβ ,

which implies

eα–β =
P(z) – �n

c P(z)
P(z) – �n+1

c P(z)
. (3.7)

Since P(z) is a polynomial, then eα–β is a constant. Assume that eα–β = A, then

P(z) – �n
c P(z) = A

(
P(z) – �n+1

c P(z)
)
. (3.8)

Comparing the coefficients of both sides of equation (3.8), A = 1, then �n
c P ≡ �n+1

c P.
Since P(z) is a polynomial, thus �n

c P ≡ �n+1
c P ≡ 0, and P(z) is a polynomial of degree less

than n.
By (3.6), we have �n

c F(z) = �n+1
c F(z). Thus by (3.1), eα(z) = eβ(z), then (3.2) can be rewrit-

ten as follows:
⎧⎨
⎩

�n
c F–P
F = eα(z),

�n+1
c F–P

F = eα(z).
(3.9)

Hence
⎧⎨
⎩

�n
c F = eα(z)F + P,

�n+1
c F = eα(z)F + P.

(3.10)

By the definition of nth difference,

�n+1
c F = �n

c F(z + c) – �n
c F(z)
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= eαc Fc + Pc – eαF – P

= eα(z)F + P.

Thus

Fc = 2eα–αc F + (2P – Pc)e–αc . (3.11)

Then we can deduce that

F2c = 22eα–α2c F +
(
22P – P2c

)
e–α2c ,

F3c = 23eα–α3c F +
(
23P – P3c

)
e–α3c ,

· · · .

By mathematical induction,

Fkc = 2keα–αkc F +
(
2kP – Pkc

)
e–αkc .

Thus

�n
c F =

n∑
i=0

Ci
n(–1)n–iFic

=
n∑

i=0

Ci
n(–1)n–i(2ieα–αic F +

(
2iP – Pic

)
e–αic

)

= eαF + P, (3.12)

then
[ n∑

i=0

Ci
n(–1)n–i2ieα–αic – eα

]
F

+

[ n∑
i=0

Ci
n(–1)n–i(2iP – Pic

)
e–αic – P

]
= 0. (3.13)

Using the same method, we have

[ n+1∑
i=0

Ci
n+1(–1)n+1–i2ieα–αic – eα

]
F

+

[ n+1∑
i=0

Ci
n+1(–1)n+1–i(2iP – Pic

)
e–αic – P

]
= 0. (3.14)

Define that

An =
n∑

i=0

Ci
n(–1)n–i2ieα–αic – eα ,
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Bn =
n∑

i=0

Ci
n(–1)n–i(2iP – Pic

)
e–αic – P,

An+1 =
n+1∑
i=0

Ci
n+1(–1)n+1–i2ieα–αic – eα ,

Bn+1 =
n+1∑
i=0

Ci
n+1(–1)n+1–i(2iP – Pic

)
e–αic – P.

Let ν = Pe–α , and note that

eαBn =

[ n∑
i=0

Ci
n(–1)n–i2ieα–αic – eα

]
P – eα

n∑
i=0

Ci
n(–1)n–iPice–αic

= AnP – eα�n
c ν,

then

Bn = e–αAnP – �n
c ν.

Thus

Bn+1 = e–αAn+1P – �n+1
c ν.

By (3.13) and (3.14), we have

AnBn+1 – An+1Bn ≡ 0,

that is,

An
(
e–αAn+1P – �n+1

c ν
)

– An+1
(
e–αAnP – �n

c ν
)

= An+1�
n
c ν – An�

n+1
c ν = 0.

