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1 Introduction and main results

Let C denote the complex plane and f a meromorphic function in the whole complex
plane C. We use the following standard notations of the Nevanlinna value distribution
theory (see [11, 15, 16]):

m(r,f),N(r,f),ﬁ(r,f), T(r,f),,o(f),S(r,f),...,

where

2w
m(r,f) = %/(; log*|f (re”|) do,
N(rf) = /0 ' M dt + n(0,f)logr,
N(r,f) =/Orwdt+ﬁ(0,f)logr,

T(r.f) = m(r,f) + N(r.f).

Among them, m(r,f) is the average of the positive logarithm of |[f(z)| on the circle |z| =
r, N(r,f) is called the counting function of poles of f, and N(r, f) is called the reduced
counting function of poles of f. T(r,f) is called the characteristic function of f, and it
plays a cardinal role in the whole theory of meromorphic functions.
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The order of growth of f is denoted by p(f) as follows:

o(f) :HM,

r—00 logr

If p(f) < 0o, then we say that f is a meromorphic function of finite order.

For a meromorphic function a, if T(r,a) = S(r,f), where S(r,f) = o(T(r,f)), as r — o0,
possibly outside of an exceptional set of finite logarithmic measure, then we say that a is
a small function of f. We use S(f) to denote the set of the small functions of f.

For a meromorphic function f(z), we define its shift by f.(z) = f(z + ¢) and its difference

operators by

Af(2)=f(z+c)—f(2), Alf(z) = AZ"I(AJ(z)), neN,n>2.

Let f and g be two meromorphic functions, and let P(z) be a polynomial. We say that f
and g share P(z) CM, provided that f(z) — P(z) and g(z) — P(z) have the same zeros counting
multiplicities.

In 1986, Jank et al. proved the following.

Theorem 1 ([12]) Let f be a nonconstant meromorphic function, and let a be a nonzero
finite complex number. Iff, f', and f" share a CM, then f =f".

Later on, the uniqueness theorem of entire functions sharing a constant with its kth and
(k + 1)th derivatives was proved by Li and Yang in 2001.

Theorem 2 ([14]) Letf be a nonconstant entire function; let a be a finite nonzero constant,
and let k be a positive integer. I f, f©, f**V share the value a CM, then f =f'.

In 2004, Chang and Fang extended Theorem 2 to the case of sharing small functions.

Theorem 3 ([2]) Let f be a nonconstant entire function; let a # 0 be a small function
related to f; and let k > 2 be a positive integer. Iff, f©, and f**V share a CM, then f = f'.

In recent years, the value distribution of meromorphic functions with respect to differ-
ence has become a subject of some interests (see [1, 3-5, 7-10, 13]). Chen et al. [3] proved
asimilar result analogue of Theorem 1 concerning difference. In 2015, Latreuch et al. stud-
ied the case of entire function with its difference analogue of Theorem 2 and Theorem 3
and proved the following.

Theorem 4 ([13]) Let f be a nonconstant entire function of finite order, and let a(z) (# 0)
€ S(f) be a periodic entire function with period c. If f, A’f, and A"*'f (n > 1) share a(z)
CM, then A"f = A7f.

Theorem 5 ([13]) Let f be a nonconstant entire function of finite order. If f, Af, and A" f
(n > 1) share 0 CM, then A"*'f = CA"f, where C is a nonzero constant.

Remark 1 There are examples to show that the conclusion A”f = A”!f in Theorem 4
cannot be replaced by f = A.f, and the condition a(z) # 0 is necessary.
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In 2016, El Farissi et al. successfully proved the relation between f and A f under the
condition that a(z) is a periodic function.

Theorem 6 ([8]) Letf(z) be a nonconstant entire function of finite order such that Al'f (z) #
0, and let a(z) (£ 0) € S(f) be a periodic entire function with period c. If f, ALf, and A"1f
(n>1) share a(z) CM, then A f(z) = f(2).

For other related results, see Latreuch, El Farissi, Belaidi [13], El Farissi, Latreuch, Asiri
[7], El Farissi et al. [8].
By Theorems 4 and 6, we naturally have the following problems:
(i) Can we get rid of the condition that a(z) is a periodic entire function with period ¢
in Theorem 6?
(ii) Since the case n =1 has been proved by Deng, Liu, and Fang [6] under the condition
that a(z) is a polynomial, can we still deduce that f = A f for n > 2?

Theorem 7 ([6]) Let f be a nonconstant meromorphic function of finite order, and let p(z)
(£ 0) be a polynomial. If f, Af, and A%f share oo and p(z) CM, then either f = A f or
f(2) = e***B + b, where p(z) # b (#0), and A # 0 satisfying e = 1.

In this paper, we study these problems and give an affirmative answer to them.

Theorem 8 Let f be a nonconstant meromorphic function of finite order, let n € N* be a
positive integer, and let P(z) (# 0) be a polynomial. If f, A'f, and A**\f share 0o and P(z)
CM, then one of the following three cases must occur:
(i) f=Ad5
(ii) f = (1 -e*@)P(z), where e*? is a periodic function of period c with dega = 1, and
P(z) is a polynomial of degree less than n;
(ili) f(z) = AP(z), where A (#0,1) is a constant, and P(z) is a polynomial of degree less
than n.

Corollary 1 Letf be a transcendental entire function of finite order, and let P(z) (3£ 0) be a
polynomial. Iff, A'f, and A"*\f share P(z) CM, then either f = Af, or f = (1 — e*@)P(z),
where e*@ is a periodic function of period c with dega = 1, and P(2) is a polynomial with
degP <mn.

Problem 1 In this paper, we study the uniqueness of meromorphic functions of finite
order sharing a polynomial with its differences. We have the following question: What
can we say if sharing a meromorphic function? What is more, does this result still hold for
meromorphic functions of arbitrary order?

