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Abstract
In this article, we study a discrete fourth order boundary value problem. By making
use of variational methods and critical point theory, we obtain some criteria for the
existence and multiple solutions. Moreover, two examples are included to illustrate
the applicability of the main results.
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1 Introduction and statement of the main results
In this article, we are interested in the existence and multiple solutions to the discrete
fourth order nonlinear equation

�4un–2 – �(rn–1�un–1) = f (n, un), n ∈ Z[1, k], (1.1)

with boundary value conditions

�iu–1 = �iuk–1, i = 0, 1, 2, 3, (1.2)

where �jun = �(�j–1un) (j = 2, 3, 4), �0un = un, �un = un+1 – un, f (s, u) ∈ C(R2,R), rn > 0
is real-valued for each n ∈ Z[0, k], r0 = rk , k ≥ 1 is an integer. Here, Z denotes the sets of
integers, R denotes the sets of real numbers, N denotes the sets of natural numbers. Given
a ≤ b in Z, let Z[a, b] := Z∩ [a, b]. Let u* denote the transpose of a vector u.

Boundary value problem (1.1) with (1.2) can be regarded as being a discrete analogue of
the fourth order differential equation

u(4)(s) –
[
r(s)u′(s)

]′ = f
(
s, u(s)

)
, s ∈ (0, 1), (1.3)

with boundary value conditions

u(i)(0) = u(i)(1), i = 0, 1, 2, 3. (1.4)
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(1.3) includes the following equation:

u(4)(s) = f
(
s, u(s)

)
, s ∈R, (1.5)

which is used to describe the stationary states of the deflection of an elastic beam [29].
Differential equations similar to (1.3) and special cases of it have been studied using a
number of different methods in the literature, we refer the reader to papers [1, 2, 11–14,
24, 25] and the references contained therein.

Difference equations [1–10, 15–20, 22, 26–28, 30, 31] appear in numerous settings and
forms, both as a fundamental tool in the discrete analogue of a differential equation and
as a useful model for several economical and population problems.

If f (n, un) = qnun, Peterson and Ridenhour [22] considered the fourth order difference
equation

�4un–2 + qnun = 0, n ∈ [a + 2, a + 3, . . . , b + 2], (1.6)

and gave some conditions on qn that ensure (1.6) is (2,2)-disconjugate on [a, b + 4] utilizing
an appropriately defined quadratic form.

Making use of the symmetric mountain pass lemma, Chen and Tang [5] established
some existence criteria to guarantee the fourth order difference system

�4un–2 + qnun = f (n, un+1, un, un–1), n ∈ Z (1.7)

has infinitely many homoclinic orbits.
In [16], the existence, multiplicity, and nonexistence results of nontrivial solutions for

discrete nonlinear fourth order boundary value problems

�4un–2 + η�2un–1 – ξun = λf (n, un), n ∈ Z[a + 1, b + 1],

with

ua = �2ua–1 = 0, ub+2 = �2ub+1 = 0,

are obtained. The methods used here are based on the critical point theory and monotone
operator theory.

Positive solutions of the following fourth order nonlinear difference equations with a
deviating argument

�an
(
�bn

(
�cn(�un)γ

)β)α + dnuλ
n+τ = 0 (1.8)

are investigated. Došlá, Krejčová, and Marini [8] introduced for (1.8) the notions of a mini-
mal solution and a maximal solution, and gave necessary and sufficient conditions for their
existence. Some relationships with nonoscillatory solutions, which have a different growth
at infinity, were presented as well.
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Graef, Kong, and Wang [10] studied the discrete fourth order periodic boundary value
problem with a parameter

⎧
⎨

⎩
�4un–2 – �(pn–1�un–1) + qnun = λf (n, un), n ∈ Z(1, N),

�iu–1 = �iuN–1, i = 0, 1, 2, 3.

By using variational methods and the mountain pass lemma, sufficient conditions are
found under which the above problem has at least two nontrivial solutions.

