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Abstract
We propose special difference problems of the four point scheme and the six point
symmetric implicit scheme (Crank and Nicolson) for the first partial derivative of the
solution u(x, t) of the first type boundary value problem for a one dimensional heat
equation with respect to the spatial variable x. A four point implicit difference
problem is proposed under the assumption that the initial function belongs to the
Hölder space C5+α , 0 < α < 1, the nonhomogeneous term given in the heat equation

is from the Hölder space C
3+α, 3+α

2
x,t , the boundary functions are from C

5+α
2 , and

between the initial and boundary conditions the conjugation conditions up to
second order (q = 0, 1, 2) are satisfied. When the initial function belongs to C7+α , the

nonhomogeneous term is from C
5+α, 5+α

2
x,t , the boundary functions are from C

7+α
2 and

the conjugation conditions up to third order (q = 0, 1, 2, 3) are satisfied, a six point
implicit difference problem is given. It is proven that the solution of the given four
point and six point difference problems converge to the exact value of ∂u

∂x on the
grids of order O(h2 + τ ) and O(h2 + τ 2), respectively, where h is the step size in spatial
variable x and τ is the step size in time. Theoretical results are justified by numerical
examples.
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1 Introduction
In science, especially in mathematical physics, not only the calculation of the solution of
the differential equation but also the calculation of the first and second derivatives of the
solution is very important to provide information about some physical phenomena [1]. For
example, Tuttle [2] in a theory of the drying wood adopts the fundamental hypothesis that
the rate of which transfusion takes place transversely with respect to the wood fibers ( ∂θ

∂t )
is proportional to the slope of the moisture gradient ( ∂2θ

∂x2 ), where θ is the moisture content
expressed as a percentage of the oven-dry weight of the wood. Therefore, accurate approx-
imation of ∂θ

∂x is very important to provide information about the moisture gradient. Since
the differentiation operation is ill-conditioned, to find a highly accurate approximation for
the derivatives of the solution of a differential equation is problematic.

In [3] the uniform convergence of the difference derivatives over the whole grid do-
main to the corresponding derivatives of the exact solution for the two dimensional
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Laplace equation with order O(h2) is proved. In [4], under the conditions that the bound-
ary functions belong to C6,λ, 0 < λ < 1, on the sides of the rectangle and are con-
tinuous on the vertices and second, fourth order derivatives satisfy the compatibility
conditions on the vertices which result from the Laplace equation, difference schemes
are constructed for the first and pure second order derivatives of the solution. It is
proved that the order of convergence of the solutions of these difference schemes is
O(h4).

For the 3D Laplace equation on a rectangular parallelepiped, recent studies are given in
[5] and [6] and the constructed difference schemes converge with the order of O(h2) and
O(h4), respectively, to the first and pure second derivatives of the exact solution of the 3D
Dirichlet problem. It is assumed in [5] that the fourth derivatives of the boundary func-
tions on the faces of a parallelepiped satisfy the Hölder condition, and on the edges their
second derivatives satisfy the compatibility condition, whereas in [6] they are assumed to
have sixth order derivatives satisfying the Hölder condition on the faces, and their second
and fourth order derivatives satisfy the compatibility conditions on the edges. Most re-
cently, in [7] difference schemes on a cubic grid for obtaining the solution of the Dirichlet
problem for the 3D Laplace equation on a rectangular parallelepiped, its first and pure sec-
ond derivatives difference schemes are constructed and the approximate values of the first
and pure second derivatives converge with orders O(h6| ln h|) and O(h5+λ), 0 < λ < 1, re-
spectively. It is assumed that the boundary functions on the faces have seventh derivatives
satisfying the Hölder condition and on the edges their second, fourth and sixth derivatives
satisfy the compatibility condition. At the same time in [8], an O(hp–1), p ∈ [4, 5] order of
approximation for the first order derivatives of the solution of the 3D Laplace equation is
proven under a weaker assumption on the smoothness of the boundary functions on the
faces of the parallelepiped than those used in [6].

In this study special difference problems of four point and six point symmetric im-
plicit difference schemes for the derivative of the solution u(x, t) of the first type boundary
value problem for one dimensional heat equation with respect to the spatial variable x are
proposed. For the construction of the four point implicit difference problem we require
that:

(a) the initial function belongs to C5+α , the nonhomogeneous term given in the heat
equation is from C3+α, 3+α

2
x,t , the boundary functions are from C 5+α

2 , and the
conjugation conditions of orders q = 0, 1, 2 are satisfied at the corners of the
boundary. For the construction of the six point implicit difference problem it is
assumed that:

(b) the initial function belongs to C7+α , the nonhomogeneous term is from C5+α, 5+α
2

x,t , the
boundary functions are from C 7+α

2 , and the conjugation conditions of orders
q = 0, 1, 2, 3 are satisfied.

The work is organized as follows: In Sect. 2, for the approximate solution of first type
boundary value problem for one dimensional heat equation we use four point implicit or
six point symmetric implicit schemes [9] under the assumption that the boundary value
problem satisfies the conditions (a) or (b) respectively. In both cases for the error func-
tion we provide a pointwise prior estimation depending on Υ (x, t), which is the distance
from the current grid point in the domain to the boundary. In Sect. 3, we consider the
boundary value problem satisfying the conditions (a) and propose a special four point im-
plicit difference problem for the approximation of ∂u

∂x . We prove that the solution of the
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constructed difference scheme converges uniformly to the exact value of ∂u
∂x on the grids

of order O(h2 + τ ) where h is the step size in spatial variable x and τ is the step size in
time. In Sect. 4, we require that the boundary value problem satisfies the conditions (b)
hence, a special six point implicit difference problem for the approximation of ∂u

∂x is pro-
posed. Uniform convergence of order O(h2 + τ 2) for this scheme is shown. In Sect. 5, to
justify the theoretical results numerical examples are constructed and obtained results are
presented via tables and figures. In Sect. 6, concluding remarks are given.