In the following, we give three cases to show that all these cases may occur.

Example 1 Let A, ¢ be two nonzero finite complex numbers satisfying ¢ = 2, and let
f(z) = e**. Then f(z) = A”f = A7*!f = ¢4 (n > 1), and for any polynomial P(z), we have f,
A”"f,and A"*!f share 0o and P(z) CM. This example satisfies Case (i) of Theorem 8.

Example 2 Let P(z) be a polynomial with degP < n — 1, f(z) = ("% + 1)P(z), and ¢ = 2.
Then Alf = ("% + 1)ALP for each j € N*, it follows that A”f = A"1f = 0 since AP =
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A"1P = 0. Therefore, f — P = €"“P, A”f — P = —P, and A”*!f — P = —P have the same zeros
with the same multiplicities, and f = (1 + €"%)P(z), where "% is a periodic function of
period ¢ = 2. This example shows that Case (ii) in Theorem 8 exists.

Example 3 Letf(z) = 22", P(z) = 2"~ It is obvious that f (z) - P(z) = 2"}, A"f(z) - P(z) =
A"1f(z) — P(z) = —z"! have the same zeros. Thus f(z), A’f(z), and A"*1f(z) share P(z),
0o CM. This example shows that Case (iii) in Theorem 8 exists.

2 Some lemmas
Lemma 1 ([5,9]) Let f(z) be a meromorphic function of finite order, and let ¢ be a nonzero
complex constant. Then

T(r,f(z+c)) = T(r,f) + S(r.f).

Lemma 2 ([9, 10]) Let c € C, k be a positive integer, and let f (z) be a meromorphic function
of finite order. Then

A¥f(2)
) s

Lemma 3 ([16]) Suppose that f(z) is a meromorphic function in the complex plane and
P(z) = aof" + ayf" ' + --- + a,, where ag (#0), ay,...,a, are small functions of f(z). Then

T(r,P(f)) = nT(r,f) + S(r.f).

Lemma 4 ([15, 16]) Suppose that f(z) (i = 1,2,..., n) are meromorphic functions and gi(z)
(i=1,2,...,n), n > 2 are entire functions satisfying

() YL, fies® =0,

(ii) the orders of f; are less than those of €78 for1 <i<m,1<k<l<n.
Then fi(z)=0(i=1,2,...,n).

Lemma 5 ([15, 16]) Suppose that fi(z),f2(2),...,fu(z) (n = 3) are meromorphic functions
which are not constants except for f,(z). Furthermore, let Z]'?:l fiz) = 1. If f,(z) £ 0 and

ZNQ%) +(n=1)Y N(rf) < (A +0o(1)) T(r.fi),
j=1 / j=1

where A <land k=1,2,...,n—1, then f, = 1.

Lemma 6 ([16]) Suppose that f(z) and g(z) are two nonconstant meromorphic functions
in the complex plane with p(f) and p(g) as their orders, respectively. Then

p(f - g) < max{p(f), p(2)},

and

p(f +g) <max{p(f), p(g)}.
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Using the ideas of Chang and Fang [2] and El Farissi et al. [7, 8], we prove the following

lemma.

Lemma 7 Let f be a nonconstant meromorphic function of finite order, and let P(z) (£ 0)
be a polynomial, n be a positive integer. Suppose that

Af(2)-P2) AYf(2) =P) g

f9-P@ ° ' fo-r@ 2.1)

where a(z) and B(z) are two polynomials. If

T(r, e"‘) + T(r, eﬂ) =S(r.f),

then either f(z) = AP(z), where a, 8, A = e‘:; L are constants and P(z) is a polynomial with
degree less than n, or f = A f.

Proof Two cases will be discussed in the following.

Case 1. f(z) is a rational function.

Firstly, we claim that f(z) cannot be a non-polynomial rational function. Otherwise, sup-
pose that f(z) = %, where a(z) and b(z) are two co-prime polynomials. By equation (2.1),
we can get that f, A”f, and A”*'f share oo CM. Then A”f and A”"*!f are rational func-
tions, too. Suppose that A”f = ‘%, where g(z) and b(z) are two co-prime polynomials. We
claim that b(z) is a constant. Otherwise, suppose that there exists zo such that b(zq + ¢) = 0.
Since A”f and A”*!f share co CM, and

n+ly _ Anm N _g(z+c)_@_g(z+0)b(z)—g(z)b(z+c)
ATS=adlerd =A@ = e T T baberd

then all zeros of b(z + ¢) must be the zeros of b(z). Otherwise, if there exists z; such that
b(z1 + ¢) = 0 but b(z;) # 0, then z; is one pole of A”1f but not the pole of A”f, a contra-
diction. So we get

b(zo+c)=0 = blzg)=0 = blzg—c)=0 = -+ = blzg—kc)=0,

ke N",

which implies that b(z) has infinitely many zeros, a contradiction.
Therefore, f(z) is a nonconstant polynomial.
Without loss of generality, we assume that
f@=aZ +ai 2+ vaiz+a; (a;#0),

PR2)=buZ" + by 12"+ +biz+ by (b, £0).
By equation (2.1), it is easy to prove that «(z), 8(z) are two constants, then

AZf — P(z) = e*f — e*P(2),
A — P(z) = ePf — P P(2).
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Ife* =1 (or # = 1), then f = A”f (or f = A"*1f), which contradicts degf > deg A”f (or
degf > deg A"f). Thus e%, e #1.

Comparing the degree of two equations, it follows that degf =/ < m = deg P.

Ifdegf =< m=degP, thene® =ef = 1, thenf = A"f = A"*1f, which is a contradiction.

If degf = [ = m = deg P, comparing the coefficients of z” of both sides of equation (2.1),
we immediately have

ae’ = (e“ - l)bm, aef = (eﬂ - l)bm,

it follows that e* = €f, then we get A”7f = A"*1f.

