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Abstract
This paper is devoted to an investigation of the multiple positive solutions to a class
of infinite-point boundary value problems of nonlinear fractional differential
equations coupled with the p-Laplacian operators and infinite-point boundary value
conditions. By means of the properties of Green’s function and fixed point theorems,
we establish the suitable criteria to guarantee the existence of positive solutions.
Finally, an example is given in order to illustrate the main results.
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1 Introduction
With the advance of technology, researchers are not satisfied with the limitations of the in-
teger order calculus anymore; therefore, fractional calculus—the expansion and extension
of the integer one—is brought into the public. There is no doubt the study on nonlinear
fractional differential equations has become an issue of focus and is widely being used in
many fields, such as physics [1, 2], biology [3], energy [4], chemical engineering [5], phar-
macokinetics [6].

Based on practical application, researchers established lots of fractional differential
equation models, so how to get the solutions to the equations is a big challenge to them.
As is well known, it is difficult to give the exact solution, so giving the properties of the
solutions is a significant point.

A great number of researchers are focused on the existence of solutions for linear or non-
linear FODE with different boundary conditions. Take Zhang [7] for example, one studied
the existence of minimal non-negative solution for a class of nonlinear fractional integro-
differential equations by applying the cone theory and the monotone iterative technique:

⎧
⎨

⎩

Dα
0+ x(t) + f (t, x(t), Tx(t), Sx(t)) = 0, t ∈ [0,∞),

x(0) = 0, Dα–1
0+ x(∞) = x∗,

where

(Tx)(t) =
∫ t

0
k(t, s)x(s) ds, (Sx)(t) =

∫ ∞

0
h(t, s)x(s) ds,
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and 1 < α ≤ 2, Dα
0+ is the Riemann–Liouville derivative, f , k, h are continuous func-

tions.
Wang [8] considered the iterative positive solutions for a class of nonlocal fractional

differential equations with nonlocal Hadamard integral and discrete boundary conditions
by the monotone iterative method:

⎧
⎪⎪⎨

⎪⎪⎩

HDαx(t) + δ(t)f (t, x(t)) = 0, t ∈ (1,∞),

x(1) = x′(1) = 0,
HDα–1x(∞) = aHIβx(ξ ) + b

∑m–2
i=1 cix(ηi),

where 2 < α ≤ 3, a, b are real constants, ci (i = 1, 2, . . . , , m – 2) are positive real constants,
1 < ξ < η1 < η2 < · · · < ηm–2 < +∞, and HDα is the Hadamard fractional derivative.

As for Guo [9], they investigated the existence of solutions for the following infinite-
point BVP with Caputo fractional derivative by Avery–Peterson’s fixed point theorem:

⎧
⎨

⎩

cDαx(t) + f (t, x(t), x′(t)) = 0, 0 < t < 1,

x(0) = x′′ (0) = 0, x′(1) =
∑∞

j=1 ζjx(ξj),

where 2 < α ≤ 3, ζj ≥ 0, 0 < ξ1 < ξ2 < · · · < ξi < · · · < 1, and
∑∞

i=1 ζiξi < 1.
Recently, some scientists have become interested in the study of the fractional differen-

tial equations with p-Laplacian operators [10–13]. For example, Xiping Liu [12, 13] ob-
tained some new results on the existence of positive solutions for the four-point BVP with
mixed fractional derivatives and p-Laplacian operator by a new method of lower and up-
per solutions which is based on the monotone iterative technique:

⎧
⎪⎪⎨

⎪⎪⎩

Dβ

0+ (φp(CDα
0+ x(t))) = f (t, x(t),C Dα

0+ x(t)), t ∈ (0, 1),
cDα

0+ x(0) = x′(0) = 0,

x(1) = r1x(η), CDα
0+ x(1) = rC

2 Dα
0+ x(ξ ),

where 1 < α,β ≤ 2, r1, r2 ≥ 0, f ∈ C([0, 1] × [0, +∞) × (–∞, 0], [0, +∞)), cDα
0+ is the Caputo

derivative, Dα
0+ is the Riemann–Liouville derivative, φp is the p-Laplacian operator which

is defined as φp(s) = |s|p–2s(p > 1),φq is the inverse function of φp and 1
p + 1

q = 1.
In this paper, we consider a class of nonlinear fractional differential equations coupled

with the p-Laplacian operator and infinite-point boundary value conditions:

⎧
⎪⎪⎨

⎪⎪⎩

–Dβ

0+ (φp(Dα
0+ x(t) – λx(t))) = f (t, x(t)), t ∈ (0, 1],

limt→0+ t1–αx(t) =
∑∞

i=1 μix(ξi),

limt→0+ t2–β(φp(Dα
0+ x(t) – λx(t))) = φp(Dα

0+ x(1) – λx(1)) = 0,

(1)

where 0 < α ≤ 1, 1 < β ≤ 2,λ < 0,μi ≥ 0, 0 < ξi < 1, i ∈ R
+,

∑∞
i=1 μiξ

α–1
i < 1, f ∈ C([0, 1] ×

[0, +∞), [0, +∞)),φp is the p-Laplacian operator and Dα , Dβ are the Riemann–Liouville
fractional derivatives.

To the best of our knowledge, few researchers studied fractional differential equations
with p-Laplacian by the Riemann–Liouville derivative; this condition coupled with values
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at infinite number of points is not covered in the previous situations, and it is more general
for the fractional differential equation models. By means of the properties of Green’s func-
tion, Krasnosel’skii fixed point theorem, the corollary of Krasnosel’skii fixed point theorem
and Avery–Peterson fixed point theorem, we establish the suitable criteria to warrant the
existence of the positive solutions for the BVP (1).

The rest of the paper is organized as follows. In Sect. 2, we list several basic definitions
and lemmas to prepare for the further study in this paper. On top of that, the main result
is showed in Sect. 3. In Sect. 4, we give an example to illustrate our main results.

2 Preliminaries
As is well known, C[a, b] is the Banach space of all continuous real functions defined on
[a, b] with the norm ‖x‖= supt∈[a,b]|x(t)| and L1[a, b] is for the Lebesgue integrable real
functions defined on [a, b]. In this paper, we consider the following space:

C1–α[0, 1] =
{

x(t) : t1–αx(t) ∈ C[0, 1], 0 < α ≤ 1
}

,

endowed with its norm ‖x‖1–α= supt∈[0,1] t1–α|x(t)|. Obviously, C1–α[0, 1] is also a Banach
space; moreover, C1–α[0, 1] ⊂ L1[0, 1].

Definition 2.1 ([14]) Let α > 0, the Riemann–Liouville fractional integral of the function
f is defined by

Iα
0+ f (t) =

1
Γ (α)

∫ t

0
(t – s)α–1f (s) ds.

Definition 2.2 ([14]) Let α > 0, the Riemann–Liouville fractional derivative of the func-
tion f is defined by

Dα
0+ f (t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1f (s) ds,

where n is the smallest integer greater than or equal to α.

Definition 2.3 ([15]) The two-parameter Mittag–Leffler function is defined by

Eα,β (ζ ) =
∞∑

k=0

ζ k

Γ (αk + β)
, α,β > 0, ζ ∈R.

Definition 2.4 ([16]) If the map T satisfies

T
(
ax + (1 – a)y

) ≤ (≥)aT(x) + (1 – a)T(y), x, y ∈ P, a ∈ [0, 1],

then T is called a non-negative convex (concave) operator on a cone P.

Lemma 2.1 ([17]) Assume α > 0, u ∈ C(0, 1) ∩ L(0, 1), then

Iα
0+ Dα

0+ f (t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈R, i = 1, 2, . . . , n with n is the smallest integer greater than or equal to α.
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Lemma 2.2 ([18]) Assume α ∈ (0, 1],β > 0,λ is a negative constant, then the following con-
clusions hold:

(i) limt→0+ Eα,β(λtα) = 1
Γ (β) ,

(ii) Eα,α(λtα) > 0 for ∀t ∈ [0, +∞),
(iii) Eα,α(λtα) is decreasing in t for ∀t ∈ (0, +∞),
(iv) Eα,α(λtα) ≤ Eα,α+1(λtα) for ∀t ∈ (0, +∞).

Lemma 2.3 Assume σ (t) ∈ C(0, 1], 0 < α ≤ 1, then the problem

⎧
⎨

⎩

Dα
0+x(t) – λx(t) = σ (t), t ∈ (0, 1],

limt→0+ t1–αx(t) =
∑∞

i=1 μix(ξi),
(2)

has an unique solution

x(t) =
∫ 1

0
G(t, s)σ (s) ds, (3)

where

G(t, s) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Γ (α)Eα,α (λtα )
∑

s≤ξi μi(ξi–s)α–1Eα,α (λ(ξi–s)α )

t1–α (1–Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α (λξα

i ))
+ Eα,α (λ(t–α)α )

(t–s)1–α ,

0 ≤ s < t ≤ 1,
Γ (α)Eα,α (λtα )

∑
s≤ξi μi(ξi–s)α–1Eα,α (λ(ξi–s)α )

t1–α (1–Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α (λξα

i )) ,

0 < t ≤ s ≤ 1.