In 2015, Liu, Zhang, and Shi [19] considered the following fourth order nonlinear dif-
ference equation:

�2(pn–2�
2un–2

)
– �(qn–1�un–1) = f (n, un+1, un, un–1), n ∈ Z(1, k),

with boundary value conditions

u–1 = u0 = 0, uk+1 = uk+2 = 0.

Using the critical point theory, the authors established various sets of sufficient conditions
for the existence and nonexistence of solutions for the Dirichlet boundary value problem
and gave some new results.

By using the invariant set of descending flow and variational method, Long and Chen
[20] in 2018 established the existence of multiple solutions to a class of second order dis-
crete Neumann boundary value problem

⎧
⎨

⎩
–�(pn–1�un–1) + qnun = kf (n, un), n ∈ Z(1, N),

�u0 = �uN .

The solutions included sign-changing solutions, positive solutions, and negative solutions.
Moreover, an example was given to illustrate our results.

In the last few years, variational methods and critical point theory have been used to
study the existence and multiple solutions of discrete boundary value problems. In this
article, we utilize this approach to obtain some sufficient conditions for the existence and
multiple solutions to the boundary value problem (BVP for short) (1.1) with (1.2). What
is more, two examples are included to illustrate the applicability of the main results.

Throughout this article, assume that there is a function F(s, u) such that

F(s, u) =
∫ u

0
f (s, t) dt

for any (s, u) ∈R
2.

Our main results are the following theorems.

Theorem 1.1 Assume that the function F(s, u) ≥ 0 satisfies the following assumptions:
(F1) There exist two constants δ1 > 0 and a1 ∈ (0, λmin

2 ) such that

F(s, u) ≤ a1u2, ∀s ∈R
2, |u| ≤ δ1.
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(F2) There exist two constants a2 ∈ ( λmax
2 , +∞) and a3 > 0 such that

F(s, u) ≥ a2u2 – a3, ∀(s, u) ∈R
2,

where λmin and λmax are constants which can be referred to (2.4) and (2.5).
Then BVP (1.1) with (1.2) admits at least three solutions which are a trivial solution and
two nontrivial solutions.

Remark 1.1 In [10], the authors considered the discrete fourth order periodic boundary
value problem with a parameter

⎧
⎨

⎩
�4un–2 – �(pn–1�un–1) + qnun = λf (n, un), n ∈ Z(1, N),

�iu–1 = �iuN–1, i = 0, 1, 2, 3.
(1.9)

The following hypotheses are satisfied in [10]:
(H1) pn > 0 for n ∈ Z(0, N + 1) and qn > 0 for n ∈ Z(0, N);
(H2) lim|n|→∞ |F(n,u)|

|u|2 = 0 for n ∈ Z(0, N);
(H3) lim sup|n|→∞

|F(n,u)|
|u|2 ≤ 0 for n ∈ Z(0, N);

(H4) there exists ω ∈ U such that
∑N

n=1 F(n,ωn) > 0.
Note that (F2) of Theorem 1.1 does not satisfy (H2). At least two nontrivial solutions of
(1.9) are obtained by the mountain pass lemma in [10]. However, in our paper, we employ
a linking theorem to obtain at least two nontrivial solutions. Furthermore, our conditions
on the nonlinear term are weaker than [10].

Theorem 1.2 Assume that the function F(s, u) ≥ 0 satisfies the following assumptions:
(F3) lim|u|→0

F(s,u)
u2 = 0, ∀(s, u) ∈R

2.
(F4) There exist three constants a4 > 0, γ > 2, and a5 > 0 such that

F(s, u) ≥ a4|u|γ – a5, ∀(s, u) ∈R
2.

Then BVP (1.1) with (1.2) admits at least three solutions which are a trivial solution and
two nontrivial solutions.

Theorem 1.3 Assume that the function F(s, u) ≥ 0, (F1) and (F2) and the following as-
sumptions are satisfied:

(f ) f (s, –u) = –f (s, u), ∀(s, u) ∈R
2.

Then BVP (1.1) with (1.2) admits at least q distinct pairs of nontrivial solutions, where q is
the dimension of Q which can be referred to (2.6).