2 Implicit difference solution of first type boundary value problem for one
dimensional heat equation

2.1 Basic notations and first type boundary value problem
Based on Section 5, Chapter IV in [10], we give the following definitions. We denote by
L(x, t, ∂

∂x , ∂
∂t ) the linear parabolic differential operator with real coefficients

L
(

x, t,
∂

∂x
,

∂

∂t

)
u ≡ ∂u

∂t
–

n∑
i,j=1

wi,j(x, t)
∂2u

∂xi∂xj
+

n∑
i=1

wi(x, t)
∂u
∂xi

+ w(x, t)u. (1)

Let Ω be a bounded domain in n-dimensional Euclidean space En. It is assumed that the
coefficients of the operator of (1) are defined in a layer D = En × (0, T). In the cylindri-
cal domain Q = Ω × (0, T) with lateral surface ST or more precisely the set of points
(x, t) of En+1 with x = (x1, x2, . . . , xn) ∈ S, t ∈ [0, T] where S is the sufficiently smooth
boundary of Ω and that Ω = Ω ∪ S, the first type boundary value problem is given
as

L
(

x, t,
∂

∂x
,

∂

∂t

)
u = f (x, t), (2)

u|t=0 = ϕ(x), (3)

u|ST = φ(x, t). (4)

Let q be a non-negative integer. We use the notations

u(0)(x) = ϕ(x), q = 0, (5)

u(q)(x) =
∂qu(x, t)

∂tq

∣∣∣
t=0

, q = 1, 2, 3, . . . , (6)

and the operator

Â
(

x, t,
∂

∂x

)
u ≡

n∑
i,j=1

wi,j(x, t)
∂2u

∂xi∂xj
–

n∑
i=1

wi(x, t)
∂u
∂xi

– w(x, t)u. (7)

From (2), (5) and (7), Eq. (6) can be rewritten as

u(1)(x) = Â
(

x, 0,
∂

∂x

)
ϕ(x) + f (x, 0), (8)

u(q+1)(x) =
(

∂q

∂tq Â
(

x, t,
∂

∂x

)
u(x, t) +

∂q

∂tq f (x, t)
)∣∣∣

t=0
, q = 1, 2, 3, . . . . (9)
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The conjugation (compatibility) conditions up to order m ≥ 0 are

u(q)(x)|x∈S =
∂qφ(x, t)

∂tq

∣∣∣
t=0

= φ(q)(x), q = 0, 1, . . . , m. (10)

Let Q and ST be the closure of Q and ST , respectively, and s > 0 be a non-integer number.
Further, Cs,s/2

x,t (Q) denotes the classical Hölder space of functions u(x, t) that are continu-
ous in Q together with all derivatives of the form ∂

j0
t ∂

j
x for 2j0 + j < s and have finite norm

defined in Cs,s/2
x,t (Q). Cs(Ω) is the Hölder space whose elements are continuous functions

g(x) in Ω having in Ω continuous derivatives up to order [s] inclusively, and have finite
norm defined in Cs(Ω) (see [10]).

Theorem 1 (From Theorem 5.2, Section 5, Chapter IV in [10]) Suppose s > 0 is a non-
integer number, the coefficients of the operator L belongs to the class Cs, s

2
x,t (Q), and the

boundary S belongs to the class Cs+2. Then, for any f ∈ Cs, s
2

x,t (Q), ϕ(x) ∈ Cs+2(Ω), and
φ(x, t) ∈ Cs+2, s

2 +1
x,t (ST ) satisfying the compatibility conditions (10) up to order [ s

2 ] + 1, prob-
lem (2)–(4) has a unique solution from the class Cs+2, s

2 +1
x,t (Q).

2.2 Implicit difference solution of one dimensional problem
Take Ω = (0, b), σT = (0, T), and Ω , σ T are the closure of these sets respectively, also QT =
{(x, t) : 0 < x < b, 0 < t ≤ T}, γ1 = {(0, t) : t ∈ σ T }, γ2 = {(x, 0) : x ∈ Ω}, and γ3 = {(b, t) : t ∈
σ T }. Let γ =

⋃3
i=1 γi represent the boundary of QT , and QT = QT ∪γ . We use the notations

∂k
t = ∂k

∂tk , ∂k
x = ∂k

∂xk and Dk
t = dk

dtk , Dk
x = dk

dxk to present the kth partial and ordinary derivatives
respectively with respect to time variable t, spatial variable x. We consider the first type
boundary value problem for a one dimensional heat equation:

Lu = f (x, t) on QT , (11)

u(x, 0) = u0(x) on γ2, (12)

u(0, t) = u1(t) on γ1, u(b, t) = u2(t) on γ3, (13)

where L ≡ ∂
∂t – a ∂2

∂x2 and a > 0 constant, then the functions on the right side of (5), (8) and
(9) are

u(0)(x) = u0(x), (14)

u(1)(x) = aD2
xu0(x) + f (x, 0), (15)

u(q)(x) = a∂2
x u(q–1)(x) + f (q–1)(x), q = 2, 3, . . . , (16)

respectively, where f (0)(x) = f (x, 0) and f (q)(x) = ∂
q
t f (x, t)|t=0. Also

u(0)
1 (0) = u1(t)|t=0, u(0)

2 (0) = u2(t)|t=0 (17)

u(q)
1 (0) = Dq

t u1(t)|t=0, u(q)
2 (0) = Dq

t u2(t)|t=0, q = 1, 2, . . . . (18)
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Furthermore, the conjugation conditions up to order m ≥ 0 in (10) for the one dimensional
problem (11)–(13) are derived as

u(q)(0) = u(q)
1 (0),

u(q)(b) = u(q)
2 (0),

q = 0, 1, . . . m, (19)

Problem 1 Let α ∈ (0, 1)
(i) The boundary value problem (11)–(13) satisfying the conditions

u0(x) ∈ C5+α(Ω), f (x, t) ∈ C3+α, 3+α
2

x,t (QT ) and

uj(t) ∈ C
5+α

2 (σ T ), j = 1, 2,
(20)

and the conjugation conditions (19) up to second order (q = 0, 1, 2).
(ii) The boundary value problem (11)–(13) satisfying the conditions

u0(x) ∈ C7+α(Ω), f (x, t) ∈ C5+α, 5+α
2

x,t (QT ) and

uj(t) ∈ C
7+α

2 (σ T ), j = 1, 2,
(21)

and the conjugation conditions (19) up to third order (q = 0, 1, 2, 3).