Then
[ n+1∑

i=0

Ci
n+1(–1)n+1–i2ieα–αic – eα

] n∑
i=0

Ci
n(–1)n–iPice–αic

–

[ n∑
i=0

Ci
n(–1)n–i2ieα–αic – eα

] n+1∑
i=0

Ci
n+1(–1)n+1–iPice–αic = 0,

�n
c ν

n+1∑
i=0

Ci
n+1(–1)n+1–i2ie–αic – �n+1

c ν

n∑
i=0

Ci
n(–1)n–i2ie–αic

= �n
c ν – �n+1

c ν,

2n+1�n
c νe–α(n+1)c +

n∑
i=0

(
�n

c νCi
n+1 + �n+1

c νCi
n
)
(–1)n+1–i2ie–αic

= �n
c ν – �n+1

c ν.
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Hence,

2n+1�n
c ν +

n∑
i=0

(
�n

c νCi
n+1 + �n+1

c νCi
n
)
(–1)n+1–i2ieα(n+1)c–αic

= eα(n+1)c
(
�n

c ν – �n+1
c ν

)
. (3.15)

Set

γi(z) = (–1)n+1–i2ieα(n+1)c–αic , i = 1, 2, . . . , n,

and

γn+1(z)

=
(
�n

c ν – �n+1
c ν

)
eα(n+1)c

=
n∑

i=0

Ci
n(–1)n–iPiceα(n+1)c–αic –

n+1∑
i=0

Ci
n+1(–1)n+1–iPiceα(n+1)c–αic .

It is obvious that ρ(γi(z)) ≤ degα – 1 for each i ∈ {1, 2, . . . , n, n + 1}. Let

M(z) =
n∑

i=0

Ci
n+1γi(z) + 2n+1, N(z) =

n∑
i=0

Ci
nγi(z),

then ρ(M(z)) ≤ degα – 1, and ρ(N(z)) ≤ degα – 1.
Thus by (3.15)

M(z)
n∑

i=0

Ci
n(–1)n–iPice–αic + N(z)

n+1∑
i=0

Ci
n+1(–1)n+1–iPice–αic = γn+1(z). (3.16)

Then we rewrite (3.16) as follows:

dn+1(z)e–α(z+(n+1)c) + dn(z)e–α(z+nc) + · · · + d0(z)e–α(z) = γn+1(z), (3.17)

where dn+1(z) = N(z)P(n+1)c, dn(z) = (M(z) – (n + 1)N(z))Pnc, . . . , d0(z) = ((–1)n+1N(z) +
(–1)nM(z))P.

Next, we consider three cases.
Case 2.2.1. degα ≥ 2.
By the definition of M(z), N(z), it can be proved that ρ(di(z)) ≤ degα – 1, i = 0, 1, . . . , n,

n + 1.
Since

γn+1(z)

=
(
�n

c ν – �n+1
c ν

)
eα(n+1)c

=
n∑

i=0

Ci
n(–1)n–iPiceα(n+1)c–αic –

n+1∑
i=0

Ci
n+1(–1)n+1–iPiceα(n+1)c–αic
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= 2(–1)nPeα(n+1)c–α +
(
C1

n+1 + C1
n
)
(–1)n–1Pceα(n+1)c–αc +

(
C2

n+1 + C2
n
)
(–1)n–2

× P2ceα(n+1)c–α2c + · · · +
(
Cn

n+1 + Cn
n
)
Pnceα(n+1)c–αnc – P(n+1)c,

we claim that γn+1(z) �≡ 0. Otherwise,

P(n+1)c = 2(–1)nPeα(n+1)c–α +
(
C1

n+1 + C1
n
)
(–1)n–1Pceα(n+1)c–αc

+
(
C2

n+1 + C2
n
)
(–1)n–2P2ceα(n+1)c–α2c + · · ·

+
(
Cn

n+1 + Cn
n
)
Pnceα(n+1)c–αnc .