Remark 1.2 In [9], the authors considered the fourth order nonlinear difference equation

⎧
⎨

⎩
�4un–2 – �(pn–1�un–1) + qnun = f (n, un), n ∈ Z(1, N),

�iu–1 = �iuN–1, i = 0, 1, 2, 3.
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Define f0 = lim infu→0 minn∈Z(1,N)
f (n,u)

u and f ∞ = lim supu→0 maxn∈Z(1,N)
f (n,u)

u .
The following hypotheses are satisfied in [9]:
(H1) pn ≥ 0 and qn ≥ 0 for n ∈ Z(1, N) and there exists η with η < q such that f ∞ ≤ η,

where q = minn∈Z(1,N) qn;
(H2) f (n, u) is odd in u, i.e., f (n, –u) = –f (n, u) for (n, u) ∈ Z(1, N) ×R;
(H3) there exists m ∈ {1, . . . , N} such that f0 > λm.

Note that (F1) of Theorem 1.3 does not satisfy (H3). Furthermore, our conditions on the
nonlinear term are weaker than [9].

If f (n, un) = τnψ(un), (1.1) reduces to the following fourth order nonlinear equation:

�4un–2 – �(rn–1�un–1) = τnψ(un), n ∈ Z[1, k], (1.10)

where ψ ∈ C(R,R), τn > 0 is real-valued for each n ∈ Z[1, k]. Therefore, we can easily
obtain the following results.

Theorem 1.4 Assume that the following assumptions are satisfied:
(Ψ1) There exists a function Ψ (u) ∈ C1(R,R) with Ψ (u) ≥ 0 such that

Ψ ′(u) = ψ(u).

(Ψ2) There exist two constants δ2 > 0 and a6 ∈ (0, λmin
2 ) such that

Ψ (u) ≤ a6u2, ∀s ∈ R
2, |u| ≤ δ2.

(Ψ3) There exist two constants a7 ∈ ( λmax
2 , +∞) and a8 > 0 such that

Ψ (u) ≥ a7u2 – a8, ∀(s, u) ∈R
2,

where λmin and λmax are constants which can be referred to (2.4) and (2.5).
Then BVP (1.10) with (1.2) admits at least three solutions which are a trivial solution and
two nontrivial solutions.

Corollary 1.1 Assume that (Ψ1), (Ψ2), (Ψ3) and the following assumption are satisfied.

(ψ) ψ(–u) = –ψ(u), ∀u ∈R.

Then BVP (1.10) with (1.2) admits at least q distinct pairs of nontrivial solutions, where q
is the dimension of Q which can be referred to (2.6).

2 Variational framework
In this section, we shall establish the corresponding variational framework for BVP (1.1)
with (1.2) which will be of fundamental importance in proving our main results.

In order to apply the critical point theory, we define a k-dimensional Hilbert space U by

U :=
{

u : Z[–1, k + 2] →R | �iu–1 = �iuk–1, i = 0, 1, 2, 3
}

,
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and equip it with the inner product

(u, v) :=
k∑

j=1

ujvj, ∀u, v ∈ U ,

and the induced norm

‖u‖ :=

( k∑

j=1

u2
j

) 1
2

, ∀u ∈ U .

Remark 2.1 It is obvious that

u–1 = uk–1, u0 = uk , u1 = uk+1, u2 = uk+2, ∀u ∈ U . (2.1)

As a matter of fact, U is isomorphic to R
k . Throughout this article, when we say u =

(u1, u2, . . . , uk) ∈ R
k , we always imply that u can be extended to a vector in U so that (2.1)

holds.

Define a functional J on U by

J(u) :=
1
2

k∑

n=1

(
�2un–2

)2 +
k∑

n=1

rn–1(�un–1)2 –
k∑

n=1

F(n, un). (2.2)

After a careful computation, we have

∂J
∂un

= �4un–2 – �(rn–1�un–1) – f (n, un), n ∈ Z[1, k].

Therefore, J ′(u) = 0 if and only if

�4un–2 – �(rn–1�un–1) = f (n, un), n ∈ Z[1, k].