Theorem 2 Problem 1(i) has a unique solution u(x, t) belonging to the class C5+α, 5+α
2

x,t (QT ).

The Problem 1(ii) has a unique solution u(x, t) belonging to the class C7+α, 7+α
2

x,t (QT ).

Proof The proof of Theorem 2 follows from Theorem 1. �

We define

ωh =
{

xm = mh, h =
b
N

, m = 0, . . . , N
}

, (22)

ωτ =
{

tj = jτ , τ =
T
M

, j = 0, . . . , M
}

, (23)

and ωh,τ = ωh × ωτ where the set of internal nodes are defined by

ωh,τ = ωh × ωτ =
{

(xm, tj) : m = 1, . . . , N – 1, j = 1, . . . , M
}

. (24)

The set of nodes on γi i = 1, 2, 3 are presented by

ω0,τ =
{

(0, tj) : tj = jτ , τ =
T
M

, j = 0, . . . , M
}

, (25)

ωh,0 =
{

(xm, 0) : xm = mh, h =
b
N

, m = 0, . . . , N
}

, (26)

ωb,τ =
{

(b, tj) : tj = jτ , τ =
T
M

, j = 0, . . . , M
}

, (27)
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respectively. Assume that c1, c2, . . . are positive constants independent from h and τ ; in
each section, those constants are enumerated anew. For the numerical solution of the
Problem 1(i), we use the four point difference problem (� = 3) and for the numerical solu-
tion of the Problem 1(ii), we use the six point symmetric difference problem (� = 6) [9]. We
denote the solution of these difference problems by ũ and use the notations ũ0

m = ũ(xm, 0)
on ωh,0, ũj

0 = ũ(0, tj) on ω0,τ , and ũj
N = ũ(b, tj) on ωb,τ . The difference schemes are as follows:

ũh,τ
t,m = aΘ�ũh,τ

m + Φf h,τ on ωh,τ , � = 3 or � = 6, (28)

ũ0
m = u0(xm) on ωh,0, (29)

ũj
0 = u1(tj) on ω0,τ , ũj

N = u2(tj) on ωb,τ , (30)

where

ũh,τ
t,m =

1
τ

(̃
uj+1

m – ũj
m
)
, (31)

Θ3ũh,τ
m =

1
h2

(̃
uj+1

m–1 – 2̃uj+1
m + ũj+1

m+1
)
, (32)

Θ6ũh,τ
m =

1
2h2

(̃
uj+1

m–1 – 2̃uj+1
m + ũj+1

m+1
)

+
1

2h2

(̃
uj

m–1 – 2̃uj
m + ũj

m+1
)
, (33)

Φf h,τ =

⎧⎨
⎩

f (xm, tj+1) if � = 3,

f = f (xm, tj+ 1
2

) if � = 6.
(34)

The operator Θ3ũh,τ
m is the central difference formula and Θ6ũh,τ

m is the averaging central
difference formula with three points and six points respectively, for approximating ∂2

x u.
Here tj+ 1

2
= tj + 0.5τ , f (x, t) is the given function in (11) and u0(x) given in (12), u1(t), u2(t)

given in (13) are the initial and boundary functions, respectively. Consider the following
systems:

q̂h,τ
t,m = aΘ�q̂h,τ

m + ĝh,τ on ωh,τ , � = 3 or � = 6, (35)

q̂0
m = 0 on ωh,0, (36)

q̂j
0 = 0 on ω0,τ , q̂j

N = 0 on ωb,τ (37)

qh,τ
t,m = aΘ�qh,τ

m + gh,τ on ωh,τ , � = 3 or � = 6, (38)

q0
m ≥ 0 on ωh,0, (39)

qj
0 ≥ 0 on ω0,τ , qj

N ≥ 0 on ωb,τ (40)

where ĝh,τ , gh,τ are given functions and |̂gh,τ | ≤ gh,τ on ωh,τ also q̂h,τ
t,m, qh,τ

t,m are difference
formulae analogous to (31) and Θ�q̂h,τ

m , Θ�qh,τ
m are difference formulae analogous to (32)

or (33) for � = 3 or � = 6, respectively.

Lemma 3 The solution q̂ of the system (35)–(37) and the solution q of the system (38)–(40)
satisfy the inequality

|̂q| ≤ q on ωh,τ (41)
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for any r by the four point implicit scheme (� = 3) and for r ≤ 1, by the six point symmetric
implicit scheme (� = 6) where r = aτ

h2 .

Proof Taking into consideration that the canonical form of the equation q̂h,τ
t,m = aΘ 3̂qh,τ

m +
ĝh,τ is

(
1
τ

+
2a
h2

)
q̂j+1

m =
a
h2

(̂
qj+1

m–1 + q̂j+1
m+1

)
+

1
τ

q̂j
m + ĝh,τ (42)

in the form A(P)̂q(P) =
∑

Q∈Patt(P) B(P, Q)̂q(Q) + F(P) where P = P(xm, tj+1) as a node
of the grid ωh,τ and Patt(P) consists of the nodes Q1 = (xm, tj), Q2 = (xm–1, tj+1), Q3 =
(xm+1, tj+1) ∈ ωh,τ . It is easily seen that A(P) > 0, B(P, Q) > 0 for every Q ∈ Patt(P) and
D(P) = 0 where D(P) = A(P) –

∑
Q∈Patt(P) B(P, Q). Similarly the canonical form of the equa-

tion q̂h,τ
t,m = aΘ 6̂qh,τ

m + ĝh,τ is

(
1
τ

+
a
h2

)
q̂j+1

m =
a

2h2

(̂
qj+1

m–1 + q̂j+1
m+1

)
+

a
2h2

(̂
qj

m–1 + q̂j
m+1

)
+

(
1
τ

–
a
h2

)
q̂j

m + ĝh,τ , (43)

where P = P(xm, tj+1) and Patt(P) consists of the nodes Q1 = (xm, tj), Q2 = (xm–1, tj+1),
Q3 = (xm+1, tj+1), Q4 = (xm–1, tj), Q5 = (xm+1, tj). Here A(P) > 0, D(P) = 0 and B(P, Q) ≥ 0
for every Q ∈ Patt(P) if r = aτ

h2 ≤ 1. The proof follows from the comparison theorem (see
Chap. 4 in [9]) because the coefficients of the finite difference schemes (42) and (43) satisfy
all conditions of the comparison theorem for any r and for r ≤ 1, respectively. �

Lemma 4 For the solution of the problem

q̂h,τ
t,m = aΘ�q̂h,τ

m + β on ωh,τ , � = 3 or � = 6, (44)

q̂0
m = 0 on ωh,0, (45)

q̂j
0 = 0 on ω0,τ , q̂j

N = 0 on ωb,τ , (46)

the following inequality holds true:

q̂ ≤ Υ dβ on ωh,τ , (47)

where

β = β(h, τ ) =

⎧⎨
⎩

h2 + τ for � = 3,

h2 + τ 2 for � = 6,
(48)

d = max

[
b

2a
, 1

]
, (49)

for any r by the four point implicit scheme (� = 3) and for r ≤ 1, by the symmetric six point
implicit scheme (� = 6). Here, Υ = Υ (x, t) is the distance from the current point (x, t) ∈ ωh,τ

to the boundary γ of QT .
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Proof For the four point implicit scheme ( � = 3), we consider the functions

q3
1(x, t) =

1
2
(
h2 + τ

)(bx – x2

a

)
≥ 0, q3

2(x, t) =
(
h2 + τ

)
t ≥ 0 on ωh,τ (50)

which are the solutions of qh,τ
t,m = aΘ3qh,τ

m + h2 + τ on ωh,τ . On the basis of Lemma 3 we
obtain

q̂ ≤ min
i=1,2

q3
i (x, t) ≤ Υ d

(
h2 + τ

)
on ωh,τ . (51)

For the six point symmetric implicit scheme (� = 6), we consider the functions

q6
1(x, t) =

1
2
(
h2 + τ 2)(bx – x2

a

)
≥ 0, q6

2(x, t) =
(
h2 + τ 2)t ≥ 0 on ωh,τ (52)

which are the solutions of qh,τ
t,m = aΘ6qh,τ

m + h2 + τ 2 on ωh,τ . Using Lemma 3 we obtain

q̂ ≤ min
i=1,2

q6
i (x, t) ≤ Υ d

(
h2 + τ 2) on ωh,τ . (53)

�

Theorem 5 The solution ũ of the four point finite difference problem (28)–(30) (� = 3)
satisfies the following pointwise estimation:

|̃u – u| ≤ c1Υ
(
h2 + τ

)
, (54)

for any value of r where u is the exact solution of Problem 1(i). The solution ũ of the six point
finite difference problem (28)–(30) (� = 6) satisfies the following pointwise estimation:

|̃u – u| ≤ c2Υ
(
h2 + τ 2), (55)

for r ≤ 1 where u is the exact solution of Problem 1(ii).

Proof On the basis of Theorem 2, the exact solution u of Problem 1(i) belongs to
C5+α, 5+α

2
x,t (QT ). Therefore, ∂4

x u and ∂2
t u are bounded up to the boundary. Let εh,τ

u = ũ – u
on ωh,τ . Obviously the error function εh,τ

u satisfies

ε
h,τ
u,t,m = aΘ3εh,τ

u,m + ψu on ωh,τ , (56)

ε0
u,m = 0 on ωh,0, (57)

ε
j
u,0 = 0 on ω0,τ , ε

j
u,N = 0 on ωb,τ , (58)

where ψu = aΘ3u – ut,m + Φf h,τ . Using Taylor’s formula for the function u(x, t) about the
node (xm, tj+1) shows that ψu = O(h2 + τ ) and applying Lemma 3 to the problem (44)–
(46) for � = 3 and (56)–(58) and on the basis of Lemma 4 we obtain |εh,τ

u | ≤ c1Υ (h2 + τ ).

From Theorem 2, the exact solution u of Problem 1(ii) belongs to C7+α, 7+α
2

x,t (QT ). Hence,
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the derivatives ∂4
x u, ∂3

t u are bounded up to the boundary. The error function εh,τ
u satisfies

the following difference problem:

ε
h,τ
u,t,m = aΘ6εh,τ

u,m + ψu on ωh,τ , (59)

ε0
u,m = 0 on ωh,0, (60)

ε
j
u,0 = 0 on ω0,τ , ε

j
u,N = 0 on ωb,τ . (61)

Using Taylor’s formula for the function u(x, t) about the node (xm, tj+ 1
2

) shows that ψu =
O(h2 +τ 2). Applying Lemma 3 to the six point implicit difference problem (44)–(46) (� = 6)
and (59)–(61) and on the basis of Lemma 4 we obtain |εh,τ

u | ≤ c2Υ (h2 + τ 2). �

3 Implicit four point difference approximation of ∂x u
Problem 2

(i) Given the Problem 1(i), we denote pi = ∂xu on γi, i = 1, 2, 3 and set up the next
boundary value problem for v = ∂xu,

Lv = ∂xf (x, t) on QT , (62)

v(x, 0) = p2 on γ2, (63)

v(0, t) = p1 on γ1, v(b, t) = p3 on γ3, (64)

where f (x, t) is the given function in (11).
We take

p1h =
1

2h
(
–3u1(t) + 4̃u(h, t) – ũ(2h, t)

)
on ω0,τ , (65)

p2h = ∂xu0(x) on ωh,0, (66)

p3h =
1

2h
(
3u2(t) – 4̃u(b – h, t) + ũ(b – 2h, t)

)
on ωb,τ , (67)

and u0(x) given in (12), u1(t), u2(t) given in (13) are the initial and boundary
functions, respectively, ũ is the solution of the four point difference problem
(28)–(30) (� = 3).

Lemma 6 The following inequality holds:

∣∣pih (̃u) – pih(u)
∣∣ ≤ c1

(
h2 + τ

)
, i = 1, 3, (68)

where u is the solution of the differential Problem 1(i) and ũ is the solution of the four point
difference problem (28)–(30) (� = 3).

