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Abstract
In this paper, we introduce the concept of complete-closed time scales under
translational and non-translational shifts and propose new definitions of special
functions arising from dynamic equations on time scales including the concepts of
almost periodic functions, almost automorphic functions and Stepanov almost
automorphic functions. All the functions introduced in the paper are not only
effective on periodic time scales under translations but are also valid on irregular time

scales like qZ , (–q)Z and N

1
2±, etc.
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1 Introduction
Classical periodic functions, almost periodic functions and almost automorphic functions
defined by shifts (see [2, 4, 6, 7, 13, 15, 21–23, 31, 32]) and their applications to dynamic
equations were studied in the literature (see [5, 8–11, 16–19, 32]). Using time scales calcu-
lus, one can study these functions on periodic time scales under translations since periodic
time scales have a very nice closedness property under translations and we find that all
periodic time scales under translations have a bounded graininess function μ (see [3, 12,
14, 20, 24–30]). However, there are many irregular time scales that have no translational
closedness. For example, consider the time scale qZ := {qn : q > 1, n ∈ Z}, which arises when
one considers q-difference equations. This time scale is irregular and it is not a periodic
time scale under translations and its graininess function μ is unbounded. Also consider
the time scales –qZ ∪ {1} = {–qn : q > 1, n ∈ Z} ∪ {1} and (–q)Z = {(–q)n : q > 1, n ∈ Z} ∪ {0}
and N

1
2± = {±√

n : n ∈ N}. Is it possible to consider almost periodic, almost automorphic
and generalized problems on these irregular time scales?

We introduce the concept of complete-closed time scales under translational and non-
translational shifts (T-CCTSs and S-CCTSs) and propose new definitions of special func-
tions.

In 2013, Adıvar introduced a new concept of periodic time scales and studied some
periodic solutions for differential equations on irregular time scales which includes q-
difference equations so one could consider periodic problem on qZ (see [1, 2]). Motivated
by the above, based on results of shift operators proposed in [1], we introduce a concept
of complete-closed time scales under shifts which is more general than the concept of
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periodic time scales in [1]. Then we construct almost periodic functions and almost auto-
morphic functions and propose definitions and generalizations including Stepanov almost
periodic and Stepanov almost automorphic functions, etc.

2 Complete-closed time scales under shifts (S-CCTSs)
Throughout the paper, we assume that δ± are shift operators satisfying Definition 3 from
[1] and D̃± := {(s, t) ∈ [t0,∞)T × T

∗ : δ±(s, t) ∈ T
∗}, where T

∗ is the largest subset of the
time scale T, i.e., T∗ = T.

Definition 2.1 ([1]) Let T be a time scale with the shift operators δ± associated with the
initial point t0 ∈ T

∗. The time scale T is said to be periodic in shifts δ± if there exists a
p ∈ (t0,∞)T∗ such that (p, t) ∈ D̃∓ for all t ∈ T

∗. Furthermore, if

P := inf
{

p ∈ (t0,∞)T∗ : (p, t) ∈ D̃∓ for all t ∈ T
∗} �= t0, (1)

then P is called the period of the time scale T, where D̃± = {(s, t) ∈ [t0,∞)T ×T
∗ : δ±(s, t) ∈

T
∗}.

Now, we give an example to show that Definition 2.1 is not appropriate for certain time
scales.

Example 2.1 Let a time scale be

T = –qZ ∪ {1} =
{

–qn : q > 1, n ∈ Z
} ∪ {1}, (2)

then T
∗ = {–qn : q > 1, n ∈ Z} ∪ {1}. Take the initial point t0 = 1 and attach the shift opera-

tors δ–(s, t) = –st, δ+(s, t) = – t
s . Let Π– = {–qn : q > 1, n ∈ Z

+}. We obtain δ±(s, t) ∈ T
∗ for

any s ∈ Π–. However, by Definition 2.1, T cannot be regarded as a periodic time scale un-
der shifts δ± since there is no number P ∈ (1, +∞)T∗ satisfying (1). In fact, this time scale
is the opposite number set of the time scale qZ = {qn : q > 1, n ∈ Z}∪ {0}, and the time scale
(2) also plays an important role in q-difference equations. Moreover, from (2), it is easy to
observe that, for any t ∈ T

∗, we have –(–q)t ∈ T
∗ but –q /∈ [1, +∞).

For convenience, we introduce the notations. Let

D± =
{

(s, t) ∈ T
∗ ×T

∗ : δ±(s, t) ∈ T
∗}.

For any s ∈ T
∗, denote

T
δs–
∗ := δ–

(
s,T∗) :=

{
δ–(s, t) : (s, t) ∈D–,∀t ∈ T

∗}, (3)

T
δs+
∗ := δ+

(
s,T∗) :=

{
δ+(s, t) : (s, t) ∈D+,∀t ∈ T

∗}. (4)

Next, we introduce a concept related with S-CCTSs.

Definition 2.2 Let T be a time scale with the shift operators δ± associated with the initial
point t0 ∈ T

∗. We say the time scale T is a bi-direction S-CCTS in shifts δ± if

Π± :=
{

p ∈ T
∗ : (p, t) ∈D± for all t ∈ T

∗} /∈ {{t0},∅
}

. (5)
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Remark 2.2 Note that by using (3) and (4), the set Π in (5) can be written in the equivalent
form

Π± =
{

p ∈ T
∗ : T

δp±
∗ ⊆ T

∗} /∈ {{t0},∅
}

.

Next, from (5), we introduce a concept of S-CCTS attached with shift direction. For
convenience, we will use the notations

Π+ :=
{

p ∈ T
∗ : Tδp∗ ⊆ T

∗}, Π– :=
{

p ∈ T
∗ : Tδp–

∗ ⊆ T
∗}.