Consequently, we reduce the problem of finding a solution of BVP (1.1) with (1.2) to that
of seeking a critical point of the functional J on U . Denote the k × k matrices S and R.

For k = 1, let S = R = (0).
For k = 2, let

S =

(
8 –8

–8 8

)

,

and

R =

(
r0 + r1 –r0 – r1

–r0 – r1 r0 + r1

)

.

For k = 3, let

S =

⎛

⎜
⎝

6 –3 –3
–3 6 –3
–3 –3 6

⎞

⎟
⎠ .
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For k = 4, let

S =

⎛

⎜⎜
⎜
⎝

6 –4 2 –4
–4 6 –4 2
2 –4 6 –4

–4 2 –4 6

⎞

⎟⎟
⎟
⎠

.

For k ≥ 5, let

S =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

6 –4 1 0 0 · · · 0 0 1 –4
–4 6 –4 1 0 · · · 0 0 0 1
1 –4 6 –4 1 · · · 0 0 0 0
0 1 –4 6 –4 · · · 0 0 0 0
0 0 1 –4 6 · · · 0 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 6 –4 1 0
0 0 0 0 0 · · · –4 6 –4 1
1 0 0 0 0 · · · 1 –4 6 –4

–4 1 0 0 0 · · · 0 1 –4 6

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

For k ≥ 3, let

R =

⎛

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎝

r0 + r1 –r1 0 · · · –r0

–r1 r1 + r2 –r2 · · · 0
0 –r2 r2 + r3 · · · 0

· · · · · · · · · · · · · · ·
0 0 0 · · · –rk–1

–r0 0 0 · · · rk–1 + r0

⎞

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎠

.

Let M := S + R. We rewrite J(u) as

J(u) =
1
2

u∗Mu –
k∑

n=1

F(n, un). (2.3)

It is easy to see that 0 is an eigenvalue of M, (1, 1, . . . , 1)∗ is an eigenvector associated
with 0. M is semi-positive definite. Let λ1,λ2, . . . ,λk be the eigenvalues of M.

Set

λmin = min{λj | λj �= 0, j = 1, 2, . . . , k}, (2.4)

and

λmax = max{λj | λj �= 0, j = 1, 2, . . . , k}. (2.5)

Let P = {(c, c, . . . , c)∗ ∈ U | c ∈R}, then P is an invariant subspace of U . Denote Q by

U = P ⊕ Q. (2.6)
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3 Some basic lemmas
Assume that U is a real Banach space and J ∈ C1(U ,R). As usual, J is said to satisfy the
Palais–Smale condition if every sequence {u(j)} ⊂ U such that {J(u(j))} is bounded and
J ′(u(j)) → 0 (j → ∞) has a convergent subsequence. The sequence {u(j)} is called a Palais–
Smale sequence.

Let U be a real Banach space. Define the symbol Bρ(u) as the open ball in U about u of
radius ρ , ∂Bρ(u) as its boundary, and B̄ρ(u) as its closure.

Lemma 3.1 (Linking theorem [21, 23]) Let U be a real Banach space, U = U1 ⊕ U2, where
U1 is finite dimensional. Suppose that J ∈ C1(U ,R) satisfies the Palais–Smale condition
and the following:

(J1) There are positive constants c and ρ such that J|∂Bρ (0)∩U2 ≥ c.
(J2) There are μ ∈ ∂B1(0) ∩ U2 and a positive constant ĉ ≥ ρ such that J|∂Ω ≤ 0, where

Ω = (B̄ĉ(0) ∩ U1) ⊕ {sμ | 0 < s < ĉ}.
Then J possesses a critical value c0 ≥ c, where

c0 = inf
d∈Υ

sup
u∈Ω

J
(
d(u)

)
,

and Υ = {d ∈ C(Ω̄ , U) | d|∂Ω = id}, where id denotes the identity operator.