Since f(z) is a polynomial, then A”f = A”*f = 0, which means f(z) is a polynomial with
degree less than n.

By equation (2.1), we have

—P(z) = €°f(2) - €*P(2),

then f(z) = AP(z), where A = eo;; L (#0,1) is a constant, P(z) is a polynomial with degree
less than 7.

Case 2. f(2) is a transcendental meromorphic function, then T'(r, P) = S(r,f). By equation
(2.1), we have

Alf = e*f(2) - (¢* - 1)P(2); (2.2)
A =ePf(2) - (¢ - 1)P(2), (2.3)

then

A = Alf(z+ ¢) — Af(2)
=@ If(z+¢) - (29 ~1)P(z + ¢) — e Of + (e” — 1)P
=efOf — (e - 1)P. (2.4)

Therefore,

Jfe(2)=f(z+0)
= ("% + P )f + (1 - e7%) P, — (7% + P ™% — 2¢7)P
= A(z)f (z) + B(2),

where A(z) = (e*7% + /%), B(z) = (1 — 7% )P, — ("~ + e/~ — 2¢~%)P.
Then

Sac(2) = felz + )
=A(z+c)f(z+c¢)+ Bz +c)
=A(z+¢)(A2)f (2) + B(2)) + B(z + ¢)
=A(z + 0)A(2)f (z) + A(z + ¢)B(z) + B(z + ¢)

= A (2)f (2) + B2(2),
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where A;(z) = Az + ¢)A(z) = (€% 2% 4 ePe%2c)(g¥~0c 4 gf=0c) = g=(@cratn) (gc 4 pfec)(e? 4 o),
and B;y(z) = A(z + ¢)B(z) + B(z + ¢).
By mathematical induction, we can deduce that

fie2) = Ai(2)f (2) + Biz)  (i=1), (2.5)

where A;(z) = [],_ OAkc ]_[k e %k (ePk-De 4 g*k-1c), By(z) is a meromorphic function
depending on P(z), e*?, e#? and their differences.
By equation (2.5),

Al = Ch(-1)"fiel2)
i=0

— (_l)nf(z) + Z C}l:l(_l)n—l' [(ne Afe elsk 1)c + eﬂt(k— ))f(z) + B; (Z)i|

i=1 k=1

=e*f — (¢” - 1)P(z). (2.6)

Then

[Z Ci -1y (l_[ e (e ea(“”) e ea}j@
i=1 k=1

+ 3 CL=D""'Bi(@) + (¢ ~1)P(2) = 0. (27)

i=1

We rewrite (2.7) as follows:
S(2)f (z) + T(2) =0, (2.8)

where S(z) = >, CL(-1)"~ ’(]_[k | % (ePene 4 e¥U-1)c)) 4 (1) — e
T(z)= ) CL(-1)""Bi(2) + (¢" - 1)P(2).
i=1

It is obvious that S(z) and T'(z) are all small functions with respect to f(z). If S(z) # 0, we
can deduce from equation (2.8) that

T(2)

TW)ZS(’ S@)

) S(r.f),

a contradiction.
Hence S(z) =0, that is,

ZCZ( I)Wl(l—[e—akc Blk-1)c 4 k-1 )>+( 1) —e* =0,
Zcz( 1)711(]_16 lec k1C+e(k1))>:ea_(_1)n,
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i

n
Z Cl(=1)" e~ L1 %e g2 k1 *(k-1)c (1 + ePneartene)
n

i=1 k=1
- _ (_l)n,
and
n i-1
Z C}l,t(—l)n_lea_aic (1 + e/skc_akc) = ea — (_1)”. (29)
i=1 k=0

Let yic(2) = Bre(2) — otae(2), k € {1,2,...,n}, and y (2) = B(2) — a(z) when k = 0.
So equation (2.9) can be written as follows:

i-1
(1+e%)=e* - (-1)". (2.10)
k=0

n
Z Cﬁl(—l)n_lea_aic
i=1

For

i-1

1_[(1 + elke)

k=0
= (1 + e”)(l +e)(1+e7%) - (1 +ei-De)
=1+ (eV e’ 4.t eV(i—l)c) ¥ (ewyc yeVtre 4y ey(i72)c+y(ifl)c)

+ oo+ eV+yC+‘“+V(i—1)c'

Next, we discuss two cases.

Case 2.1. y (z) is a nonconstant polynomial.

Set y(2) = @u2" + @121 + - + a1z + ag, and a,,, # 0.

Since y(z) = B(z) — a(z), we claim that deg y (z) > deg a(z).

When deg o # deg 8, then deg y = max{deg o, deg B};

When dego = deg 8, then degy < dego.

If deg y < degw, by equation (2.10), the order of the left-hand side

p (C,ll(—l)”_leo‘_"‘if(l +e') + Ca(=1)"2e" % (1 +e")(1 +€")

n-1
+oe 4 CleTome 1_[(1 + e”’“))

k=0

<degu -1,

but the order of the right-hand side p(e* — (-1)") = deg«, a contradiction.
Thus m =degy > dega.
By equation (2.10), we have

a2

m m
oo + a1 + aze + et = e (2.11)
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where a9 = (-1)" + Y I, Ci(-1)"le* e = e*[(-1)" + Y I, CL(=1)""e®] = & x
Y, Cl(=1)"e % = e* Ale™, and &, = €. We consider two subcases as follows.
Case 2.1.1. dega < m.
It is obvious that «,, # 0, by Lemma 1 and (2.11), we can get

dega = p(e"‘) =p(ao + are™” + e 4y a,,e"“"'zm) =m,
which is a contradiction.

Case 2.1.2. dega = m.

Set a(z) = b,;,z" + «*(z), where b, # 0, and deg a*(z) < m — 1. We claim that there exists
atleastj e {1,2,...,n} such that b,, = ja,,.