Definition 2.3 Let T be a S-CCTS. Then:
(i) we say S-CCTS is with positive-direction if Π+ /∈ {{t0},∅};

(ii) we say S-CCTS is with negative-direction if Π– /∈ {{t0},∅};
(iii) we say S-CCTS is with bi-direction if Π± /∈ {{t0},∅}.

Remark 2.3 From Definition 2.3, one observes that a bi-direction S-CCTS also comes with
a positive-direction and a negative-direction.

Remark 2.4 In (iii) of Definition 2.3, let δ±(p, t) = t ± p, then it follows that T is a periodic
time scale with period p (see [3] and Definitions 2.2–2.3 of [30]).

Remark 2.5 Note that ifT is a S-CCTS with positive-direction, then Π+ ∩T ∈ {{t0},∅} may
hold. For example, consider the time scale T =

⋃+∞
k=0[3k, 3k + 1], if we take δ+(p, t) = t – p,

then Π+ = {3n, n ∈ Z
–}, which indicates that Π+ ∩ T = ∅; if we take δ+(p, t) = t + p, then

Π+ = {3n, n ∈ Z
+}, which indicates that Π+ ⊂ T. Hence, for the time scale attached with

shift directions, whether Π+ is a subset of T is determined by the choice of δ+. Similarly,
for the negative-direction S-CCTS, there may appear the same situation.

Example 2.6 From Definitions 2.2 and 2.3, we provide some examples of S-CCTS.
(1) Let T = –qZ ∪ {1} = {–qn : q > 1, n ∈ Z} ∪ {1}. For such a time scale, take t0 = 1, we

attach the shift operators

δ–(s, t) = –st, δ+(s, t) = –
t
s

, Π± =
{

–qn : q > 1, n ∈ Z
+}

.

Hence, there exists –q ∈ Π± such that Π± /∈ {{1},∅}. From Definition 2.3, T is a
S-CCTS with bi-direction.

(2) Let T = qZ = {qn : q > 1, n ∈ Z} ∪ {0}. For such a time scale, take t0 = 1, we attach the
shift operators

δ+(s, t) = st, δ–(s, t) =
t
s

, Π± =
{

qn : q > 1, n ∈ Z
+}

.

Hence, there exists q ∈ Π± such that Π± /∈ {{1},∅}. From Definition 2.3, T is a
S-CCTS with bi-direction.

(3) Let T = (–q)Z = {(–q)n : q > 1, n ∈ Z} ∪ {0}. We obtain Π± = {(–q)2n : q > 1, n ∈ Z
+}.

For such a time scale, for any t ∈ T
∗, take t0 = 1, we attach the shift operators

δ+(s, t) =

⎧
⎨

⎩
st, t > 0,
t
s , t < 0,

δ–(s, t) =

⎧
⎨

⎩

t
s , t > 0,

st, t < 0.
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Hence, there exists q2 ∈ Π± such that δ±(q2, t) ∈ T
∗ for all t ∈ T

∗, i.e., Π± /∈ {{1},∅}.
From Definition 2.3, T is a S-CCTS with bi-direction.

(4) Consider T = {qn : q > 1, n ∈ Z} ∪ {–qn : q > 1, n ∈ Z} ∪ {0}. For such a time scale, for
any t ∈ T

∗, take t0 = 1, we attach the shift operators

δ+(s, t) =

⎧
⎨

⎩
st, t > 0,
t
s , t < 0,

δ–(s, t) =

⎧
⎨

⎩

t
s , t > 0,

st, t < 0.

We obtain Π± = {qn : q > 1, n ∈ Z
+}. Hence, there exists q ∈ Π± such that

δ±(q, t) ∈ T
∗ for all t ∈ T

∗, i.e., Π± /∈ {{1},∅}. From Definition 2.3, T is a S-CCTS
with bi-direction.

(5) Consider N
1
2± = {±√

n, n ∈N}, For such a time scale, for any t ∈ T
∗, take t0 = 0, we

attach the shift operators

δ+(s, t) =

⎧
⎨

⎩

√
s2 + t2, t > 0,

–
√

t2 – s2, t < 0,
δ–(s, t) =

⎧
⎨

⎩

√
t2 – s2, t > 0,

–
√

t2 + s2, t < 0.

We obtain Π± = N
1
2 = {√n : n ∈N}. Hence, there exists 1 ∈ Π± such that

δ±(1, t) ∈ T
∗ for all t ∈ T

∗, i.e., Π± /∈ {{0},∅}. From Definition 2.3, T is a S-CCTS
with bi-direction.

(6) Let T1 = {qn : q > 1, n ∈ Z
+} ∪ {1} and T2 = {qn : q > 1, n ∈ Z

–} ∪ {0, 1}. For these two
time scales, take t0 = 1 and

Π+
1 =

{
qn : q > 1, n ∈ Z

+} ⊆ T
∗
1,

Π–
2 =

{
qn : q > 1, n ∈ Z

–} ⊆ T
∗
2.

It is clear that, for any s1 ∈ Π+
1 , s2 ∈ Π–

2 , we obtain

δ+(s1, t1) = s1t1 ∈ T
∗
1 for all t1 ∈ T

∗
1,

δ–(s1, t1) =
t1

s1
/∈ T

∗
1 for t1 = q, s1 = q2,

and

δ–(s2, t2) = s2t2 ∈ T
∗
2 for all t2 ∈ T

∗
2,

δ+(s2, t2) =
t2

s2
/∈ T

∗
2 for t2 =

1
q

, s2 =
1
q2 .

Hence, for the shift operator δ+(s, t) = st, it follows that T1 is a positive-direction
S-CCTS. For the shift operator δ–(s, t) = st, we see that T2 is a negative-direction
S-CCTS.