Lemma 3.2 (Clark theorem [21]) Let U be a real Banach space, J ∈ C1(U ,R), with J be-
ing even, bounded from below and satisfying the Palais–Smale condition. Assume J(0) = 0,
there is a set Γ ⊂ U such that Γ is homeomorphic to Sk–1 (k – 1 dimension unit sphere) by
an odd map, and supΓ J < 0. Then J has at least k distinct pairs of nonzero critical points.

Lemma 3.3 Assume that (r) and (F1)–(F3) are satisfied. Then the functional J satisfies the
Palais–Smale condition.

Proof Let {u(j)}j∈N ⊂ U be such that {J(u(j))}j∈N is bounded and J ′(u(j)) → 0 as j → ∞. Then
there is a constant A > 0 such that

–A ≤ J
(
u(j)) ≤ A, ∀j ∈N.

From (F2) and (2.3), for any {u(j)}j∈N ⊂ U , we have

–A ≤ J
(
u(j)) =

1
2
(
u(j))∗Mu(j) –

k∑

n=1

F
(
n, u(j))

≤ λmax

2
∥
∥u(j)∥∥2 –

k∑

n=1

[
a2

(
u(j))2 – a3

]

=
(

λmax

2
– a2

)∥
∥u(j)∥∥2 + a3k.

Then
(

a2 –
λmax

2

)∥
∥u(j)∥∥2 ≤ A + a3k.



Liu et al. Advances in Difference Equations        (2018) 2018:427 Page 9 of 13

It comes from a2 ∈ ( λmax
2 , +∞) that we can find a constant B > 0 such that, for any j ∈ N,

‖u(j)‖ ≤ B. Thus, we know that the sequence {u(j)}j∈N is bounded in the k dimensional
space U . Therefore, the Palais–Smale condition holds. �

4 Proofs of theorems

Proof of Theorem 1.1 Obviously, F(n, 0) = 0 and f (n, 0) = 0 for any n ∈ Z[1, k] via (F1) and
(F2). Hence, u = 0 is a trivial solution of BVP (1.1) with (1.2).

It comes from Lemma 3.3 that J(u) is bounded from above in U . Let

J̄ = sup
u∈U

J(u).

Therefore, there exists a sequence {u(j)} on U such that

J̄ = lim
j→∞ J

(
u(j)).

What is more, from the proof of Lemma 3.3, we have

J(u) ≤
(

λmax

2
– a2

)
‖u‖2 + a3k, ∀u ∈ U . (4.1)

This implies that lim‖u‖→+∞ J(u) = –∞. Thus, {u(j)} is bounded. Then {u(j)} has a conver-
gent subsequence defined by {u(jn)}. Set

ū = lim
n→+∞ u(jn).

Due to the continuity of J(u) in u, there must be a point ū ∈ U , J(ū) = J̄ . Clearly, ū ∈ U is a
critical point of J(u).

From (F1), for any u ∈ Q, ‖u‖ ≤ δ1, we have

J(u) =
1
2

u∗Mu –
k∑

n=1

F(n, un)

≥ λmin

2
‖u‖2 – a1

k∑

n=1

u2
n

≥
(

λmin

2
– a1

)
‖u‖2.

Denote

c =
(

λmin

2
– a1

)
δ2

1 .

We have

J(u) ≥ c, ∀u ∈ Q ∩ ∂Bδ1 (0). (4.2)
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Thus, there are constants c > 0 and δ1 > 0 such that J|∂Bδ1 (0)∩Q ≥ c. Assumption (J1) of the
linking theorem is satisfied.

In view of Mu = 0, for all u ∈ P, we have

J(u) =
1
2

u∗Mu –
k∑

n=1

F(n, un) = –
k∑

n=1

F(n, un) ≤ 0.

Hence, ū /∈ P and the critical point ū of J(u) corresponding to the critical value J̄ is a non-
trivial solution of BVP (1.1) with (1.2).