Proof Taking into consideration Theorem 2, and using (65) and (67) and Theorem 5, we
have

∣∣pih (̃u) – pih(u)
∣∣ ≤ 1

2h
(
4(c2h)

(
h2 + τ

)
+ (c22h)

(
h2 + τ

)) ≤ c1
(
h2 + τ

)
, i = 1, 3. (69)

�
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Lemma 7 The following inequality is true:

max
ω0,τ ∪ωb,τ

∣∣pih (̃u) – pi
∣∣ ≤ c3

(
h2 + τ

)
, i = 1, 3, (70)

where ũ is the solution of the four point difference problem (28)–(30) (� = 3).

Proof On the basis of Theorem 2, the exact solution u ∈ C5+α, 5+α
2

x,t (QT ). Then at the end
points (0,στ ) ∈ ω0,τ and (b,στ ) ∈ ωb,τ of each line segment [(x, t) : 0 ≤ x ≤ b, 0 < t ≤ T]
(65) and (67) give the second order approximation of ∂xu, respectively. From the trunca-
tion error formula (see [11]) it follows that

max
ω0,τ ∪ωb,τ

∣∣pih(u) – pi
∣∣ ≤ h2

3
max

QT

∣∣∂3
x u

∣∣ ≤ c3h2, i = 1, 3. (71)

Using Lemma 6 and the estimation (66), (71) follows. �

We construct the following difference problem for the numerical solution of Prob-
lem 2(i):

ṽh,τ
t,m = aΘ 3̃vh,τ

m + Φ∂xf h,τ on ωh,τ , (72)

ṽ0
m = p2h on ωh,0, (73)

ṽj
0 = p1h (̃u) on ω0,τ , ṽj

N = p3h (̃u) on ωb,τ , (74)

where the pih are defined by (65)–(67) and Φ∂xf h,τ = ∂xf |(xm ,tj+1) and ũ is the solution of
the four point difference problem (28)–(30) (� = 3).

Theorem 8 The solution ṽ of the finite difference problem (72)–(74) satisfies

max
ωh,τ

|̃v – v| ≤ c4
(
h2 + τ

)
, (75)

where v = ∂xu is the exact solution of Problem 2(i).

Proof Let

εh,τ
v = ṽ – v on ωh,τ , (76)

where v = ∂xu. Denote by ‖εh,τ
v ‖ = maxωh,τ |̃v – v|. From (72)–(74) and (76) we have

ε
h,τ
v,t,m = aΘ3εh,τ

v,m + ψv on ωh,τ , (77)

ε0
v,m = 0 on ωh,0, (78)

ε
j
v,0 = p1h (̃u) – v on ω0,τ , ε

j
v,N = p3h (̃u) – v on ωb,τ , (79)

where ψv = aΘ3v – vt,m + Φ∂xf h,τ . We take

εh,τ
v = ε1,h,τ

v + ε2,h,τ
v , (80)
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where

ε
1,h,τ
v,t,m = aΘ3ε1,h,τ

v,m on ωh,τ , (81)

ε1,0
v,m = 0 on ωh,0, (82)

ε
1,j
v,0 = p1h (̃u) – v on ω0,τ , ε

1,j
v,N = p3h (̃u) – v on ωb,τ , (83)

ε
2,h,τ
v,t,m = aΘ3ε2,h,τ

v,m + ψv on ωh,τ , (84)

ε2,0
v,m = 0 on ωh,0, (85)

ε
2,j
v,0 = 0 on ω0,τ , ε

2,j
v,N = 0 on ωb,τ . (86)

From Lemma 7 and by maximum principle for the solution of the system (81)–(83) we
have

max
ωh,τ

∣∣ε1,h,τ
v

∣∣ ≤ max
i=1,3

max
ωh,τ

∣∣pih (̃u) – v
∣∣ ≤ c4

(
h2 + τ

)
. (87)

The solution ε2,h,τ
v of system (84)–(86) is the error of the approximate solution obtained

by the finite difference method for the boundary value Problem 2(i) when the boundary
values satisfy the conditions

p2 ∈ C4+α(Ω), ∂xf (x, t) ∈ C2+α,1+ α
2

x,t (QT ), pi ∈ C2+ α
2 (σ T ), i = 1, 3, (88)⎧⎨

⎩
p(q)

1 (0) = v(q)(0),

p(q)
3 (0) = v(q)(b),

q = 0, 1, 2. (89)

Since the function v = ∂xu satisfies Eq. (62) with the initial function p2 on γ2 and bound-
ary functions p1, p3 on γ1 and γ3, respectively, and on the basis of Theorem 1 and the
maximum principle, we obtain

max
ωh,τ

∣∣ε2,h,τ
v

∣∣ ≤ c5
(
h2 + τ

)
, (90)

and using (80), (87) and (90) we obtain (75). �

4 Implicit six point symmetric difference approximation of ∂xu
Problem 2

(ii) Given the Problem 1(ii), we denote pi = ∂xu on γi, i = 1, 2, 3 and set up the boundary
value problem (62)–(64) for v = ∂xu.

Lemma 9 The following inequality holds:

∣∣pih (̃u) – pih(u)
∣∣ ≤ c1

(
h2 + τ 2), i = 1, 3, (91)

where u is the solution of the differential Problem 1(ii) and ũ is the solution of the symmetric
six point difference problem (28)–(30) (� = 6) for r ≤ 1 and pih are defined by (65)–(67).
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Proof On the basis of Theorem 2, and from (65), (67) and using Theorem 5, we have

∣∣pih (̃u) – pih(u)
∣∣ ≤ 1

2h
(
4(c2h)

(
h2 + τ 2) + (c22h)

(
h2 + τ 2))

≤ c1
(
h2 + τ 2), i = 1, 3. (92)

�

Lemma 10 The following inequality is true:

max
ω0,τ ∪ωb,τ

∣∣pih (̃u) – pi
∣∣ ≤ c3

(
h2 + τ 2), i = 1, 3, (93)

where ũ is the solution of the six point difference problem (28)–(30) (� = 6) for r ≤ 1.