In the literature [30], the authors proposed some periodic time scales attached with
translation direction. In fact, they are complete-closed time scales under translations (i.e.,
T-CCTSs) .
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Definition 2.4 ([30]) We say T is a complete-closed time scale T-CCTS if Π0 := {τ ∈ R :
T

τ ⊆ T} �= {0}. We say Π0 is the complete-closed translation number set of T-CCTS. Fur-
thermore, we can describe it in detail as follows:

(a) if for any p > 0, there exists a number P > p and P ∈ Π0, we say T is a
positive-direction T-CCTS;

(b) if for any q < 0, there exists a number Q < q and Q ∈ Π0, we say T is a
negative-direction T-CCTS;

(c) if ±τ ∈ Π0, we say T is a bi-direction T-CCTS;
(d) we say T is an oriented-direction T-CCTS if T is a positive-direction T-CCTS or a

negative-direction T-CCTS.

Example 2.7 Let an oriented-direction T-CCTS be

T1 =
+∞⋃

k=0

[
k(a + b), k(a + b) + a

]
, a, b ≥ 0, a + b > 0,

T2 =
+∞⋃

k=0

[
k(a + b), k(a + b) + a

]
, a, b ≤ 0, a + b < 0

then T1 is a positive-direction T-CCTS and T2 is a negative-direction T-CCTS with the
translation number a + b, but they have no invariance under translations in the sense of
Definition 1.1 of [13] because infT1 = supT2 = 0.

Remark 2.8 We attached the translation direction to the time scales in [30] and now intro-
duce the concept of T-CCTS. We also introduced the concepts of some special functions
arising from differential and difference equations on T-CCTS including almost periodic
functions and almost automorphic functions. However, these results will be invalid on
some irregular time scales like (–q)Z, qZ and ±N

1
2 , etc.

Remark 2.9 Note that if T is a periodic time scales under translations and Π± ⊆ T
∗, then

the shift operators will satisfy δ±(τ , t) = t ± τ ∈ T with the initial point t0 = 0. Hence, if
Π± ⊆ T

∗, then T-CCTS is included in S-CCTS.

3 Related functions on S-CCTS
In this section, based on S-CCTS, we introduce the definitions of some special functions
involving almost periodic functions, almost automorphic functions and their generaliza-
tions so that it is possible to study almost periodic problems, almost automorphic prob-
lems and their related general problems of dynamic equations on irregular time scales
which include quantum-like time scales and more.

3.1 Almost periodic functions on S-CCTS
In this subsection, we introduce the concepts of almost periodic functions and �-almost
periodic functions on S-CCTS based on the shift operators δ± of time scales. Throughout
the paper, we assume that X is a Banach space and D ⊆ X is an open set. In what follows,
we introduce the concepts of relatively dense sets attached with directions under S-CCTS.

Definition 3.1 On S-CCTS, the relatively dense sets attached with directions are defined
as follows:
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(a) Let T be a S-CCTS with the shift operator δ+ associated with the initial point
t0 ∈ T

∗. A subset S of R is called positive-direction relatively dense under the pair
(T∗, δ+) if there exists a number L ∈ Π+ (L > t0) such that [a, δ+(L, a)]T∗ ∩ S �= ∅ for
all a ∈ T

∗. The number |L| is called the inclusion length with respect to the pair
(T∗, δ+).

(b) Let T be a S-CCTS with the shift operator δ– associated with the initial point
t0 ∈ T

∗. A subset S of R is called positive-direction relatively dense under the pair
(T∗, δ–) if there exists a number L ∈ Π– (L < t0) such that [δ–(L, a), a]T∗ ∩ S �= ∅ for
all a ∈ T

∗. The number |L| is called the inclusion length with respect to the pair
(T∗, δ–).

(c) Let Π± /∈ {{t0},∅}. A subset S of R is called bi-direction relatively dense under the
pair (T∗, δ±) if there exists a number L ∈ Π± (L > t0) such that [a, δ+(L, a)]T∗ ∩ S �= ∅
and [δ–(L, a), a]T∗ ∩ S �= ∅ for all a ∈ T

∗. The number |L| is called the inclusion
length with respect to the pair (T∗, δ±).

Remark 3.1 From cases (a)–(c), let T1 =
⋃+∞

k=0[2k, 2k + 1], T2 =
⋃0

k=–∞[2k – 1, 2k] and T3 =
⋃+∞

k=–∞[2k, 2k + 1], then Π+
1 = {2n : n ∈ Z

+}, Π–
2 = {2n, n ∈ Z

–} and Π±
3 = {2n : n ∈ Z

+}. It
is obvious that δ+(p, t) = t + p for t ∈ T1, p ∈ Π+

1 ; δ–(p, t) = t + p for t ∈ T2, p ∈ Π–
2 ; and

δ±(p, t) = t ± p for t ∈ T3, p ∈ Π±
3 . If S ⊂ R is relatively dense attached with directions

according to Definition 3.1, then in case (a), we can take L = 2 ∈ Π+
1 such that [a, a + 2]T1 ∩

S �= ∅; in case (b), there exists L = –2 ∈ Π–
2 such that [a – 2, a]T2 ∩ S �= ∅; similarly, in case

(c), there exists L = 2 ∈ Π+
3 such that [a, a + 2]T3 ∩ S �= ∅ and [a – 2, a]T3 ∩ S �= ∅.

To introduce the concept of almost periodic functions under S-CCTS conveniently, we
introduce the following definition.

Definition 3.2 Let T be a S-CCTS, and we say (T, δ̄, Π̄ ) is compatible,
(i) if T is a positive-direction S-CCTS, then δ̄(s, t) = δ+(s, t) and Π̄ = Π+;

(ii) if T is a negative-direction S-CCTS, then δ̄(s, t) = δ–(s, t) and Π̄ = Π–;
(iii) if T is a bi-direction S-CCTS, then

δ̄(s, t) =

⎧
⎨

⎩
δ+(s, t), s ∈ Π+,

δ–(s, t), s ∈ Π–,
and Π̄ = Π±.