(4)

Proof According to ([19]), if limt→0+ t(1–α)x(t) = c0, we can easily get

x(t) = c0Γ (α)tα–1Eα,α
(
λtα

)
+

∫ t

0
(t – s)α–1Eα,α

(
λ(t – α)α

)
σ (s) ds.

In particular, if we choose c0 =
∑∞

i=1 μix(ξi), by simple calculation,

c0 =
∑∞

i=1 μi
∫ ξi

0 (ξi – s)α–1Eα,α(λ(ξi – s)α)σ (s) ds
1 – Γ (α)

∑∞
i=1 μiξ

α–1
i Eα,α(λξα

i )
.

Hence,

x(t) =
Γ (α)tα–1

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )

×
∞∑

i=1

μiEα,α
(
λtα

)
∫ ξi

0
(ξi – s)α–1Eα,α

(
λ(ξi – s)α

)
σ (s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
λ(t – α)α

)
σ (s) ds

=
∫ 1

0

Γ (α)Eα,α(λtα)
∑

s≤ξi
μi(ξi – s)α–1Eα,α(λ(ξi – s)α)

t1–α(1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i ))
σ (s) ds

+
∫ t

0

Eα,α(λ(t – α)α)
(t – s)1–α

σ (s) ds
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=
∫ 1

0
G(t, s)σ (s) ds, (5)

where G(t, s) is given by (4).
The proof is finished. �

Lemma 2.4 Assume α ∈ (0, 1],λ is a negative constant, then
(i) G(t, s) > 0 for t ∈ (0, 1], s ∈ [0, 1),

(ii) t1–αG(t, s) ≥ Γ (α)(Eα,α (λ))2 ∑
s≤ξi μiξ

α–1
i

1–Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α (λ) � m for t, s ∈ [0, 1],

(iii) mint∈[0,1] t1–αG(t, s) ≥ ρ maxt∈[0,1] t1–αG(t, s) for ρ ∈ (0, 1),
(iv) t1–α

∫ 1
0 G(t, s) ds ≤ (Γ (α)(1 –

∑∞
i=0 μiξ

α–1
i ))–1 � n for t, s ∈ [0, 1].

Proof (i) By simple calculation,

1 – Γ (α)
∞∑

i=1

μiξ
α–1
i Eα,α

(
λξα

i
) ≥ 1 –

∞∑

i=1

μiξ
α–1
i > 0.

In addition, according to Lemma 2.2, we can easily see that (i) holds.
(ii) Since (t – s)α–1Eα,α(λ(t – s)α) ≥ 0 for all 0 ≤ s < t ≤ 1,

t1–αG(t, s) ≥ Γ (α)Eα,α(λtα)
∑

s≤ξi
μi(ξi – s)α–1Eα,α(λ(ξi – s)α)

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )

≥ Γ (α)(Eα,α(λ))2 ∑
s≤ξi

μiξ
α–1
i

1 – Γ (α)Eα,α(λ)
∑∞

i=1 μiξ
α–1
i

� m > 0.

(iii) As t1–αG(t, s) is increasing in s and decreasing in t

max
t∈[0,1]

t1–αG(t, s) =
∑

s≤ξi
μi(ξi – s)α–1Eα,α(λ(ξi – s)α)

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )
.

According to Lemma 2.4(i), we have

min
t∈[0,1]

t1–αG(t, s) ≥ Γ (α)Eα,α(λ) max
t∈[0,1]

t1–αG(t, s)

� ρ max
t∈[0,1]

t1–αG(t, s),

where ρ = Γ (α)Eα,α(λ), so 0 < ρ < 1.
(iv) We divide this proof into two parts:
Part 1: For 0 ≤ s ≤ t ≤ 1,

t1–α

∫ 1

0
G(t, s) ds =

∫ 1

0

Γ (α)Eα,α(λtα)
∑

s≤ξi
μi(ξi – s)α–1Eα,α(λ(ξi – s)α)

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )
ds

+
∫ t

0
t1–α(t – s)α–1Eα,α

(
λ(t – α)α

)
ds

≤ Γ (α)Eα,α(λtα)
∑∞

i=1 μiξ
α–1
i

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )
+ tEα,α+1

(
λtα

)
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≤
∑∞

i=1 μiξ
α–1
i

Γ (α)(1 –
∑∞

i=1 μiξ
α–1
i )

+
1

Γ (α)

=
1

Γ (α)(1 –
∑∞

i=1 μiξ
α–1
i )

� n.