Otherwise, d # ia,,, i € {1,2,...,n}, then by (2.11),

Z 20,2 na,z™ by 2™ eoz*(z) _

s
o€+ ase ot aye —e —0.

Then by Lemma 4, we deduce that
w=eD=0 (i=1,2...,n),

a contradiction.
Thus there exists j € {1,2,...,n} such that b,, = ja,,. Without loss of generality, we as-
sume that b,, = na,,, then

2amz™"

m * m
o€+ asze 4ot (an —e (z))e”“mz +op=0.

By Lemma 4, we have «p = 0, that is, e Al’e™ = 0, then

n
Ale™ =) " Ci(-1)""e e =0. (2.12)
i=0

We claim that dego = deg y = m = 1. Otherwise, suppose that degoe =degy =m > 1. Let
@(z) = bypz™ + by 12" + -+ + b1z + by, and b, 0.
Then

)m—l

a(z+jc) =by(z+jo)" + by,_1(z + jc +---+bi(z+jc) + by

= b2 + (b1 + mbyjo)2" ' + p(2),
where 1;(2) is a polynomial with deg u; < m — 1.
Hence equation (2.12) can be written as follows:
e 1n(@ g=bmz" (b1 +mbyunc)z™ Cle1n-1@) g=bmz" ~(by-1 +mby (n-1)c)z" 1
n

m—1

4+ .0+ (_l)ne’ﬂo(z)e*bmzm*bm,lz =0.
It is obvious that

_ m_ m-1 m m—1 k) M-1
,0(6 bz —(byy—1+mbykc)Z +b 2" +(byy—1 +mbylc)z ) — p(embm(l k)z ) —m—1

forany0</<k<mn.
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Since p(e @) <m —1forj=1,2,...,n, then by Lemma 4

e M@ — .. = gD = 0,
which is a contradiction. We thus proved that dega = degy = 1. Then deg8 <1 for 8 =
a+y.

Without loss of generality, we may assume that
a@)=riz+n,  B@)=Az+n,

where A1 (#0), Ay, 71, 2 are constants.
Thus a(z + jc) = a(z) + jric,
and

n
Age—a _ Z Cﬁ[(_l)n—ie*aic

i=1

n
_ Z Ci (_l)n—ie—ae—iklc
n
i=1

—e® i Cﬁ[(_l)n—ie—iklc
i=1
=e* (e_)\lc - l)n.

For A”e™ =0, that is, e *(e™*1¢ — 1)" =0, then "1 = 1.
Therefore,

a(z)+iric

ecx(z+tc) =¢

=2,

which implies that e*® is a periodic function with period c.
We claim that e is also a periodic function with period ¢, and €*2¢ = 1.
Otherwise, suppose that e*2¢ # 1.
Since y(2) = B(2) — a(z) = (A2 = A1)z + (12 — n1), and y;e(2) = ¥ (2) + je(ha — A1).
Then by equation (2.11), we have

(A2=21)z 2(ha—21)z (Aa=2r1)z

ae + e oo+ ay,e” = MFm, (2.13)

where a1, 09,...,a, (= C)j = 1) are constants.
Noticing that e*1¢ = 1, thus
o] = [C}l(—l)n_l
+ CH(=1)"% 4+ C2(-1)" 22
+ CH=1)"3 + C3(-1)"3eM 4 C3(-1)" B2 - ..

+ CZ(—l)n_” + CZ(_I)n—ne)uzc Foeeet C;l(_l)n—ne(n—l)kzc]enz—nl

Aac

1
- [c;(—n"-l: + -1

R 7+
hac— ] er¢ -1

eZAzc -1
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enkzc—l
+ CZ(_I)n—n 6772—’71
et — 1

en-m

|:Z Cl( l)n i zkzc ( 1 Zcz( l)n z:| .

en-m

— |:Z Cz n i zkzc Z Cz ni] e

N " e'n—m
(e > -1 ekzc 1
= (e

Aoc _ ) eﬂz n .

If A1 = Ay, then ef@50) = P9 4 contradiction.

If 11 # Ay, we can rewrite equation (2.13) as follows:

ale(lg—2)»1)z (2A2-311)z +

+aze L e AR VL (2.14)

If iy — (i + 1)A; #0 foreach i = 1,2,...,n, it is obvious that, for 1 </<m <n,

0 (e[mkz—(rm1)k1—1A2+(l+1)A1]z) (m—l)(kg—kl)z) =1,

= p(e
then by Lemma 4, we get
;=" =0, i=12,...,n

which is a contradiction.

So there exists one integer j € {1,2,...,n} such that jA; — (j + 1)A; = 0. Without loss of
generality, we assume that ni, — (n + 1)A; = 0.

Thus (2.14) can be rewritten as follows:

(2h2-30)z ((n-Drz-nr1)z _ o

ez 4 g0

s+ 0y1€ — Oy

Since o, = 1, thus e™ —,, # 0. We also can deduce by Lemma 4 that «; = 0, which means
(e*2¢ — 1)"Lem~M = O, thus €*2¢ = 1, a contradiction.
Thus

ePetio) — o) ghac _ B2

so €@ is also a periodic function with period c.
Therefore, we can deduce by equation (2.1) that

A = A'f(z + ¢) — ATf(2)
=e*Af - (¢ - 1)AP
=e’f—(f -1)P, (2.15)

thus

Af=ef+(1-€e*)AL~ (e —e*)P.
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By mathematical induction, we have