Proof Using Theorem 2, the proof is analogous to the proof of Lemma 7. �

We propose the following six point difference problem for the numerical solution of
Problem 2(ii):

ṽh,τ
t,m = aΘ 6̃vh,τ

m + Φ∂xf h,τ on ωh,τ , (94)

ṽ0
m = p2h on ωh,0, (95)

ṽj
0 = p1h (̃u) on ω0,τ , ṽj

N = p3h (̃u) on ωb,τ , (96)

where pih are defined by (65)–(67) and Φ∂xf h,τ = ∂xf |(xm ,tj+ 1
2

) and ũ is the solution of the
six point difference problem (28)–(30) (� = 6) for r ≤ 1.

Theorem 11 For r ≤ 1, the solution ṽ of the finite difference problem (94)–(96) satisfies

max
ωh,τ

|̃v – v| ≤ c4
(
h2 + τ 2), (97)

where v = ∂xu is the exact solution of Problem 2(ii).

Proof The proof is analogous to the proof of Theorem 8. From (94)–(96) and (76) we have

ε
h,τ
v,t,m = aΘ6εh,τ

v,m + ψv on ωh,τ , (98)

ε0
v,m = 0 on ωh,0, (99)

ε
j
v,0 = p1h (̃u) – v on ω0,τ , ε

j
v,N = p3h (̃u) – v on ωb,τ , (100)

where ψv = aΘ6v – vt,m + Φ∂xf h,τ . We take

εh,τ
v = ε1,h,τ

v + ε2,h,τ
v , (101)

where

ε
1,h,τ
v,t,m = aΘ6ε1,h,τ

v,m on ωh,τ , (102)
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ε1,0
v,m = 0 on ωh,0, (103)

ε
1,j
v,0 = p1h (̃u) – v on ω0,τ , ε

1,j
v,N = p3h (̃u) – v on ωb,τ , (104)

ε
2,h,τ
v,t,m = aΘ6ε2,h,τ

v,m + ψv on ωh,τ , (105)

ε2,0
v,m = 0 on ωh,0, (106)

ε
2,j
v,0 = 0 on ω0,τ , ε

2,j
v,N = 0 on ωb,τ . (107)

From Lemma 10 and by the maximum principle for the solution of the system (102)–(104)
we have

max
ωh,τ

∣∣ε1,h,τ
v

∣∣ ≤ max
i=1,3

max
ωh,τ

∣∣pih (̃u) – v
∣∣ ≤ c4

(
h2 + τ 2). (108)

The solution ε2,h,τ
v of system (105)–(107) is the error of the approximate solution obtained

by the finite difference method for the boundary value Problem 2(ii) when the boundary
values satisfy the conditions

p2 ∈ C6+α(Ω), ∂xf (x, t) ∈ C4+α,2+ α
2

x,t (QT ), pi ∈ C3+ α
2 (σ T ), i = 1, 3, (109)⎧⎨

⎩
p(q)

1 (0) = v(q)(0),

p(q)
3 (0) = v(q)(b),

q = 0, 1, 2, 3, . . . . (110)

Since the function v = ∂xu satisfies Eq. (62) with the initial function p2 on γ2 and boundary
functions p1, p3 on γ1 and γ3, respectively and on the basis of Theorem 1 and the maximum
principle in Chap. 4 of [9] we obtain

max
ωh,τ

∣∣ε2,h,τ
v

∣∣ ≤ c5
(
h2 + τ 2) (111)

using (80), (108) and (111) we obtain (97). �

5 Numerical aspects
Two problems are considered such that the first type boundary value problem for the
one dimensional heat equation in Example 1 and in Example 2 are chosen as exam-
ples for Problem 1(i) and Problem 1(ii), respectively, and the exact first derivatives of
their solutions with respect to x are known. The third example is also given as an ex-
ample of Problem 1(ii), however, the exact first derivative of the solution of this prob-
lem with respect to x is not given. All the computations are carried out in double pre-
cision using the Fortran programming language. For the constructed examples we take
QT = {(x, t) : 0 < x < 1, 0 < t ≤ 1}, γ1 = {(0, t) : 0 ≤ t ≤ 1}, γ2 = {(x, 0) : 0 ≤ x ≤ 1}, and
γ3 = {(1, t) : 0 ≤ t ≤ 1}, and the constant a in the operator L ≡ ∂

∂t – a ∂2

∂x2 is taken as a = 1.

Example 1

Lu = f (x, t) on QT ,

u(x, 0) = x
26
5 + sin

(
π

2
x
)

on γ2,
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u(0, t) = t
13
5 on γ1,

u(1, t) = t
13
5 + cos

(
t

13
5
)

+ 1 on γ3, (112)

where f (x, t) = – 13
5 x

26
5 t

8
5 sin(t

13
5 )+ 13

5 t
8
5 – 26

5
21
5 x

16
5 cos(t

13
5 )+ π2

4 sin( π
2 x). Using the proposed

implicit four point difference scheme (28)–(30) (� = 3) we obtain the approximate solu-
tion ũ by the applying the Gauss–Thomas method [12] for solving an algebraic system of
equations at each time level with space step size h = 2–μ and time step size τ = 2–λ where
μ, λ are positive integers. Next the boundary value problem for v = ∂u

∂x is constructed us-
ing the obtained approximate solution ũ and the proposed Problem 2(i). Furthermore, the
approximate solution ṽ of the difference problem (72)–(74) is obtained at the same grid
points. The exact solution is known: v(x, t) = 26

5 x
21
5 cos(t

13
5 ) + π

2 cos( π
2 x); and we denote

the maximum error on the grid points by ‖εh,τ
v ‖ = maxωh,τ |̃v – v|. Table 1 demonstrates the

maximum errors for fixed r = 2–ω , ω = 2, 3, and the order of convergence

�h,τ
v =

‖ε2–μ ,2–λ

v ‖
‖ε2–(μ+1),2–(λ+2)

v ‖
(113)

of ṽ with respect to h and τ for Example 1. Table 2 represents the maximum errors for
h = 2–9, τ = 2–λ, λ = 6, 7, 8, 9, 10, 11 and the order of convergence

�τ
v =

‖εh,2–λ

v ‖
‖εh,2–(λ+1)

v ‖
, (114)

of ṽ with respect to τ for Example 1. According to the definition of the maximum error the
third and fourth columns of Table 1 and Table 2 present the theoretical upper bound errors
given in (75). Note that the O(h2 + τ ) order of convergence corresponds to 	 22 of the
quantities defined by (113), and 	 21 of the quantities defined by (114). Figure 1 presents
the error function |ε2–7,2–17

v | = |̃v – v| for h = 2–7, and τ = 2–17 for Example 1. The maximum
errors ‖ε2–9,τ

v ‖ when h = 2–9, with respect to τ , are shown in Fig. 2 and the maximum
errors ‖εh,2–17

v ‖ when τ = 2–17, with respect to h, are demonstrated by Fig. 3 for Example 1.
Figure 4 shows the exact solution v(x, t) = ∂xu, and the grid function v2–7,2–17 presenting the
approximate solution ṽ of ∂xu when h = 2–7, τ = 2–17 for Example 1 is presented in Fig. 5.