Part 2: For 0 ≤ t ≤ s ≤ 1,

t1–α

∫ 1

0
G(t, s) ds =

∫ 1

0

Γ (α)Eα,α(λtα)
∑

s≤ξi
μi(ξi – s)α–1Eα,α(λ(ξi – s)α)

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )
ds

≤ Γ (α)Eα,α(λtα)
∑∞

i=1 μiξ
α–1
i

1 – Γ (α)
∑∞

i=1 μiξ
α–1
i Eα,α(λξα

i )

≤
∑∞

i=1 μiξ
α–1
i

Γ (α)(1 –
∑∞

i=1 μiξ
α–1
i )

<
1

Γ (α)(1 –
∑∞

i=1 μiξ
α–1
i )

� n.

The proof is completed. �

Lemma 2.5 Assume h(t) ∈ C(0, 1], 1 < β ≤ 2, then the problem

⎧
⎨

⎩

–Dβ
0+u(t) = h(t), t ∈ (0, 1],

limt→0+ t2–βu(t) = u(1) = 0,
(6)

has an unique solution

u(t) =
∫ 1

0
H(t, s)h(s) ds, (7)

where

H(t, s) =
1

Γ (β)

⎧
⎨

⎩

tβ–1(1 – s)β–1 – (t – s)β–1, 0 ≤ s < t ≤ 1,

tβ–1(1 – s)β–1, 0 < t ≤ s ≤ 1.
(8)

Proof According to Lemma 2.1, we can easily get

u(t) = –Iβ

0+ h(t) + c1tβ–1 + c2tβ–2,

by the condition (6), we obtain

c1 = Iβ

0+ h(1), c2 = 0.

Hence,

u(t) =
tβ–1

Γ (β)

∫ 1

0
(1 – s)β–1h(s) ds –

1
Γ (β)

∫ t

0
(t – s)β–1h(s) ds =

∫ 1

0
H(t, s)h(s) ds,

where H(t, s) is given by (8).
The proof is finished. �
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Lemma 2.6 ([20]) Assume β ∈ (1, 2], then
(i) H(t, s) > 0 for t ∈ (0, 1], s ∈ [0, 1),

(ii) H(t, s) = H(1 – s, 1 – t) for t, s ∈ (0, 1),
(iii) tβ–1(1 – t)s(1 – s)β–1 ≤ Γ (β)H(t, s) ≤ (β – 1)s(1 – s)β–1 for t ∈ (0, 1], s ∈ [0, 1),
(iv) tβ–1(1 – t)s(1 – s)β–1 ≤ Γ (β)H(t, s) ≤ (β – 1)(1 – t)tβ–1 for t ∈ (0, 1], s ∈ [0, 1).

Lemma 2.7 Suppose h(t) = f (t, x(t)),σ (t) = φq(u(t)) hold, then we obtain the unique solu-
tion of BVP (1):

x(t) =
∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds. (9)

3 Main results
In this section, we establish the related condition to warrant the existence of the multiple
positive solutions for BVP (1) by means of the properties of Green’s function we proved
in the last section and the well-known Krasnosel’skii fixed point theorem, the corollary of
Krasnosel’skii fixed point theorem and the Avery–Peterson fixed point theorem.

Let E = {x(t) : x(t) ∈ C1–α[0, 1]}. Define P ⊂ E,

P =
{

x(t) ∈ E : x(t) ≥ 0, min
t∈[0,1]

t1–αx(t) ≥ ρ max
t∈[0,1]

t1–αx(t)
}

,

where ρ is defined in Lemma 2.4.
Suppose T : P → E is the operator defined by

Tx(t) :=
∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds.

Throughout this section, suppose the following assumption holds:
(H0) |f (t, x)|≤ M.

Lemma 3.1 T : P → P is a completely continuous operator.