A =P 4+ (1-e)AZP + [e# (1
x AP — e~ (P — )P,

A =Pf 4 (1-
x AP+ [ef (e —e) e

— P (P — )P,

e ) AP + [/~

2B (1—e)]AP

ey

Alf =P 1 (1—e®)AZP + [P (1 - ) - (ef ™ —e™®)]
X AIIP 4 o [0 D) (1 _ ) _ (r-D(E-0) (g _
X AP — " VB (e _ )
n-1
="POf y (1-e™)) Parip
i=0
n-1
_ (eﬁ—a _ e—ot) ez(ﬁ a)A;Cfl i IP
i=0
And by (2.1)
AYf = - (e"‘ - l)P.
Therefore

n-1
ef—(e"-1)P= eﬂ“f+ Ze‘ﬂ"‘A”‘P
i=0

— (e -e

Zez(ﬂ ozAn i 1P

—e) - (¢ )

“(1-e) = (" - )]

Page 12 of 27

)]

(2.16)

(2.17)

Hence
[ea _e" n(B—a) Zez(ﬂ—a An ip
n-1
) D e PIONITTP (e - 1)P.
i=0
If ¥ — e"P=%) £ 0, by the above equation, T(r,f) = S(r,f), a contradiction.

Thus e = ¢"#~%), that is, e"f = "1,

At the same time,

,_.

n—

ZeulﬂaAnzlP

i=0

Zez(ﬂ—a An ip_

+(e*-1)P=0,
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n-1
(1-e*)AP+(1-¢) ) P AP (1-€7) (2.18)
i=1
n-1
x Y PN P (1-eF)P+ (¢ ~1)P=0,
i=1

(1= ) AP+ (e —e) 3 e r-ip
i=1

+[(e*-1) - (1-eF)]P=0.
If P(z) is a constant, then ALP = 0 for any i € N*, then by (2.18),
[(e ~1) (1) ]P0,
thus
e —1=e"P(1-¢P).

Noticing that e* = ¢"#~%), we have e*~# = 1, which implies that e = "#~% =1, a con-
tradiction.
So P(z) is a nonconstant polynomial, we deduce by Nevanlinna’s first fundamental the-
orem that
T(r,P) = S(r, eo‘);
T(r,P) = S(r,e");
deg AiP <degP

for each i € N*,

Since a(z) and B(z) are both polynomials satisfying e’V = ¢/, set

m@-"2, -2

)
n+1

hence o1 (2), B1(z) are polynomials of degree 1 satisfying

el =Pl e =", eb = e("+1)51,
and
T(r,P) = S(r, eo“), T(r,P) = S(r, eﬂl).

Rewrite (2.18) as follows:

-1
(ena _ e(n—l)a)AICqP + (enot—ﬁ _ e(n—l)a) nZei(ﬁ—a)Azl—iP + (_em)t + e(n—l)ﬁ)P =0,
i=1
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thus,
"(A7P - P)
:e(n a( ”P An IP)+e/3+n2 (An IP An ZP)
+e* DB (A2P — A P) + " V(P - AP),
(2.19)
¢ (AZP - P)
_e(n2 noq( nP An 1P)+en n+1)o¢1(An lp An ZP)

oo+ P DN(A2P A D) + DN (P_ ALP).
Since P(z) # AP for each i € N*, by Nevanlinna’s first fundamental theorem and (2.19),

T (r,e") + S(r, ™)
= T(r,”* (A7P - P))
= T(r, 1 (AP = A'P) 4 - + &P (A2P — AP)
+ e Dar(p_ A cP))
< (n2 - I)T(r, eo‘l) +S(r,e%),
a contradiction.
Case 2.2. y(z) is a constant.
We claim that «(z) is also a constant.

Suppose that dega(z) > 1, thus deg(e — a;) < dego — 1. Notice that B =« + y and i =
Bic — dke = v. Then, by equation (2.10),

dega <dego —1,
which is impossible.

Hence « is a constant, so is 8 for B =« + y.
Using the same method as the previous proof, we can deduce by equation (2.1) that

Af=ef+(1-e*)AL~ (e —e*)P. (2.20)
Thus
ANf = (p~ “)f + Ze’(ﬁ'“ A ip
n-1
—a e—a) Zei(ﬂ—a)AZ—i—IP,
i=0
=e*f — (¢* - 1)P(2), (2.21)

n
Azﬁ—lf — e(n+1)(ﬁ—ot)f " (1 _ e—a) Zei(ﬁ—a)Azwl—iP
i=0

Page 14 of 27
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n
_ (eﬂ—a _ e—a) ei(ﬂ—a)An—iP

=elf - (f - 1)P(z).

Then
n-1
(e“ - e”(’s_"‘))f = (e“ - 1) (2) + Ze‘ h- “)A” ip
i=0
n-1
—a e—a) Zei(ﬂ—a)AZ—i—IP’
i=0

(2.22)
(eﬁ _ e(n+l)(ﬁ—ot))f — (eﬁ _ l)P(Z) + (1 _ e—a) Zei(ﬁ—a)Azul—iP
i=0

i=0

If either e* # ¥, or ef # e"*DF~9) we deduce by (2.22) that T(r,f) = S(r,f), a con-
tradiction. Thus

= Be) B _ G )(Ba)
By (2.1),
ATS-P_ pa
A"f—P ’
then
A = PN+ (1- PP (2.23)

We claim that A" f = A”f.
Suppose that A”*1f % A”f, then by (2.21) and (2.23), we have

n
e(n+1)(;3—a)f " (1 _ e—a) Zei(ﬂ—a)AZHl—iP eﬁ o _ Ze (B-a) An lP
i=0

:eﬁ—a|: ﬁa)f+ Zel(ﬁaAn ip_ ( )

n-1
x Zei(ﬁ“)AfHP:| +(1- eﬂ’“)P,
i=0

and

(1 _ e—ot) iei(ﬁ_Q)AzHl_iP _ (eﬁ—a _ e—oz) iei(ﬁ—a)Azl—iP
i=0

i=0
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. U 1
;eu ﬂotAnzP ;eu ﬂozAnt p
+(1-e)P.
Hence,
(1-e*) AP — (P —e®)AlP = (1-€*)P. (2.24)

We claim that 1 — ef~% = 0.