Thus

2(–1)n P
P(n+1)c

eα(n+1)c–α + (–1)n–1(C1
n+1 + C1

n
) Pc

P(n+1)c
eα(n+1)c–αc

+ · · · +
(
Cn

n+1 + Cn
n
) Pnc

P(n+1)c
eα(n+1)c–αnc = 1. (3.18)

It is obvious that (–1)n–i(Ci
n+1 + Ci

n) Pic
P(n+1)c

eα(n+1)c–αic cannot be constants Ci ( �= 0), and note
that ρ(eα(n+1)c–αic ) ≥ 1, hence by Lemma 3,

(
Cn

n+1 + Cn
n
) Pnc

P(n+1)c
eα(n+1)c–αnc ≡ 1,

which implies that eα(n+1)c–αnc = P(n+1)c
(Cn

n+1+Cn
n )Pnc

, but it contradicts with the fact that eα(n+1)c–αnc

is a transcendental entire function. Thus γn+1(z) �≡ 0.
Therefore, we rewrite (3.17) as follows:

dn+1(z)
γn+1(z)

e–α(z+(n+1)c) +
dn(z)

γn+1(z)
e–α(z+nc) + · · · +

d1(z)
γn+1(z)

e–α(z+c) +
d0(z)

γn+1(z)
e–α(z) = 1.

Obviously, dj(z)e–αic

γn+1(z) cannot be constant Cj ( �= 0), thus by Lemma 3, we have

d0(z)e–α(z)

γn+1(z)
≡ 0,

which means e–α(z) ≡ γn+1(z)
d0(z) , a contradiction.

Case 2.2.2. degα = 1.
If γn+1(z) �≡ 0, by (3.17), by Lemma 3, and by the same method as Case 2.2.1, we also

deduce a contradiction.
If γn+1(z) ≡ 0, without loss of generality, we assume that α(z) = λz + μ, λ �= 0, then

α(n+1)c – αic = (n + 1 – i)λc.

Thus

γn+1(z)

= 2(–1)nPe(n+1)λc +
(
C1

n+1 + C1
n
)
(–1)n–1Pcenλc +

(
C2

n+1 + C2
n
)
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× (–1)n–2P2ce(n–1)λc + · · · +
(
Cn

n+1 + Cn
n
)
Pnceλc – P(n+1)c

=
n∑

i=0

(–1)n–i(Ci
n + Ci

n+1
)
Pice(n+1–i)λc – P(n+1)c.

Since deg P ≤ n – 1, without loss of generality, we assume that

P(z) = szn–t + P∗(z),

where t is a positive integer satisfying 1 ≤ t < n, and s(�= 0) ∈C.
We assume that the coefficient of zn–t in γn+1(z) is A, then

A = s

[ n∑
i=0

(–1)n–i(Ci
n+1 + Ci

n
)
e(n+1–i)λc – 1

]
,

hence

A/s =
n∑

i=0

(–1)n–i(Ci
n+1 + Ci

n
)
e(n+1–i)λc – 1

=
n∑

i=0

(–1)n–iCi
n+1e(n+1–i)λc – 1 +

n∑
i=0

(–1)n–iCi
ne(n+1–i)λc

= –
(
1 – eλc)n+1 + eλc

n∑
i=0

(–1)n–iCi
ne(n–i)λc

=
(
1 – eλc)n+1 + eλc(1 – eλc)n

=
(
1 – eλc)n(2eλc – 1

)
.

Since γn+1(z) ≡ 0, then A = 0, two subcases will be considered in the following.
Case 2.2.2.1. 1 – eλc = 0, then eλc = 1.
Hence

eα(z+ic) = eα(z)+iλc = eα(z),

which means eα(z) is a periodic function of period c, and eαic = eα .
Now we have

An =
n∑

i=0

Ci
n(–1)n–i2i – eα = 1 – eα ,

Bn =
n∑

i=0

Ci
n(–1)n–i(2iP – Pic

)
e–α – P

= e–α

[
P

n∑
i=0

Ci
n(–1)n–i2i –

n∑
i=0

Ci
n(–1)n–iPic

]
– P

= e–αP – P =
(
e–α – 1

)
P.
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By (3.13),

0 =
(
1 – eα

)
F +

(
e–α – 1

)
P,

F =
1 – e–α

1 – eα
P

= –e–αP,

then

f = F + P =
(
1 – e–α

)
P.

Thus,

�n
c F = e–α�n

c P ≡ 0,

�n+1
c F = e–α�n+1

c P ≡ 0.