Proof Step 1: We show that T(P) ⊆ P.
For ∀x ∈ P, since the continuity of G(t, s), H(t, s), f (t, x(t)), it is easy to get t1–αTx(t) ∈

C[0, 1]. According to Lemma 2.4 and Lemma 2.6, we obtain G(t, s), H(t, s) ≥ 0, thanks to
f (t, x(t)) being non-negative, therefore, Tx(t) ≥ 0. Furthermore,

min
t∈[0,1]

t1–αTx(t) = min
t∈[0,1]

t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

=
∫ 1

0
min

t∈[0,1]
t1–αG(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≥
∫ 1

0
ρ max

t∈[0,1]
t1–αG(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

= ρ max
t∈[0,1]

Tx(t).

Hence, T(P) ⊆ P.
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Step 2: We will prove that T is uniformly bounded. We have

∥
∥Tx(t)

∥
∥

1–α
=

∣
∣
∣
∣t

1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣t1–αG(t, s)

∣
∣φq

(∫ 1

0

∣
∣H(s, τ )

∣
∣
∣
∣f

(
τ , x(τ )

)∣
∣dτ

)

ds

< nφq

(
(β – 1)M

Γ (β)

)

= nφq

(
M

Γ (β – 1)

)

� M1.

Therefore, ‖Tx(t)‖1–α< M1, which means T is uniformly bounded.
Step 3: We will give the proof of the equicontinuity of T .
Obviously, t1–αG(t, s) is uniformly continuous in the interval [0, 1] × [0, 1]. Therefore,

for all ε > 0, there exists δ > 0, without loss of generality, we choose t1, t2 ∈ [0, 1], when
|t1 – t2|< δ, we have

∣
∣G(t1, s) – G(t2, s)

∣
∣ <

ε

φq(M)
∫ 1

0 φq(
∫ 1

0 H(s, τ ) dτ ) ds
.

Thus,

∥
∥Tx(t1) – Tx(t2)

∥
∥

1–α

=
∣
∣
∣
∣t

1–α
1

∫ 1

0
G(t1, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

– t1–α
2

∫ 1

0
G(t2, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣t1–α

1 G(t1, s) – t1–α
2 G(t2, s)

∣
∣φq

(∫ 1

0

∣
∣H(s, τ )

∣
∣
∣
∣f

(
τ , x(τ )

)∣
∣dτ

)

ds

<
ε

φq(M)
∫ 1

0 φq(
∫ 1

0 H(s, τ ) dτ ) ds
φq(M)

∫ 1

0
φq

(∫ 1

0
H(s, τ ) dτ

)

ds

= ε.

So, T is equicontinuous.
According to the Arzelà–Ascoli theorem, T is a completely continuous operator.
The proof is finished. �

Define Pk = {x ∈ P : ‖x‖1–α< rk} and then we define the related boundary ∂Pk = {x ∈ P :
‖x‖1–α= rk} where k is the positive integer.

Theorem 3.1 ([21] Krasnosel’skii fixed point theorem) Suppose E is a Banach space, and
P ⊂ E is a cone. Assume P1, P2 are two open and bounded subsets of E coupled with 0 ∈
P1, P1 ⊂ P2 and suppose T : P ∩ (P2 \ P1) → P is a completely continuous operator such
that one of the following conditions holds:

(L1) ‖Tx‖≥ ‖x‖, if x ∈ P ∩ ∂P1, and ‖Tx‖≤ ‖x‖, if x ∈ P ∩ ∂P2,
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(L2) ‖Tx‖≤ ‖x‖, if x ∈ P ∩ ∂P1, and ‖Tx‖≥ ‖x‖, if x ∈ P ∩ ∂P2.
Then T has at least one fixed point in P ∩ (P2 \ P1).

Theorem 3.2 If there exist 0 < r1 < r2, N1 ≥ (ρm
∫ 1

0 φq(
∫ 1

0 H(s, τ ) dτ ) ds))–1, 0 ≤ N2 ≤
(n

∫ 1
0 φq(

∫ 1
0 H(s, τ ) dτ ) ds))–1 and N1r1 < N2r2 such that the following conditions hold:

(L3) f (t, x) ≥ N1r1, (t, x) ∈ [0, 1] × [0, r1],
(L4) f (t, x) ≤ N2r2, (t, x) ∈ [0, 1] × [0, r2],

then T has at least one fixed point in P ∩ (P2 \ P1). In addition, r1 ≤ ‖x‖1–α≤ r2.

Proof Step 1: Let P1 = {x ∈ P : ‖x‖1–α< r1}, by assumption (L3), for all t ∈ [0, 1],

‖Tx‖1–α = t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≥ N1r1

∫ 1

0
ρmφq

(∫ 1

0
H(s, τ ) dτ

)

ds

≥ r1 = ‖x‖1–α .