Remark 3.2 Because of the Remark 2.5, for convenience, we always choose a suitable Π̄

satisfying Π̄ ⊂ T
∗ such that δ̄(s, t) ∈ T, where (s, t) ∈ Π̄ ×T

∗.

Based on Definition 3.2, we introduce the concept of almost periodic functions on S-
CCTS as follows:

Definition 3.3 LetT be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible. A function f ∈
C(T × D,X) is called an almost periodic function with shift operators in t ∈ T uniformly
for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π̄ :

∥∥f
(
δ̄(τ , t), x

)
– f (t, x)

∥∥ < ε, for all t ∈ T
∗ and x ∈ S

}
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is a relatively dense set with respect to the pair (Π̄ , δ̄) for all ε > 0 and for each compact
subset S of D; that is, for any given ε > 0 and each compact subset S of D, there exists
a constant l(ε, S) > 0 such that each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S}
such that

∥∥f
(
δ̄(τ , t), x

)
– f (t, x)

∥∥ < ε, for all t ∈ T
∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

Remark 3.3 From Definitions 3.2 and 3.3, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction almost periodic

function;
(2) if T is a negative-direction S-CCTS, we say f is a negative-direction almost periodic

function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction almost periodic function.

Remark 3.4 We can easily obtain the classical almost periodic functions on R and Z from
Definition 3.3 by letting T = R or T = Z, where δ̄(τ , t) = δ±(τ , t) = t ± τ . Note that Defini-
tion 3.3 is also suitable for irregular time scales like qZ, (–q)Z and N

1
2±, etc.

Remark 3.5 We demonstrate some concrete examples of Definition 3.3 under different
irregular time scales.

(i) Let T = {qn : q > 1, n ∈ Z
–} ∪ {0, 1}, we take Π– = {qn : q > 1, n ∈ Z

–} ⊂ T
∗ and

δ̄(s, t) = δ–(s, t) = st, then Definition 3.3 turns into the following.
A function f ∈ C(T× D,X) is called a negative almost periodic function with shift

operator in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π– :

∥∥f (τ t, x) – f (t, x)
∥∥ < ε, for all t ∈ T

∗ and x ∈ S
}

is a relatively dense set with respect to the pair (Π–, δ–) for all ε > 0 and for each
compact subset S of D.

(ii) Let T = {√n : n ∈ Z
+}, we take Π+ = T

∗ = T and δ̄(s, t) = δ+(s, t) =
√

s2 + t2, then
Definition 3.3 turns into the following.

A function f ∈ C(T× D,X) is called a positive almost periodic function with shift
operator in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π+ :

∥∥f
(√

τ 2 + t2, x
)

– f (t, x)
∥∥ < ε, for all t ∈ T

∗ and x ∈ S
}

is a relatively dense set with respect to the pair (Π+, δ+) for all ε > 0 and for each
compact subset S of D.

Now, we will construct some examples of almost periodic functions on S-CCTS through
periodic functions on S-CCTS.

Example 3.6 Let T = R and Π = (0, +∞), and we define the following shift operators:

δ+(τ , t) =

⎧
⎨

⎩
τ t, if t ≥,

t/τ , if t < 0,
for τ ∈ [1, +∞),
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δ–(τ , t) =

⎧
⎨

⎩
t/τ , if t ≥ 0,

τ t, if t < 0,
for τ ∈ [1, +∞).

Under the shifts δ±, the function

fτ (t) = cos

(
ln |t|

ln(1/
√

τ )
π

)
, τ > 1 and t ∈ T

∗ = R\{0}

is periodic under shifts with the period τ = P2, P > 1 since

fτ
(
δ±(τ , t)

)

=

⎧
⎨

⎩
fτ (tP±2), if t ≥ 0,

fτ (t/P±2), if t < 0,

= cos

(
ln |t| ± 2 ln(1/P)

ln(1/P)
π

)

= cos

(
ln |t|

ln(1/P)
π ± 2π

)

= cos

(
ln |t|

ln(1/P)
π

)
= fτ (t).

Example 3.7 Based on the time scale in Example 3.6, consider the function

F̃(t) = cos

(
ln |√2t|
ln(1/P1)

π

)
+ cos

(
ln |√3t|
ln(1/P2)

π

)
,

where P1 �= P2, P1, P2 > 1 and t ∈ T
∗ = R\{0}. One can observe that F̃(t) is almost periodic

under shifts δ±. From Example 3.6, let

fP2
1
(
√

2t) = cos

(
ln |√2t|
ln(1/P1)

π

)
, fP2

2
(
√

3t) = cos

(
ln |√3t|
ln(1/P2)

π

)
,

we obtain F̃(t) = fP2
1
(
√

2t) + fP2
2
(
√

3t), and note that fP2
1

and fP2
2

are periodic with different
periods P2

1, P2
2, respectively (see Fig. 1).

We can extend Definition 3.3 to �-almost periodic functions.

Figure 1 Graph of

F̃(t) = cos( ln |√2t|
ln(1/P1)

π ) + cos( ln |√3t|
ln(1/P2)

π ) with P1 = 2,

P2 =
3√2
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Definition 3.4 LetT be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible, the shift δ̄(τ , t)
is �-differentiable in its second argument with rd-continuous bounded derivatives δ̄�(τ , t)
for all t ∈ T

∗. A function f ∈ C(T× D,X) is called a �-almost periodic function with shift
operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π̄ :

∥∥f
(
δ̄(τ , t), x

)
δ̄�(τ , t) – f (t, x)

∥∥ < ε, for all t ∈ T
∗ and x ∈ S

}

is a relatively dense set with respect to the pair (Π̄ , δ̄) for all ε > 0 and for each compact
subset S of D; that is, for any given ε > 0 and each compact subset S of D, there exists
a constant l(ε, S) > 0 such that each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S}
such that

∥∥f
(
δ̄(τ , t), x

)
δ̄�(τ , t) – f (t, x)

∥∥ < ε, for all t ∈ T
∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

Remark 3.8 From Definitions 3.2 and 3.4, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction �-almost

periodic function;
(2) if T is a negative-direction S-CCTS, we say f is a negative-direction �-almost

periodic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction �-almost periodic function.