Example 2

Lu = f (x, t) on QT ,

u(x, 0) =
5

36
5

18
x

36
5 + sin

(
πx
2

)
on γ2,

Table 1 Maximum errors and the order of convergence of approximate solution ṽ with respect to h
and τ for Example 1

(h = 2–μ , τ = 2–λ) (h = 2–(μ+1), τ = 2–(λ+2)) ‖ε2–μ ,2–λ
v ‖ ‖ε2–(μ+1),2–(λ+2)

v ‖ �h,r
v

(2–5, 2–12) (2–6, 2–14) 2.438E–2 6.383E–3 3.820

(2–6, 2–14) (2–7, 2–16) 6.383E–3 1.633E–3 3.909

(2–5, 2–13) (2–6, 2–15) 2.439E–2 6.385E–3 3.820

(2–6, 2–15) (2–7, 2–17) 6.385E–3 1.633E–3 3.910
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Table 2 Maximum errors and the order of convergence of approximate solution ṽ with respect to τ
for Example 1

(h = 2–μ , τ = 2–λ) (h = 2–μ , τ = 2–(λ+1)) ‖ε2–μ ,2–λ
v ‖ ‖ε2–μ ,2–(λ+1)

v ‖ �τ
v

(2–9, 2–6) (2–9, 2–7) 6.087E–2 3.058E–2 1.991

(2–9, 2–7) (2–9, 2–8) 3.058E–2 1.531E–2 1.997

(2–9, 2–8) (2–9, 2–9) 1.531E–2 7.634E–3 2.006

(2–9, 2–9) (2–9, 2–10) 7.634E–3 3.791E–3 2.014

(2–9, 2–10) (2–9, 2–11) 3.791E–3 1.867E–3 2.031

Figure 1 The error function |ε2–7,2–17v | = |̃v – v| for h = 2–7, and τ = 2–17 for Example 1

Figure 2 The maximum errors ‖ε2–9,τv ‖ for h = 2–9, with respect to τ of Example 1

u(0, t) =
5

18
t

18
5 on γ1,

u(1, t) =
5

18
t

18
5 +

5
36

5
18

cos
(
t

18
5
)

+ 1 on γ3, (115)
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Figure 3 The maximum errors ‖εh,2–17v ‖ for τ = 2–17, with respect to h of Example 1

Figure 4 The function v presenting the exact solution ∂xu for Example 1

where f (x, t) = – 5
36 x

36
5 t

13
5 sin(t

18
5 ) + t

13
5 – 31

18 x
26
5 cos(t

18
5 ) + π2

4 sin( πx
2 ). Using the proposed

implicit six point difference scheme (28)–(30) (� = 6) we obtain the approximate solution
ũ by applying the Gauss–Thomas method [12] for solving algebraic system of equations
at each time level for r = 2–ω where ω is nonnegative integer. Next the boundary value
problem for v = ∂u

∂x is constructed from the proposed Problem 2(ii) using the obtained
approximate solution ũ. Furthermore, the approximate solution ṽ for ∂u

∂x is obtained at the
same grid points by solving the system of equations using (94)–(96), and compared on the
grids with the known exact solution v(x, t) = 5

18 x
31
5 cos(t

18
5 ) + π

2 cos( πx
2 ). We use

�̃h,τ
v =

‖ε2–μ ,2–λ

v ‖
‖ε2–(μ+1),2–(λ+1)

v ‖
(116)

to present the order of convergence of ṽ with respect to h and τ . Note that O(h2 + τ 2)
order of convergence corresponds to 	 22 of the quantity by (116). Table 3 shows the
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Figure 5 The grid function v2
–7,2–17 presenting the approximate solution ṽ of ∂xu when h = 2–7, τ = 2–17 for

Example 1

Table 3 Maximum errors and the order of convergence of approximate solution ṽ with respect to h
and τ for Example 2

(h = 2–μ , τ = 2–λ) (h = 2–(μ+1), τ = 2–(λ+1)) ‖ε2–μ ,2–λ
v ‖ ‖ε2–(μ+1),2–(λ+1)

v ‖ �̃h,τ
v

(2–4, 2–13) (2–5, 2–14) 1.0567E–2 3.1449E–3 3.360

(2–5, 2–14) (2–6, 2–15) 3.1449E–3 8.5353E–4 3.685

(2–6, 2–15) (2–7, 2–16) 8.5353E–4 2.2209E–4 3.843

(2–7, 2–16) (2–8, 2–17) 2.2209E–4 5.6628E–5 3.922

maximum errors for h = 2–μ, μ = 4, 5, 6, 7, 8 and τ = 2–λ, λ = 13, 14, 15, 16, 17, respectively,
and the orders �̃h,τ

v for Example 2. The third and fourth columns of this table present the
theoretical upper bound errors given in (97). Figure 6 presents the error function |ε2–7,2–17

v |
for h = 2–7, and τ = 2–17 for Example 2. The maximum errors ‖εh,2–17

v ‖ when τ = 2–17, with
respect to h, is demonstrated by Fig. 7 for Example 2. Figure 8 shows the exact solution
v(x, t) = ∂xu, and the grid function v2–7,2–17 presenting the approximate solution ṽ of ∂xu
when h = 2–7, τ = 2–17 for Example 2.