Suppose 1 —ef% #0.

If P(z) is a constant, by (2.24), we have P = 0, a contradiction.

If P(z) is a nonconstant polynomial, the degree of the left-hand side of (2.24) is less than
that of the right-hand side, a contradiction.

Thus e/~ = 1, then e* = ") = 1, f = DB~ — 1,

Then, by (2.23), we have proved A”f = A"*'f, which is a contradiction to our assump-
tion.

Thus A”f = A71f,and e* = "F~0) = 1, ¢f = e+ DB-0) = 1,

By (2.20), we have

f=Ad,
hence Lemma 7 is proved. d

3 Proof of Theorem 8

Proof Sincef, A”f,and A”*!f share co and P(z) CM, and the order of f is finite, then there

exist two polynomials «(z) and S(z) such that

Alf(2)-P(z) _ ea(z)
f2)-Pz) ’

AP E-PE) _ (@)
fl2)-P(z) :

(3.1)

By Lemma 7, two cases will be considered in the following.
Case 1. f is a rational function.

Using the same method as Lemma 7, we have

f(z) = AP(2),
where A #0, 1 is a constant, and P(z) is a polynomial with deg P(z) <n - 1.

Case 2. f is a transcendental meromorphic function, then T'(r, P) = S(r,f).
Set

F(2) = f(z) - P(2),

then T'(r,F) = T(r,f) + S(r.f), and T(r, P) = S(r, F).

Page 16 of 27
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It follows that
Alf = AIF + AIP,  AI''f = AT'F+ ATTP.

Then (3.1) can be written as

AZF(2)+A7P(z)-P(z) _ ea(z)

F(2) - ’
AP+ A LPG)-PE) _ g(r)
26 =el%,

(3.2)

Since P(z) is a polynomial, then A”P(z) — P(z) # 0 and A1 P(z) — P(z) # 0. Set

(P(2) - A" P(2)) APE(2) - (P(2) - A"P(2)) A" F(2)
F(2) ’

P(2) = (3.3)

Two cases will be discussed in the following.
Case 2.1. ¢(z) #£0.
For T'(r,P) = S(r, F), by Lemma 2, we have m(r, ¢) = S(r, F).
Since
(P(z) - AZ’”P(z))AZF(z) - (P(z) - A;’P(z)) A"E(z)
= (P(z) - AI"'P(2)) (ALF(2) + AZP(2) - P(2)) — (P(2) - ALP(2))
x (A F(z) + A P(z) - P(z)) - (P(z) — A2 P(z))
x (AZP(2) - P(2)) + (P(2) - ALP(2)) (A2 P(z) - P(z))

= e"@F(2)(P(z) - A P(2)) — e’ F(2) (P(2) - A"P(2)),
then we can rewrite ¢(z) as follows:
¢(2) = (P(z) — AT P(2))e*@ — (P(2) — AP(2))e?, (3.4)

and it is obvious that N(r, ¢) = S(r, F). Hence T(r,¢) = S(r, F).
By (3.4),

%@ ePld

¢(z) =1+ (P(Z) - AZP(Z)) My (35)

(P(z) - A2 P(z))

thus by Nevanlinna’s second fundamental theorem,

«(z)
T<r, (P(z) - A™1P(2)) ; (z)>

N n+ ea(z) ENG ¢(Z)
<N (r, (P(2) - A" P(2)) " (z)) +N (r, o= Ag“P(z))ea(Z))

n+l ea(z)
ig )) - 1) + S(r, (P(z) - A2 P(2)) p (z))

m(r, 1
(P(z) — Am*1P(2))

o (z)
<S(r,F) + S(r, (P(z) - A2 P(2)) :; (Z)>.
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Noticing that T(r,¢) = S(r,F) and T(r,P) = S(r,F), we have T(r,e*?) = S(r,F), so
T(r,e*?) = S(r,f).

And by (3.5), we also get T(r,e?@) = S(r,f).

Therefore, by Lemma 7, we have f = A f since f is a transcendental meromorphic func-
tion.

Case 2.2. ¢(z) = 0.
By the definition of ¢(z), we have

(P(z) - Af*lP(z)) AF(z) = (P(z) - ALP(z)) A"™LE(z). (3.6)
For F(z) = f(z) — P(z), thus

(P(z) - A P(2)) (ALf (2) — AZP(2))
= (P(z) - ATP(2)) (AL f(2) — A2 P(z)),
x (P(z) = AI*'P(2)) ALf — PALP + P?
= (P(z) - AZP(2)) AL f(z) = PALT'P + P2,
x (P(z) - A P(z)) (ALf - P) = (P(z) — A’P(2)) (A f - P),
x (P(z) = AI*'P(z))e* = (P(z) — AlP(2))e”,

which implies

ws  PR)-AIPQ)

= 3.7
P(z) - A1P(z) (37)

Since P(z) is a polynomial, then e is a constant. Assume that e*# = A, then
P(z) - AlP(z) = A(P(z) - A2 P(z)). (3.8)

Comparing the coefficients of both sides of equation (3.8), A = 1, then A”P = A"*1P.
Since P(z) is a polynomial, thus A”P = A”"1P =0, and P(z) is a polynomial of degree less
than #.