In what follows, we will construct some examples of �-almost periodic functions on
S-CCTS through �-periodic functions on S-CCTS.

Example 3.9 For any a ∈ R\{0}, the real valued function f (t) = a/t defined on (
√

5)Z =
{(√5)n, n ∈ Z} is �-periodic under the shifts δ± with the period τ =

√
5 since

f
(
δ±(

√
5, t)

)
δ�
± (

√
5, t) =

a
(
√

5)±1t
(
√

5)±1 =
a
t

= f (t).

Example 3.10 On the time scale 5Z = {5n, n ∈ Z}, let a, b ∈ R\{0}, a �= b and

g1(t) =
a
t

, g2(t) =
b

(–1)log√
5 tt

, G̃(t) = g1(t) + g2(t) =
a
t

+
b

(–1)log√
5 tt

.

From Example 3.9, one observes that g1(δ±(
√

5, t))δ�± (
√

5, t) = g1(t) and we note that

g2
(
δ±(5, t)

)
δ�
± (5, t) =

b

(–1)log√
5(

√
5)±2t · (

√
5)±2t

· (
√

5)±2

=
b

(–1)±2+log√
5 t · t

=
b

(–1)log√
5 tt

= g2(t).

Hence, G̃(t) is a �-almost periodic function under the shifts δ±. Note that the periods of
g1 and g2 are completely different.
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Remark 3.11 We demonstrate a few concrete examples of Definition 3.4 under different
irregular time scales:

Let T = {(–q)n : q > 1, n ∈ Z} ∪ {0}, then Π± = {(–q)2n : q > 1, n ∈ Z
+} and T

∗ = {(–q)n :
q > 1, n ∈ Z}. Let

δ+(τ , t) =

⎧
⎨

⎩
st, t > 0,
t
s , t < 0,

δ–(τ , t) =

⎧
⎨

⎩

t
s , t > 0,

st, t < 0.

A function f ∈ C(T× D,X) is called a positive-direction �-almost periodic function with
shift operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π± :

∥∥f
(
δ+(τ , t), x

)
δ�

+ (τ , t) – f (t, x)
∥∥ < ε, for all t ∈ T

∗ and x ∈ S
}

is a relatively dense set with respect to the pair (Π±, δ+) for all ε > 0 and for each compact
subset S of D.

3.2 Stepanov almost periodic functions on S-CCTS
In this subsection, based on Sect. 3.1, we introduce the concept of Stepanov almost peri-
odic functions (Sp

L-almost periodic function) on S-CCTS.
For h > 0, denote

Ch :=
{

z ∈C : z �= –
1
h

}
, Rh :=

{
z ∈Ch : z ∈R and z > –

1
h

}
.

Let – π
h < ω ≤ π

h and denote the Hilger purely imaginary number ι̊ω = eiωh–1

h .
Throughout this subsection, we assume that (T, δ̄, Π̄ ) is compatible and Lp

loc(T,X) de-
notes the set of all pth power local-integrable functions in X (p ≥ 1), i.e.,

Lp
loc(T,X) :=

{
f :

∫

T1

∥∥f (t)
∥∥p

�t < ∞, where T1 is a closed subset of T
}

.

For Lp
loc(T,Cn), from the theory of Stepanov almost periodic functions introduced by

V.V. Stepanov (see [22]), we can introduce a class of functions Sp
L that are measurable and

summable together with their pth power (p ≥ 1) on every finite interval ̂[t, δ̄(L, t)]T∗ and
that can be approximated in the metric of the Stepanov space by finite sums

∑N
n=1 aneι̊λnt ,

where an ∈ Ch are Hilger complex coefficients and – π
h < λn ≤ π

h . The distance in the
Stepanov space is defined by the formula

DSp
L
[f , g] = sup

t∈T∗

[
1
|L|

∫

̂[t,δ̄(L,t)]T∗

∣∣f (s) – g(s)
∣∣p

�s
] 1

p
,

where

̂
[
t, δ̄(L, t)

]
T∗ =

⎧
⎨

⎩
[t, δ+(L, t)]T∗ if L ∈ Π+,

[δ–(L, t), t]T∗ if L ∈ Π–,
(6)

and f , g : T→R
n.
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Now, based on the above idea, we consider a Stepanov space on time scales whose dis-
tance is defined by the following:

DSp
L
[f , g] = sup

t∈T∗

[
1
|L|

∫

̂[t,δ̄(L,t)]T∗

∥∥f (s) – g(s)
∥∥p

�s
] 1

p
, (7)

where f , g : T →X and X is a Banach space. From (7), we can obtain the following defini-
tion.

Definition 3.5 We say f ∈ Lp
loc(T,X) is Sp

L-bounded if

‖f ‖Sp
L

= sup
t∈T∗

[
1
|L|

∫

̂[t,δ̄(L,t)]T∗

∥∥f (s)
∥∥p

�s
] 1

p
< ∞,

where ̂[t, δ̄(L, t)]T∗ is defined in (6). Denote BSp
L(T,X) the set of all Sp

L-bounded functions
from T to X.

Remark 3.12 According to Definition 3.5, let T = {√n : n ∈ N}, then we have L = 1 and
δ̄(L, t) = δ+(L, t) =

√
t2 + 1, we say f ∈ Lp

loc(T,X) is Sp
L-bounded if

‖f ‖Sp
L

= sup
t∈T

[∫ √
t2+1

t

∥∥f (s)
∥∥p

�s
] 1

p
< ∞.