Then we can get ‖Tx‖1–α≥ ‖x‖1–α (∀x ∈ P ∩ ∂P1).
Step 2: Let P2 = {x ∈ P : ‖x‖1–α< r2}, by assumption (L4), for all t ∈ [0, 1],

‖Tx‖1–α = t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≤ N2r2

∫ 1

0
nφq

(∫ 1

0
H(s, τ ) dτ

)

ds

≤ r2 = ‖x‖1–α .

It is easy to obtain ‖Tx‖1–α≤ ‖x‖1–α (∀x ∈ P ∩ ∂P2).
To conclude, the above proof satisfies the condition (L1) of Theorem 3.1, that is to say,

T has at least one fixed point in P ∩ (P2 \ P1). In addition, r1 ≤ ‖x‖1–α≤ r2.
The proof is finished. �

Theorem 3.3 ([22]) Suppose E is a Banach space, and P ⊂ E is a cone. Assume P3, P4 are
two open and bounded subsets of E and T : P3 → P is a completely continuous operator. If
‖Tx‖1–α< r3, for x ∈ ∂P3 and ‖Tx‖1–α≥ r4, for x ∈ ∂P4 hold, then T has at least two fixed
points in P3, and

0 ≤ ‖x1‖1–α< r3 < ‖x2‖1–α≤ r4.

Theorem 3.4 If there exist 0 < r3 < r4, 0 ≤ N3 < (ρm
∫ 1

0 φq(
∫ 1

0 H(s, τ ) dτ ) ds))–1, N4 ≥
(n

∫ 1
0 φq(

∫ 1
0 H(s, τ ) dτ ) ds))–1 such that the following conditions hold:

(L5) f (t, x) < N3r3, x ∈ ∂P3,
(L6) f (t, x) ≥ N4r4, x ∈ ∂P4,

then T has at least two fixed points in P3, and

0 ≤ ‖x1‖1–α< r3 < ‖x2‖1–α≤ r4.
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Proof On the one hand, P3 = {x ∈ P : ‖x‖1–α< r3}, by assumption (L5), for all t ∈ [0, 1],

‖Tx‖1–α = t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≤ N3r3

∫ 1

0
nφq

(∫ 1

0
H(s, τ ) dτ

)

ds

< r3.

Then we can get ‖Tx‖1–α< r3 (∀x ∈ ∂P3).
On the other hand, P4 = {x ∈ P : ‖x‖1–α< r4}, by assumption (L6), for all t ∈ [0, 1],

‖Tx‖1–α = t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≥ N4r4

∫ 1

0
ρmφq

(∫ 1

0
H(s, τ ) dτ

)

ds

≥ r4.

Obviously, ‖Tx‖1–α≥ r4 (∀x ∈ ∂P4) holds.
To conclude, the above proof satisfies the condition of Corollary 3.3, that is to say, T has

at least two fixed points in P3, which satisfy

0 ≤ ‖x1‖1–α< r3 < ‖x2‖1–α≤ r4.

The proof is finished. �

Suppose ϕ,ψ are non-negative continuous convex functionals on P, θ is a non-negative
continuous concave functional on P, and η is a non-negative continuous functional on P.
Define the following convex set:

P(ϕ; d) =
{

x ∈ P : ϕ(x) < d
}

,

P(ϕ, θ ; b, d) =
{

x ∈ P : b ≤ θ (x),ϕ(x) ≤ d
}

,

P(ϕ,ψ , θ ; b, c, d) =
{

x ∈ P : b ≤ θ (x),ψ(x) ≤ c,ϕ(x) ≤ d
}

,

and a closed set

P(ϕ,η; a, d) =
{

x ∈ P : a ≤ θ (x),ϕ(x) ≤ d
}

,

where a, b, c, d are positive constants.

Theorem 3.5 ([23] Avery–Peterson fixed point theorem) Suppose P is a cone on the real
Banach space E. Suppose ϕ,ψ are non-negative continuous convex functionals on P, θ is
a non-negative continuous concave functional on P, and η is a non-negative continuous
functional on P satisfying η(ρx) ≤ ρη(x) for 0 ≤ ρ ≤ 1, for positive constants k and d, we
have

θ (x) ≤ η(x), ‖x‖≤ kϕ(x), ∀x ∈ P(ϕ; d). (10)
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Suppose T : P(ϕ; d) → P(ϕ; d) is a completely continuous operator and there exist a, b, c > 0
with a < b such that the following conditions hold:

(H1) {x ∈ P(ϕ,ψ , θ ; b, c, d) : θ (x) > b} �= ∅ and θ (x) > b for x ∈ P(ϕ,ψ , θ ; b, c, d),
(H2) θ (Tx) > b for x ∈ P(ϕ, θ ; b, d) with η(Tx) > c,
(H3) 0 /∈ P(ϕ,η; a, d) and η(Tx) < a, for P(ϕ,η; a, d) with η(x) = a.