By (3.6), we have A”F(z) = A"1F(z). Thus by (3.1), e*@ = ¢ then (3.2) can be rewrit-
ten as follows:

AZF-P _  4(z)

F_~—¢€
AZH'IF—P _ D((Z) (39)
= .
Hence
A'F = ¢*@F + P,
(3.10)

A"IF = ¢*@F 1+ P.
By the definition of nth difference,

AM™F = A"F(z+¢) - A"F(z)
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=e¢*F, +P,—e"F-P

=e®@F 4P,
Thus
F,=2e"%F + (2P — P,)e .
Then we can deduce that

Fy. =2%¢"%F + (2°P — Py.)e >

Fao = 2%¢"*F + (2°P — P3.)e %

By mathematical induction,
Fye = 28" % F 4 (2KP — Py ) ek

Thus

n
AIF =" Ch(-1)""'F

i=0

ZC’ 1) (27" F + (2'P — Pic)e %)

=e“F+P,

then

[Z Ch(=1)"i2le i — ea:|F
i=0

i=0

Using the same method, we have

n+l
n+1—i i oa—aje o
E o 2'e" e —e” |F

n+l
[Z Cl (1)1 (2P - P e e —P:| =0.

Define that

n
Ay =) Ci(-1) 12l — ¢,

i=0

- [Z Ci(-1)""(2'P - P;)e ™ — P

}o.

(3.11)

(3.12)

(3.13)

(3.14)

Page 19 of 27



Liu et al. Advances in Difference Equations (2018) 2018:428

n
By=Y Ci(-1)"*(2'P-P;)e™ - P,
i=0

n+1

, lini o
An+1 — § :C:’+1(_1)n+ igig=ic _ ea,
i=0

n+l

Bui=Y  Chy(-1)"17(2'P - P )e™ — P.

i=0

Let v = Pe™®, and note that

n n
e“B, = |:Z Cl(-1)"2le e — e‘{|P —e Z Cl(~1)""P,.e

i=0

=A,P—-e"Alv,
then
B,=e“A,P— A,
Thus
By =€ Ay P— Ay,
By (3.13) and (3.14), we have
AuBu —ApnB, =0,

that is,

Au(e AP = A1) = Ay (AP - Alv)

= Ay ATV — A, Ay = 0.

Then

n+l n
|:Z C;+1(_1)n+1_i2iea_aic _ eai| Z CZ(—I)n_iPice_ai”
i=0 i=0

i=0

n+l

n
AZIV Z C:’I+l(_1)n+1—1’2ie—atic _ AZHIU Z Cﬁ[(_l)n—izie—aic
i=0

i=0
= Alv— Ay,

n

2 Alve e + 3 (AVCh,y + ARG (<1)" Il e

i=0

_ AN n+l
=AJv-A7"v.

n n+l
_ |:Z CL(_l)n—iziea—aiC _ ea:| Z C£1+1(_1)n+1—ipice—uqc -0,
i=0
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Hence,

n
2 AN + Y (AIVCE,y + AFTVCE) (1) e
i=0
= ea(iﬂl)c (AZ‘V _ Ag‘*l U). (315)
Set
yilz) = (=11l i, j=1,2,...,n,

and

Vn+1(z)
= (Alv = AHy)etmne

n n+l
= Z Cﬁl(_l)n—ipicea(ml)raic _ Z CiHl(_1)n+1—ipicea(n+1)faic.
i=0 i=0
It is obvious that p(y;(z)) <dega — 1 for eachi € {1,2,...,n,n+ 1}. Let

n n
M) =) Ciov@)+2",  N@=)_ Cly),
i=0 i=0

then p(M(z)) <dega — 1, and p(N(z)) <dega — 1.
Thus by (3.15)

n n+l
M(2) ) Ch(=1)""Pice™ + N(2) Y _ Chy (=1)"" 7' Pice™ = .1 (2). (3.16)
i=0 i=0
Then we rewrite (3.16) as follows:
dyi1(2)eE ) 4 4, (2)e ) 1ot do(2)e ) = 0 (2), (3.17)

where d,.1(z) = N(2)P(i1)e, du(2) = (M(2) = (n + 1)N(2))Pyes ..., do(2) = (-1)"*'N(z) +
(=1)"M(2))P.

Next, we consider three cases.

Case 2.2.1. dega > 2.

By the definition of M(z), N(z), it can be proved that p(d;(z)) <dega - 1,i=0,1,...,n,
n+1.

Since

]/n+1(Z)
= (AZv = AZFly) et

n+l

n
= Z Cﬁz(_l)n_ipicea(mmc_aic - Z C:;HI(_1)n+1_ipicea(n+l)c_aic
i=0 i=0
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= 2(=1)"Pe®rs 0™ + (Cp,; + Cp ) (=1)" ' Pete® 4 (C2 , + Cr)(-1)"2

X Poe¥tnl)e™@2e 4 ooy (CZ+1 + CZ)Pncea(ml)c*anc _P(n+1)c:
we claim that y,,1(z) # 0. Otherwise,

Plit)e = 2(=1)"Pe®os0e™® 4 (Cy + Ch)(=1)" " Pemne

+ (C}3+1 + Cy21)(_l)n_2P2Cea(”+1)c_a26 +oeee

+(Chr,y + Cpp) Py mtie™ne,
Thus
P
2(_1)V1P ¥t~ 4 (_1)}1—1 (C;Lrl + Ci)—cea('“l)c_ac

(n+1)c (n+1)c

n n P”C o -,
+(Cpy + Cp) e = 1, (3.18)

P(n+l)c

It is obvious that (-1)""(C’ ., + C: )P( wl) e*+De~%e cannot be constants C; (# 0), and note

that p(e%m+De~%c) > 1, hence by Lemma 3,
PVIC

e¥n+1)c%nc = 1,
P(n+1)c

(CZ+1 + CZ)

P(n+1 +1)e—nc
O P’ but it contradicts with the fact that e*¢+e

is a transcendental entire function. Thus y,,,1(z) Z 0.

which implies that e®tr+1)e™%ne =

Therefore, we rewrite (3.17) as follows:

dn+1(Z) e_a(z+(n+l)c) + dn(z) e—a(z+nc) - di (Z) e—a(z+c) + d‘)(z) e—a(Z) =1.
)/n+1(Z) yVH-l(Z) J/n+1(z) J/n+1(z)
Obv1ously, * cannot be constant C; (#0), thus by Lemma 3, we have

do(z)e®@

=0,
Vn+l (Z)

Yn+1(2)

which means e™*® = AR contradiction.