Now, we introduce the concept of Sp
L-almost periodic functions on S-CCTS.

Definition 3.6 A function f ∈ Lp
loc(T× D,X) is called a Sp

L-almost periodic function with
shift operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π̄ :

∥∥f
(
δ̄(τ , t), x

)
– f (t, x)

∥∥
Sp

L
< ε, for all t ∈ T

∗ and x ∈ S
}

is a relatively dense set with respect to the pair (Π̄ , δ̄) for all ε > 0 and for each compact
subset S of D; that is, for any given ε > 0 and each compact subset S of D, there exists
a constant l(ε, S) > 0 such that each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S}
such that

∥∥f
(
δ̄(τ , t), x

)
– f (t, x)

∥∥
Sp

L
< ε, for all t ∈ T

∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S},
where

∥∥f
(
δ̄(τ , t), x

)
– f (t, x)

∥∥
Sp

L
= sup

t∈T∗

[
1
|L|

∫

̂[t,δ̄(L,t)]T∗

∥∥f
(
δ̄(τ , s), x

)
– f (s, x)

∥∥p
�s

] 1
p

.

Remark 3.13 From Definitions 3.2 and 3.6, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction Sp

L-almost
periodic function;
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(2) if T is a negative-direction S-CCTS, we say f is a negative-direction Sp
L-almost

periodic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction Sp

L-almost periodic function.

Remark 3.14 Note that Definition 3.6 is a general definition of an Sp
L-almost periodic func-

tion on any arbitrary closed subset of R. One can obtain the classical Sp
L-almost periodic

functions easily on R and Z from Definition 3.6 by letting T = R or T = Z, where |L| = 1,
δ̄(τ , t) = δ±(τ , t) = t ± τ . We emphasize that Definition 3.6 is also suitable for irregular
time scales like qZ, (–q)Z and N

1
2±, etc. Therefore, it is new to consider Sp

L-almost periodic
problems for dynamic equations on time scales under Definition 3.6.

Remark 3.15 Let T = qZ, then we have Π± = {qn : q > 1, n ∈ Z
+} and δ+(τ , t) = τ t, δ–(τ , t) =

t/τ , τ ∈ Π±. Then a function f ∈ Lp
loc(T × D,X) is called a positive-direction Sp

L-almost
periodic function with shift operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π± :

∥∥f (τ t, x) – f (t, x)
∥∥

Sp
L

< ε, for all t ∈ T
∗ and x ∈ S

}

is a relatively dense set with respect to the pair (Π±, δ+) for all ε > 0 and for each compact
subset S of D, where

∥∥f (τ t, x) – f (t, x)
∥∥

Sp
L

= sup
t∈T∗

[
1
q

∫ qt

t

∥∥f (τ s, x) – f (s, x)
∥∥p

�s
] 1

p
.

We can extend Definition 3.6 to �-Sp
L-almost periodic functions.

Definition 3.7 LetT be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible, the shift δ̄(τ , t)
is �-differentiable in its second argument with rd-continuous bounded derivatives δ̄�(τ , t)
for all t ∈ T

∗. A function f ∈ C(T × D,X) is called a �-Sp
L-almost periodic function with

shift operators in t ∈ T uniformly for x ∈ D if the ε-shift set of f

E{ε, f , S} =
{
τ ∈ Π̄ :

∥∥f
(
δ̄(τ , t), x

)
δ̄�(τ , t) – f (t, x)

∥∥
Sp

L
< ε, for all t ∈ T

∗ and x ∈ S
}

is a relatively dense set with respect to the pair (Π̄ , δ̄) for all ε > 0 and for each compact
subset S of D; that is, for any given ε > 0 and each compact subset S of D, there exists
a constant l(ε, S) > 0 such that each interval of length l(ε, S) contains a τ (ε, S) ∈ E{ε, f , S}
such that

∥∥f
(
δ̄(τ , t), x

)
δ̄�(τ , t) – f (t, x)

∥∥
Sp

L
< ε, for all t ∈ T

∗ and x ∈ S.

Now τ is called the ε-shift number of f and l(ε, S) is called the inclusion length of E{ε, f , S}.

Remark 3.16 From Definitions 3.2 and 3.7, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction �-Sp

L-almost
periodic function;

(2) if T is a negative-direction S-CCTS, we say f is a negative-direction �-Sp
L-almost

periodic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction �-Sp

L-almost periodic
function.
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3.3 Almost automorphic functions on S-CCTS
In this subsection, we introduce the concepts of almost automorphic functions and �-
almost automorphic functions on S-CCTS.

Definition 3.8 Let T be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible.
(i) Let f : T→X be a bounded continuous function. We say that f is almost

automorphic if, from every sequence {sn} ⊂ Π̄ , we can extract a subsequence
{τn}∞n=1 such that

g(t) = lim
n→∞ f

(
δ̄(τn, t)

)
, (8)

is well defined for each t ∈ T
∗. Denote by AAδ̄(T,X) the set of all such functions.

(ii) A continuous function f : T×X→X is said to be almost automorphic if f (t, x) is
almost automorphic in t ∈ T

∗ uniformly in x ∈ B, where B is any bounded subset of
X. Denote by AAδ̄(T×X,X) the set of all such functions.

Remark 3.17 From Definitions 3.2 and 3.8, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction almost

automorphic function;
(2) if T is a negative-direction S-CCTS, we say f is a negative-direction almost

automorphic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction almost automorphic

function.

Remark 3.18 In (3) from Remark 3.17, if T is a bi-direction S-CCTS, then, by (8), from
every sequence {sn} ⊂ Π±, we can extract a subsequence {τn}∞n=1 such that

g(t) = lim
n→∞ f

(
δ+(τn, t)

)
(9)

is well defined for each t ∈ T
∗. We can also have

lim
n→∞ g

(
δ–(τn, t)

)
= f (t)

is also well defined for each t ∈ T
∗.