Then T has at least three fixed points x1, x2, x3 ∈ P(ϕ; d) such that

ϕ(xi) ≤ d, θ (x1) > b, θ (x2) > a, η(x2) < b, η(x3) < a,

where i = 1, 2, 3.

Define the following functionals:

ϕ(x) = ‖x‖1–α , ψ(x) = η(x) = max
t∈[0,1]

∣
∣t1–αx(t)

∣
∣, θ (x) = min

t∈[0,1]

∣
∣t1–αx(t)

∣
∣,

N = ρm
∫ 1

0
φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds,

therefore, ϕ,ψ ,η, θ satisfy the condition as mentioned above, and

ρη(x) ≤ θ (x) ≤ ψ(x) = η(x), ‖x‖1–α≤ ϕ(x).

Theorem 3.6 Suppose (H0) holds, there exist positive constants a, b, c, d with a < b < c =
bρ–1,

(H4) f (t, x) ≤ Γ (β – 1)φp(dn–1) for (t, x) ∈ [0, 1] × [0, d],
(H5) f (t, x) > φp(bN–1) for (t, x) ∈ [0, 1] × [b, c],
(H6) f (t, x) < Γ (β – 1)φp(an–1) for (t, x) ∈ [0, 1] × [0, a],

Then T has at least three fixed points x1, x2, x3 ∈ P(ϕ; d) such that

ϕ(xi) ≤ d, θ (x1) > b, θ (x2) > a, η(x2) < b, η(x3) < a,

where i = 1, 2, 3.

Proof For x(t) ∈ P(ϕ; d), we have

ϕ(x) = ‖x‖1–α≤ d.

According to (H4), we have

∥
∥Tx(t)

∥
∥ =

∣
∣
∣
∣t

1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
∫ 1

0

∣
∣t1–αG(t, s)

∣
∣φq

(∫ 1

0

∣
∣H(s, τ )

∣
∣
∣
∣f

(
τ , x(τ )

)∣
∣dτ

)

ds

< nφq

(
Γ (β – 1)φq( d

n )
Γ (β – 1)

)

= d.
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Hence, ϕ(Tx) = ‖Tx‖1–α≤ d, that is to say, T : P(ϕ; d) → P(ϕ; d) is a completely continuous
operator.

Let x(t) = b
ρ

, x(t) ∈ P(ϕ,ψ , θ ; b, c, d) and θ ( b
ρ

) > b, and so {x(t) ∈ P(ϕ,ψ , θ ; b, c, d) : θ ( b
ρ

) >
b} �= ∅.

For x(t) ∈ P(ϕ,ψ , θ ; b, c, d), we obtain b ≤ x(t) ≤ c = b
ρ

, then

θ (Tx) = min
t∈[0,1]

∣
∣t1–αTx(t)

∣
∣

= min
t∈[0,1]

t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≥
∫ 1

0
ρ max

t∈[0,1]
t1–αG(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

> ρm
∫ 1

0
φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds
b
N

= b.

Hence, θ (Tx) > b for x ∈ P(ϕ,ψ , θ ; b, c, d). That is to say, (H1) holds.
Let x ∈ P(ϕ, θ ; b, d) with ψ(Tx) > c = b

ρ
, we obtain

θ (Tx) ≥ ρψ(Tx) > ρc = ρ
b
ρ

= b.

Therefore, (H2) is satisfied.
By θ (0) = 0 < a, we have 0 /∈ P(ϕ,η; a, d).
Let x ∈ P(ϕ,η; a, d) and η(x) = a, we obtain ϕ(x) ≤ d, according to (H6),

η(Tx) = max
t∈[0,1]

∣
∣t1–αTx(t)

∣
∣

= max
t∈[0,1]

t1–α

∫ 1

0
G(t, s)φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

≤ n
∫ 1

0
φq

(∫ 1

0
H(s, τ )f

(
τ , x(τ )

)
dτ

)

ds

< nφq

(
Γ (β – 1)φq( a

n )
Γ (β – 1)

)

= a.