Case 2.2.2. dega = 1.

If y441(2) # 0, by (3.17), by Lemma 3, and by the same method as Case 2.2.1, we also
deduce a contradiction.

If y,,41(2) = 0, without loss of generality, we assume that a(z) = Az + u, A #0, then

Q(ns1)e — Uic = (M + 1 —)Ac.
Thus

Vn+1(z)
=2(=1)"Pe"* M 1 (CL,; + Ch)(=1)" ' Pe™ + (CZ,; + C2)
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X (1) 2Py g (C1 4 CE)Pyc€™ — Pl

n
_ Z(_l)n—i(c}i + C;H)Pice(wrl—i)kc _ P(n+1)c-
i=0

Since deg P < n — 1, without loss of generality, we assume that
P(z) = s2"" + P*(2),

where ¢ is a positive integer satisfying 1 < ¢ < #, and s(#0) € C.

We assume that the coefficient of 2"~ in y,,,1(z) is 4, then

A- S[D-nni(c;l £ Ch)etre 1],

i=0

hence

Als = Z(_l)n-i(q‘m n Cil)e(n+l—i)kc -1

i=0

n n
_ Z(_l)n—ic}iﬂe(nﬂ—i))w 14+ Z(_l)n—icze(wrl—i))\c
i=0 i=0

n

— _(1 _ ekc)ml + exc Z(_l)n_icize(n_i)M

i=0
(1 _exc)ml n e)‘c(l —e“)n

(1-e)" (2™ -1).

Since y,.1(2) =0, then A = 0, two subcases will be considered in the following.

Case 2.2.2.1. 1 — €*° = 0, then €' = 1.

Hence

«(z)

ea(z+tc) - ea(z)+zAc —¢ .

which means e*®@ is a periodic function of period c, and e = ¢*.

Now we have

n
Ay =) Ci(-1)2 - =1 - ¢,
i=0

n
By=) Ci(-1)"(2'P-Pc)e™ - P
i=0

e |:PZ Cl(-1)y""2! - Z c;(—1)"-ipic} -P
i=0 i=0

=e“P-P=(e"-1)P.
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By (3.13),

0=(1-¢€")F+(e“-1)P,
1-e™
1-e¥

=—e“P,

then
f=F+P=(1-¢")P.
Thus,

ATF=e*A'P=0,

1 - 1p_
Al F=e A" P=0.
Therefore,

Af=0, AMlf=o0.

It is obvious that f, A”f, A’*1f share co and P(z) CM, thus

f=(1- e @\ P(z),

where e*@ is a periodic function of period ¢ with dega = 1, and P(z) is a polynomial with

degP <1.
Case 2.2.2.2.1-2¢" =0, then €* = ]

e%ic = e(xetkc =i,
Hence

n
Ay =) Ci(-1)2ee e —
i=0

— i CZ(_I)n—iALi s
i=0

=3" ¢,

n
B, = Z CL(-1)"(2'P - P;)e ™ — P

i=0

—e [PZ Cp(-1)"'4! - Z (=12’

i=0 i=0

n
=3"Pe - ey Cih(-1)""P;2 - P,

i=0
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n+l

n+l-ini o e i o
Ay = E n+1 -1) 2'e —e

nii o
§:n+1 4 -

:3n+1 L

e,
n+l
Bo1 = Z Cl (-1 (2P - Py )e % — P
i=0
n+l

Z +1( 1 n+1- 141( -op_ e—apwzt) P

n+l n+l

_e—aPZ n+1( 1)n+1—i4i —az n+1 n+1 lP 2_p

n+l

_ 3;’1+1Pe—a e Z n+1 n+1 leczl P.

By (3.13) and (3.14), we have

Aan+1 = BnAnJrl;

n+l

(3” _ ea) (3n+1peoz _e@ Z n+1( 1 n+l- leczl P)
= (3" -¢%) (S"Pe“" —e™ Z Cl(-1)""'P;2" - P),
i=0

n+l n
Z C}l;Hl(_l)VHl—iPiczi _ Z CZ (_l)n—ipiczi
i=0 i=0
n+l n
= 3@ Z n+1 n+1 1P 21 3n+le—cx Z Cﬁ,(—l)""PiC2’,
i=0

n+l n
<3n Z Ci'lJrl(_l)VHl—iPiCzi _ 3n+1 Z C;i(_l)n_ipiczi> e

i=0 i=0

n+1

Z n+1 n+1 lP 21 Zcz n iPi52i~
It follows from dega =1 that

3 YL Cu(-1) P2 = 3" G G (-1 P2 =0, (3.19)
S CL(=1)" P, 20 = Y CL L (-1) 1P 2T = .
Then, by (3.19),

n+l

n
3) Ci(-1)"'P2 =) Chy (-1 1P,
i= i=0
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and

n+l

n
Z Ci(-1)""P,2" = Z Ci ., (-1)"-ip2i =0, (3.20)
i=0 i=0

By our assumption, P = sz"* + P*, where s # 0 and deg P* < n — t. Then the coefficient of
2"t of (3.20) is

n+l

s Cha(-1y2i=0.
i=0

It follows that
s=0,

a contradiction.
Case 2.2.3. dega = 0, then « is a constant.
If e* = 1, then f = 1. By (3.1), we have

f=Af =AY,

then Af = A”!f, hence f = A.f.
If e* #1, by (3.13), we have

F=—“P,
thus
f =AP(z),

where P(z) is a polynomial with deg P(z) <n—-1,and A =1-¢7* (#0, 1). But it contradicts
the assumption that f(z) is a transcendental function.
Thus, Theorem 8 is proved. g
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