Therefore,

�n
c f ≡ 0, �n+1

c f ≡ 0.

It is obvious that f , �n
c f , �n+1

c f share ∞ and P(z) CM, thus

f =
(
1 – e–α(z))P(z),

where eα(z) is a periodic function of period c with degα = 1, and P(z) is a polynomial with
deg P ≤ 1.

Case 2.2.2.2. 1 – 2eλc = 0, then eλc = 1
2 , and

eαic = eαeiλc = 2–ieα .

Hence

An =
n∑

i=0

Ci
n(–1)n–i2ieαe–αic – eα

=
n∑

i=0

Ci
n(–1)n–i4i – eα

= 3n – eα ,

Bn =
n∑

i=0

Ci
n(–1)n–i(2iP – Pic

)
e–αic – P

= e–α

[
P

n∑
i=0

Ci
n(–1)n–i4i –

n∑
i=0

Ci
n(–1)n–iPic2i

]
– P

= 3nPe–α – e–α

n∑
i=0

Ci
n(–1)n–iPic2i – P,
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An+1 =
n+1∑
i=0

Ci
n+1(–1)n+1–i2ieαe–αic – eα

=
n+∑
i=0

Ci
n+1(–1)n–i4i – eα

= 3n+1 – eα ,

Bn+1 =
n+1∑
i=0

Ci
n+1(–1)n+1–i(2iP – Pic

)
e–αic – P

=
n+1∑
i=0

Ci
n+1(–1)n+1–i4i(e–αP – e–αPic2i) – P

= e–αP
n+1∑
i=0

Ci
n+1(–1)n+1–i4i – e–α

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i – P

= 3n+1Pe–α – e–α

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i – P.

By (3.13) and (3.14), we have

AnBn+1 = BnAn+1,

(
3n – eα

)(
3n+1Pe–α – e–α

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i – P

)

=
(
3n+1 – eα

)(
3nPe–α – e–α

n∑
i=0

Ci
n(–1)n–iPic2i – P

)
,

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i –

n∑
i=0

Ci
n(–1)n–iPic2i

= 3ne–α

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i – 3n+1e–α

n∑
i=0

Ci
n(–1)n–iPic2i,

(
3n

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i – 3n+1

n∑
i=0

Ci
n(–1)n–iPic2i

)
e–α

=
n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i –

n∑
i=0

Ci
n(–1)n–iPic2i.

It follows from degα = 1 that

⎧⎨
⎩

3n+1 ∑n
i=0 Ci

n(–1)n–iPic2i – 3n ∑n+1
i=0 Ci

n+1(–1)n+1–iPic2i ≡ 0,∑n
i=0 Ci

n(–1)n–iPic2i –
∑n+1

i=0 Ci
n+1(–1)n+1–iPic2i ≡ 0.

(3.19)

Then, by (3.19),

3
n∑

i=0

Ci
n(–1)n–iPic2i =

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i,



Liu et al. Advances in Difference Equations        (2018) 2018:428 Page 26 of 27

and

n∑
i=0

Ci
n(–1)n–iPic2i =

n+1∑
i=0

Ci
n+1(–1)n+1–iPic2i ≡ 0. (3.20)

By our assumption, P = szn–t + P∗, where s �= 0 and deg P∗ < n – t. Then the coefficient of
zn–t of (3.20) is

s
n+1∑
i=0

Ci
n+1(–1)n+1–i2i ≡ 0.

It follows that

s = 0,

a contradiction.
Case 2.2.3. degα = 0, then α is a constant.
If eα = 1, then eβ = 1. By (3.1), we have

f ≡ �n
c f ≡ �n+1

c f ,

then �cf ≡ �n+1
c f , hence f ≡ �cf .

If eα �= 1, by (3.13), we have

F = –e–αP,

thus

f = AP(z),

where P(z) is a polynomial with deg P(z) ≤ n – 1, and A = 1 – e–α ( �= 0, 1). But it contradicts
the assumption that f (z) is a transcendental function.

Thus, Theorem 8 is proved. �
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