Example 3

Lu = f (x, t) on QT ,

u(x, 0) = e–x on γ2,

u(0, t) = 1 + 0.001t
25
7 on γ1,

u(1, t) = 0.0001 sin
(
t

25
7
)

+ 0.001t
25
7 + e–1 on γ3, (117)

where f (x, t) = 0.0001 25
7 x 50

7 t 18
7 cos(t 25

7 )+0.001 25
7 t 18

7 –0.0001 50
7

43
7 x 36

7 sin(t 25
7 )–e–x. The ini-

tial function, the boundary functions and the nonhomogeneous term f (x, t) in Example 3
satisfy the conditions (21) of Problem 1(ii). Using the proposed implicit six point difference
problem (28)–(30) (� = 6) we obtain the approximate solution ũ at each time level. Next
the boundary value problem for v = ∂u

∂x is constructed from the proposed Problem 2(ii) us-
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Figure 6 The error function |ε2–7,2–17v | = |̃v – v| when h = 2–7, and τ = 2–17 for Example 2

Figure 7 The maximum errors ‖εh,2–17v ‖ for τ = 2–17, with respect to h for Example 2

ing the obtained approximate solution ũ; then the approximate solution ṽ of v = ∂xu is ob-
tained at the same grid points by solving the system of equations resulting from (94)–(96).
Let v2–μ ,2–λ (x, t) be the approximate solution ṽ at (x, t) when h = 2–μ and τ = 2–λ. The exact
solution v is not given. To verify the order of convergence of the computed solution ṽ to
the exact solution v we compute the solution at grid points with successively reduced step
sizes h and τ by a factor of two and the ratio of the absolute successive errors (see Chap. 2 of
[13]). Table 4 presents v2–μ ,2–λ (x, t) at the grid points (0.125, 1), (0.25, 1), (0.375, 1), (0.5, 1),
(0.625, 1), (0.75, 1) and (0.875, 1) for the pairs (μ,λ) = (5, 13), (6, 14), (7, 15), (8, 16, ) which
means that the step sizes h in x and τ in t are halved successively. Table 5 demonstrates
the absolute error ratios

r1 =
∣∣∣∣v2–5,2–13 (x, 1) – v2–6,2–14 (x, 1)
v2–6,2–14 (x, 1) – v2–7,2–15 (x, 1)

∣∣∣∣,
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Figure 8 The exact solution ∂xu and the grid function v2
–7,2–17 for h = 2–7, τ = 2–17 of Example 2

Table 4 The approximate solution ṽ at some grid points on t = 1 for Example 3

x v2
–5,2–13 (x, 1) v2

–6,2–14 (x, 1) v2
–7,2–15 (x, 1) v2

–8,2–16 (x, 1)

0.125 –0.88218321 –0.88241771 –0.88247701 –0.88249191

0.25 –0.77852029 –0.77872997 –0.77878291 –0.77879622

0.375 –0.68703982 –0.68722539 –0.68727216 –0.68728390

0.5 –0.60630576 –0.60646779 –0.60650853 –0.60651874

0.625 –0.53504253 –0.53518148 –0.53521631 –0.53522502

0.75 –0.47210904 –0.47222525 –0.47225424 –0.47226147

0.875 –0.41647280 –0.41656648 –0.41658968 –0.41659545

r2 =
∣∣∣∣v2–6,2–14 (x, 1) – v2–7,2–15 (x, 1)
v2–7,2–15 (x, 1) – v2–8,2–16 (x, 1)

∣∣∣∣,

and the corresponding orders

p1 = log2

∣∣∣∣v2–5,2–13 (x, 1) – v2–6,2–14 (x, 1)
v2–6,2–14 (x, 1) – v2–7,2–15 (x, 1)

∣∣∣∣,

p2 = log2

∣∣∣∣v2–6,2–14 (x, 1) – v2–7,2–15 (x, 1)
v2–7,2–15 (x, 1) – v2–8,2–16 (x, 1)

∣∣∣∣,

for the considered points at t = 1. By analyzing the values of p1 and p2 in the third and fifth
columns of Table 5, respectively, we conclude that the order of convergence is quadratic in
the two variables x and t on t = 1. Figure 9 illustrates the grid function v2–8,2–16 presenting
the approximate solution ṽ of v = ∂xu when h = 2–8, τ = 2–16 for Example 3.

6 Concluding remarks
Special difference problems of four point and six point implicit schemes for the first deriva-
tive of the solution u(x, t) of the first type boundary value problem for a one dimensional
heat equation with respect to the spatial variable x are given. It is assumed that the initial
function, boundary functions and the nonhomogeneous term in the heat equation possess



Buranay and Farinola Advances in Difference Equations        (2018) 2018:430 Page 20 of 21

Table 5 The absolute error ratios at some grid points on t = 1 and the orders p1, p2 for Example 3

x r1 p1 r2 p2

0.125 3.9544688 1.9835 3.9798658 1.9927

0.25 3.9607102 1.9858 3.9774606 1.9919

0.375 3.9675005 1.9882 3.9838160 1.9942

0.5 3.9777172 1.9917 3.9902057 1.9965

0.625 3.9893770 1.9962 3.9988519 1.9996

0.75 4.0086237 2.0031 4.0096819 2.0035

0.875 4.0379310 2.0136 4.0207972 2.0075

Figure 9 The grid function v2
–8,2–16 presenting the approximate solution ṽ of ∂xu when h = 2–8, τ = 2–16 for

Example 3

a number of derivatives in the variables x and t necessary in this connection for perform-
ing current and subsequent manipulation in approximating ∂u

∂x . We prove that the solution
of the proposed four point and six point difference schemes converge to the exact value
of ∂u

∂x on the grids of order O(h2 + τ ) and O(h2 + τ 2), respectively.

Remark 12 These results can be used in some domain decomposition methods allowing
for parallel computation [14, 15]. Furthermore, the proposed approach may be applicable
to similar equations, given in the phenomena of impact of a moving foot on the transfer
of heat from a constantly heated warm water into the foot immersed within a footbath
[16] and the enhancement of performance by increasing the thermal efficiency of a direct
absorption solar collector based on an alimino-water nanofluid [17].

Remark 13 The proposed approach can also be applied to finding second order deriva-
tives of the solution of the first type boundary value problem for a one dimensional heat
equation and this research will be presented in a subsequent article. Also the methodology
may be extended to a two dimensional heat equation.
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