In fact, if Π± /∈ {{t0},∅}, according to (9), we have

lim
n→∞

[
g(t) – f

(
δ+(τn, t)

)]
= 0 (10)

is well defined for each t ∈ T
∗, then, for each s ∈ T

∗, let t = δ–(τn, s) ∈ T
∗(n ∈ N), we can

obtain

lim
n→∞

[
g
(
δ–(τn, s)

)
– f (s)

]
= 0 (11)

is also well defined for each s ∈ T
∗. In fact from (10), for any ε > 0, there exists N1 > 0 such

that n > N1 implies |g(t) – f (δ+(τN1 , t))| < ε for each t ∈ T
∗. Let s = δ+(τN1 , t), and we obtain

|g(δ–(τN1 , s)) – f (s)| < ε. For Π /∈ {{t0},∅}, we have
{

s = δ+(τN1 , t) : t ∈ T
∗, τN1 ∈ Π+}

=
{

t : t ∈ T
∗},

which shows that |g(δ–(τN1 , s)) – f (s)| < ε for each s ∈ T
∗, i.e., (11) holds.
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Figure 2 Graph of F̂(t) = 1

cos( ln |√2t|
ln(1/P1)

π )+cos( ln |√3t|
ln(1/P2)

π )

with P1 = 2, P2 =
3√2

Example 3.19 Recall Example 3.7, and consider the function

F̂(t) = 1
/[

cos

(
ln |√2t|
ln(1/P1)

π

)
+ cos

(
ln |√3t|
ln(1/P2)

π

)]
,

where P1 �= P2, P1, P2 > 1 and t ∈ T
∗ = R\{0}. One can observe that F̂(t) is almost automor-

phic under the shift operators. From Example 3.7, we obtain F̂(t) = 1
fP2

1
(
√

2t)+fP2
2

(
√

3t) (see

Fig. 2).

Remark 3.20 Let T = {±√
n : n ∈ N}, then Π± = {√n : n ∈ Z

+}, according to Definition 3.8,
we say that f is a bi-direction almost automorphic if, from every sequence {sn} ⊂ Π±, we
can extract a subsequence {τn}∞n=1 such that

g(t) = lim
n→∞ f

(√
t2 + τ 2

n

)

and

lim
n→∞ g

(√
t2 – τ 2

n

)
= f (t)

are well defined for each t ∈ T
∗.

We can extend Definition 3.8 to �-almost automorphic functions.

Definition 3.9 Let T be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible.
(i) Let f : T→X be a bounded continuous function and the shift δ̄(τ , t) is

�-differentiable with rd-continuous bounded derivatives δ̄�(τ , t) for all t ∈ T
∗. We

say that f is �-almost automorphic under shifts if, from every sequence {sn} ⊂ Π̄ ,
we can extract a subsequence {τn}∞n=1 such that

g(t) = lim
n→∞ f

(
δ̄(τn, t)

)
δ̄�(τn, t),

is well defined for each t ∈ T
∗. Denote by � – AAδ̄(T,X) the set of all such functions.

(ii) A continuous function f : T× D →X is said to be �-almost automorphic if f (t, x) is
�-almost automorphic in t ∈ T

∗ uniformly in x ∈ D. Denote by � – AAδ̄(T× D,X)
the set of all such functions.
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Remark 3.21 From Definitions 3.2 and 3.9, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction �-almost

automorphic function;
(2) if T is a negative-direction S-CCTS, we say f is a negative-direction �-almost

automorphic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction �-almost automorphic

function.

Remark 3.22 By (3) of Remark 3.21 and a similar discussion in Remark 3.18, we can obtain
the following definition.

Let T be a bi-direction S-CCTS under shifts δ±. Assume f : T → X is a bounded con-
tinuous function and the shifts δ±(τ , t) are �-differentiable with rd-continuous bounded
derivatives δ�± (τ , t) for all t ∈ T

∗. We say that f is bi-direction �-almost automorphic if,
from every sequence {sn} ⊂ Π±, we can extract a subsequence {τn}∞n=1 such that

g(t) = lim
n→∞ f

(
δ+(τn, t)

)
δ�

+ (τn, t),

is well defined for each t ∈ T
∗ and

lim
n→∞ g

(
δ–(τn, t)

)
δ�

– (τn, t) = f (t)

for each t ∈ T
∗.

Example 3.23 Recall Example 3.10, and on the time scale (
√

5)Z = {(√5)n, n ∈ Z}, consider
the following function:

Ĝ(t) = 1
/[

a
t

+
b

(–1)log√
5 tt

]
, a, b ∈R\{0}, a �= b.

One can observe that Ĝ(t) is �-almost automorphic under the shifts δ±. From Exam-
ple 3.10, we obtain Ĝ(t) = 1

G̃(t) .

3.4 Stepanov almost automorphic functions on S-CCTS
In this subsection, by considering the Stepanov space on time scales with the distance (7),
we introduce the concept of Stepanov almost automorphic functions (Sp

L-almost automor-
phic functions) on S-CCTS.

Definition 3.10 Let T be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible.
(i) We say f ∈ Lp

loc(T,X) Sp
L-almost automorphic function under shifts operators if,

from every sequence {sn} ⊂ Π̄ , we can extract a subsequence {τn}∞n=1 such that

lim
n→∞

(
1
|L|

∫

̂[t,δ̄(L,t)]T∗

∥∥f
(
δ̄(τn, s)

)
– g(s)

∥∥p
�s

) 1
p

= 0, (12)

is well defined for each t ∈ T
∗. Denote by Sp

LAAδ̄(T,X) the set of all such functions.
(ii) A continuous function f ∈ Lp

loc(T× D,X) is said to be almost automorphic if f (t, x)
is almost automorphic in t ∈ T

∗ uniformly in x ∈ D. Denote by Sp
LAAδ̄(T× D,X) the

set of all such functions.
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Remark 3.24 From Definitions 3.2 and 3.10, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction Sp

L-almost
automorphic function;

(2) if T is a negative-direction S-CCTS, we say f is a negative-direction Sp
L-almost

automorphic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction Sp

L-almost automorphic
function.