Hence, the condition (H3) holds.
The proof is finished. �

4 Illustrative example
Consider the following nonlinear fractional differential equations:

⎧
⎪⎪⎨

⎪⎪⎩

–D1.7
0+ (φ3.5(D0.5

0+ x(t) – 3x(t))) = f (t, x(t)), t ∈ (0, 1],

limt→0+ t0.5x(t) =
∑∞

k=1
1

22k (k–1)! x( 1
22k ),

limt→0+ t0.3(φ3.5(D0.5
0+ x(t) – 3x(t))) = φ3.5(D0.5

0+ x(1) – 3x(1)) = 0.

(11)
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Obviously, we choose α = 0.5,β = 1.7, p = 3.5,λ = –3,μk = 1
22k (k–1)! , ξk = 1

22k ,
∑∞

k=1 μkξ
α–1
k =

e0.5

2 < 1. By simple calculation, we obtain ρ ≈ 0.04819, m ≈ 0.0011246, n ≈ 10.091.
Part 1: In order to satisfy Theorem 3.1, by matlab, we get N1 = 3.1 × 104, N2 = 0.5, r1 =

0.2, r2 = 4 × 104, so we know that the BVP (11) has at least one positive solution x1 satisfy
0.2 ≤ ‖x1‖1–α≤ 4 × 104, where

f (t, x) = 7 × 103et + sin x, (t, x) ∈ [0, 1] × [
0, 4 × 104],

where f (t, x) satisfies
(i) f (t, x) ≥ N1r1 = 6.2 × 103 for (t, x) ∈ [0, 1] × [0, 0.2],

(ii) f (t, x) > N2r2 = 2 × 104 for (t, x) ∈ [0, 1] × [0, 4 × 104].
Part 2: In order to make Theorem 3.3 hold, we choose N3 = 500, N4 = 1, r3 = 2, r4 = 50,

then the BVP (11) has at least two positive solutions x1, x2, and

0 ≤ ‖x1‖1–α< 2 < ‖x2‖1–α≤ 50,

where

f (t, x) = (t + 5)3 +
19
4

x2, (t, x) ∈ [0, 1] × [0, 100],

where f (t, x) satisfies
(i) f (t, x) < N3r3 = 1000 for (t, x) ∈ [0, 1] × [0, 2],

(ii) f (t, x) > N4r4 = 50 for (t, x) ∈ [0, 1] × [0, 50].
Part 3: In order to make Theorem 3.5 hold, we choose a = 0.75, b = 2, c = bρ–1 =

41.51, d = 0.5, then we know the BVP (11) has at least three positive solutions x1, x2, x3

satisfying

‖x‖0.5(xi) ≤ 0.5 (i = 1, 2, 3), min
t∈[0,1]

∣
∣t0.5x1

∣
∣ > 2, min

t∈[0,1]

∣
∣t0.5x2

∣
∣ > 0.75,

max
t∈[0,1]

∣
∣t0.5x2

∣
∣ < 2, max

t∈[0,1]

∣
∣t0.5x3

∣
∣ < 0.75,

where

f (t, x) =
1

103

√
t + x13, (t, x) ∈ [0, 1] × [0, 200],

where f (t, x) satisfies
(i) f (t, x) < Γ (β – 1)φp(dn–1) = 0.617 for (t, x) ∈ [0, 1] × [0, 0.5],

(ii) f (t, x) > φp(bN–1) = 3189.505 for (t, x) ∈ [0, 1] × [2, 41.51],
(iii) f (t, x) < Γ (β – 1)φp(an–1) = 0.0342 for (t, x) ∈ [0, 1] × [0, 0.75].

5 Conclusions
In this paper, we consider a class of nonlinear fractional differential equations coupled with
the p-Laplacian operator and infinite-point boundary value conditions by means of the
properties of Green’s function, Krasnosel’skii fixed point theorem, the corollary of Kras-
nosel’skii fixed point theorem and the Avery–Peterson fixed point theorem. On top of
that, we establish the suitable criteria to warrant the existence of the positive solutions
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for the BVP we learned. To the best of our knowledge, few researchers studied fractional
differential equations with p-Laplacian by the Riemann–Liouville derivative, and this con-
dition coupled with values at an infinite number of points is not covered in the previous
situations; last but not least, it is more general for the fractional differential equation mod-
els.
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