In the light of Lemmas 3.1 and 3.3, it is sufficient to verify condition (J2).
Choose α ∈ ∂B1(0) ∩ Q, for any β ∈ P and s ∈R, let u = sα + β . By (F2), we have

J(u) =
1
2

(sα + β)∗M(sα + β) –
k∑

n=1

F(n, sαn + βn)

≤ 1
2

(sα)∗M(sα) –
k∑

n=1

[
a2(sαn + βn)2 – a3

]

≤ λmaxs2

2
– a2

k∑

n=1

(sαn + βn)2 + a3k

=
(

λmax

2
– a2

)
s2 – a2‖β‖2 + a3k

≤ –a2‖β‖2 + a3k.

Consequently, there is some positive constant χ > δ1 such that

J(u) ≤ 0, ∀u ∈ ∂Ω ,

where Ω = (B̄χ (0) ∩ Q) ⊕ {sα | 0 < s < χ}. Applying the linking theorem, J(u) has a critical
value c0 ≥ c > 0, where

c0 = inf
d∈Υ

sup
u∈Ω

J
(
d(u)

)
,

and Υ = {d ∈ C(Ω̄ , U) | d|∂Ω = id}.
Similar to the proof of Theorem 1.1 in [4], we can prove that BVP (1.1) with (1.2) admits

at least three solutions, and so we omit it. �

Remark 4.1 Note that (F3) implies (F1). Similar to the above argument, we can also prove
Theorem 1.2. For simplicity, we omit its proof.

Proof of Theorem 1.3 Obviously J ∈ C1(U ,R), J is even, and J(0) = 0. From Lemma 3.3,
J satisfies the Palais–Smale condition. By the proof of Theorem 1.1, we have that J is
bounded from below. On account of Lemma 3.2, it is sufficient to find a set Γ and an
odd map such that Γ is homeomorphic to Sq–1 by an odd map.

Choose

Γ = ∂Bδ1 (0) ∩ Q.
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Clearly, Γ is homeomorphic to Sq–1 by an odd map. It is comes from (4.2) that supΓ (–J) < 0.
On the basis of Lemma 3.2, J has at least q distinct pairs of nonzero critical points. For this
reason, BVP (1.1) with (1.2) admits at least q distinct pairs of nontrivial solutions. The
proof of Theorem 1.3 is complete. �

Remark 4.2 By virtue of Theorem 1.1, the conclusion of Theorem 1.4 is clearly right. As
a result of Corollary Theorem 1.3, the results of Corollary 1.1 are evidently correct.

5 Examples
Firstly, our example illustrates Theorem 1.1.

Example 5.1 Consider the equation

�4un–2 – �2un–1 = u6
n, n ∈ Z[1, 3], (5.1)

with boundary value conditions

u–1 = u2, �u–1 = �u2, �2u–1 = �2u2, �3u–1 = �3u2. (5.2)

We have

rn ≡ 1, f (n, un) = u6
n,

and

F(n, un) =
1
7

u7
n.

Also,

M = S + R =

⎛

⎜
⎝

8 –4 –4
–4 8 –4
–4 –4 8

⎞

⎟
⎠ ,

and the eigenvalues of M are λ1 = 0, λ2 = 12, and λ3 = 12. It is easy to verify that all the
conditions of Theorem 1.1 are satisfied and then BVP (5.1) with (5.2) admits at least three
solutions.

As an example of Theorem 1.3, we have the following.

Example 5.2 Consider the equation

�4un–2 – 2�2un–1 = 10u9
n, n ∈ Z[1, 4], (5.3)

with boundary value conditions

u–1 = u3, �u–1 = �u3, �2u–1 = �2u3, �3u–1 = �3u3. (5.4)
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We have

rn ≡ 2, f (n, un) = 10u9
n,

and

F(n, un) = u10
n .

Also,

M = S + R =

⎛

⎜⎜
⎜
⎝

10 –6 2 –6
–6 10 –6 2
2 –6 10 –6

–6 2 –6 10

⎞

⎟⎟
⎟
⎠

,

and the eigenvalues of M are λ1 = 0, λ2 = 8, λ3 = 8, and λ4 = 24. It is easy to verify that all
the conditions of Theorem 1.3 are satisfied, and then BVP (5.3) with (5.4) admits at least
three distinct pairs of nontrivial solutions.
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