Remark 3.25 By (3) of Remark 3.24 and a similar discussion in Remark 3.18, we can obtain
the following definition.

Let T be a bi-direction S-CCTS under shifts δ± and f ∈ Lp
loc(T,X). We say that f is bi-

direction Sp
L-almost automorphic if, from every sequence {sn} ⊂ Π±, we can extract a sub-

sequence {τn}∞n=1 such that

lim
n→∞

(
1
|L|

∫ δ+(L,t)

t

∥∥f
(
δ+(τn, s)

)
– g(s)

∥∥p
�s

) 1
p

= 0

is well defined for each t ∈ T
∗ and

lim
n→∞

(
1
|L|

∫ t

δ–(L,t)

∥∥g
(
δ–(τn, s)

)
– f (s)

∥∥p
�s

) 1
p

= 0

for each t ∈ T
∗.

Remark 3.26 Let T = qZ, then Π± = {qn, q > 1, n ∈ Z
+}. We say that f is bi-direction Sp

L-
almost automorphic if, from every sequence {sn} ⊂ Π±, we can extract a subsequence
{τn}∞n=1 such that

lim
n→∞

(
1
q

∫ qt

t

∥∥f (τns) – g(s)
∥∥p

�s
) 1

p
= 0

is well defined for each t ∈ T
∗ and

lim
n→∞

(
1
q

∫ t

t
q

∥∥g(s/τn) – f (s)
∥∥p

�s
) 1

p
= 0

for each t ∈ T
∗.

We can extend Definition 3.10 to �-Sp
L-almost automorphic functions.

Definition 3.11 Let T be a S-CCTS under shifts and (T, δ̄, Π̄ ) be compatible.
(i) Let f ∈ Lp

loc(T,X) and the shift δ̄(τ , t) be �-differentiable with rd-continuous
bounded derivatives δ̄�(τ , t) for all t ∈ T

∗. We say that f is �-Sp
L-almost

automorphic under shifts if, from every sequence {sn} ⊂ Π̄ , we can extract a
subsequence {τn}∞n=1 such that

lim
n→∞

(
1
|L|

∫

̂[t,δ̄(L,t)]T∗

∥∥f
(
δ̄(τn, s)

)
δ̄�(τn, s) – g(s)

∥∥p
�s

) 1
p

= 0
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is well defined for each t ∈ T
∗. Denote by � – Sp

LAAδ̄(T,X) the set of all such
functions.

(ii) A continuous function f ∈ Lp
loc(T× D,X) is said to be �-Sp

L-almost automorphic if
f (t, x) is �-Sp

L-almost automorphic in t ∈ T
∗ uniformly in x ∈ D. Denote by

� – Sp
LAAδ̄(T× D,X) the set of all such functions.

Remark 3.27 From Definitions 3.2 and 3.11, we obtain:
(1) if T is a positive-direction S-CCTS, we say f is a positive-direction �-Sp

L-almost
automorphic function;

(2) if T is a negative-direction S-CCTS, we say f is a negative-direction �-Sp
L-almost

automorphic function;
(3) if T is a bi-direction S-CCTS, we say f is a bi-direction �-Sp

L-almost automorphic
function.

Remark 3.28 By (3) from Remark 3.24 and a similar discussion as in Remark 3.18, we can
obtain the following definition.

Let T be a bi-direction S-CCTS under shifts δ±. Assume f ∈ Lp
loc(T,X) and the shift

δ±(τ , t) is �-differentiable with rd-continuous bounded derivatives δ�± (τ , t) for all t ∈ T
∗.

We say that f is bi-direction �-Sp
L-almost automorphic if, from every sequence {sn} ⊂ Π±,

we can extract a subsequence {τn}∞n=1 such that

lim
n→∞

(
1
|L|

∫ δ+(L,t)

t

∥∥f
(
δ+(τn, s)

)
δ�

+ (τn, s) – g(s)
∥∥p

�s
) 1

p
= 0

is well defined for each t ∈ T
∗ and

lim
n→∞

(
1
|L|

∫ t

δ–(L,t)

∥∥g
(
δ–(τn, s)

)
δ�

– (τn, s) – f (s)
∥∥p

�s
) 1

p
= 0

for each t ∈ T
∗.

Remark 3.29 Let T = qZ, then Π± = {qn, q > 1, n ∈ Z
+}. We say that f is bi-direction �-

Sp
L-almost automorphic if, from every sequence {sn} ⊂ Π±, we can extract a subsequence

{τn}∞n=1 such that

lim
n→∞

(
1
q

∫ qt

t

∥∥f (τns)τn – g(s)
∥∥p

�s
) 1

p
= 0

is well defined for each t ∈ T
∗ and

lim
n→∞

(
1
q

∫ t

t
q

∥∥g(s/τn)(1/τn) – f (s)
∥∥p

�s
) 1

p
= 0

for each t ∈ T
∗.

4 Conclusion
In the paper, we introduced the concept of S-CCTS to guarantee the closedness of time
scales under translational and non-translational shifts. Based on this, we introduced sev-



Wang et al. Advances in Difference Equations        (2018) 2018:429 Page 18 of 19

eral concepts of some special functions arising from dynamic equations including al-
most periodic functions, almost automorphic functions and their generalizations in the
Stepanov sense. The concepts are suitable for irregular time scales like qZ, (–q)Z and ±N

1
2 ,

etc. Properties of these functions and their application to dynamic equations will be con-
sidered in future work.
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