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Abstract
In this paper, we study the Hopf-zero bifurcation of Oregonator oscillator with delay.
The interaction coefficient and time delay are taken as two bifurcation parameters.
Firstly, we get the normal form by performing a center manifold reduction and using
the normal form theory developed by Faria and Magalhães. Secondly, we obtain a
critical value to predict the bifurcation diagrams and phase portraits. Under some
conditions, saddle-node bifurcation and pitchfork bifurcation occur alongM and N,
respectively; Hopf bifurcation and heteroclinic bifurcation occur along H and S,
respectively. Finally, we use numerical simulations to support theoretical analysis.
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1 Introduction
An oscillatory chemical reaction refers to the reaction system of certain antileather con-
centration showing relatively stable cyclical changes. In 1921, Bray achieved a liquid oscil-
latory reaction in the experiment. In 1964, Zhabotinsky reported some other oscillatory
reactions of this nature [14, 15, 21]. Until the 1970s, Field, Koros, and Noyes proposed the
Oregonator model based on an in-depth study of the BZ reaction. According to Field and
Noyes, the BZ reaction is simplified. In 1979, Tyson assumed that the concentration of the
reactants A = [BrO–

3 ] and B = [BrCH(COOH)2] is independent of time. Therefore we can
give the following reactant concentration equation:

⎧
⎪⎪⎨

⎪⎪⎩

dP
dt = k3AQ – k2PQ + k5AP – 2k4P2,
dQ
dt = k3AQ – k2PQ + 1

2 fk0BW ,
dW
dt = 2k5AP – k0BW ,

where P = [HBrO2], Q = [Br], W = [Ce(IV)]. We will make the following changes in this
system:

x = αP, y = βQ, z = γ W , t = δT ,

where

α ≈ 2k4

k3A
≈ 106 (mol/L)–1, β =

k2

k3A
≈ 2 × 107 (mol/L)–1,
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γ ≈ k4k5B
(k3A)3 ≈ 20 (mol/L)–1, δ = k5B ≈ 4 × 10–3 s–1.

So we can obtain another form of the Oregonator oscillator, the so-called Tyson-type os-
cillator:

⎧
⎪⎪⎨

⎪⎪⎩

ε dx
dt = qy – xy + x(1 – x),

δ
dy
dt = –qy – xy + h1z,

dz
dt = x – z,

where

ε =
k5B
k3A

≈ 4 × 10–2, δ = ε
α

β
≈ 2 × 10–6, q =

2k1k4

k2k3
≈ 10–5, h1 = 2h1.

Because δ is much smaller than ε, the second formula in the system can be approximated
as

y ≈ h1z
q + x

.

This yields a simplified two-dimensional Oregonator model [27] with respect to x and z:

⎧
⎨

⎩

ε dx
dt = x(1 – x) – h1z x–q

x+q ,
dz
dt = x – z,

(1.1)

where x = [HBrO2], z = Ce(IV).
When electric current is applied, the catalyst Ce(IV) is perturbed, and other species are

not affected (see [15]). Since the perturbation term is introduced in the equation dz
dt = x – z,

we rewrite this equation in the following form:

dz
dt

= x – z + kz(t – τ ).

We consider the Oregonator model with delay:

⎧
⎨

⎩

ε dx
dt = x(1 – x) – h1z x–q

x+q ,
dz
dt = x – z + kz(t – τ ),

(1.2)

where ε = 4 × 10–2, δ = 4 × 10–4, q = 8 × 10–4, and h1 ∈ (0, 1) is an adjustable parameter.
Nowadays, many scholars study the Hopf bifurcation or Hopf-zero bifurcation in delay

differential equations, and some results have been obtained (see [1, 2, 4, 5, 7–10, 12, 13,
17, 19, 22, 24, 26–29]). However, to the best of our knowledge, there are no studies on
the Hopf-zero bifurcation of Oregonator oscillator with time delay. Therefore, it is the
far-reaching significance to research the Hopf-zero bifurcation of Oregonator model.

The remainder of the paper is organized as follows. In Sect. 2, we provide stability and
conditions of existence of the Hopf-zero bifurcation by taking the interaction coefficient
and delay as two parameters. In Sect. 3, we use the center manifold theory and normal
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form method [6, 23] to investigate the Hopf-zero bifurcation with original parameters. In
Sect. 4, we give several numerical simulations to support the analytic results. Finally, we
draw the conclusion in Sect. 5.

2 Stability and existence of Hopf-zero bifurcation
Let (x, z) be an equilibrium point of system (1.2). Obviously,

⎧
⎨

⎩

x(1 – x) – h1z x–q
x+q = 0,

z = x
1–k .

Then we have

x(1 – x) –
h1

1 – k
x

x – q
x + q

= 0. (2.1)

There are three roots x = 0, x = x+, and x = x– of Eq. (2.1), where

x± =
1 – h1

1–k – q ±
√

(1 – h1
1–k – q)2 + 4q(1 + h1

1–k )

2
. (2.2)

Therefore we obtain that system (1.2) has three steady-state solutions, (x–, z–), (0, 0), and
(x+, z+).

Obviously, there is a unique positive steady state.

Theorem 2.1 For any ε > 0, q > 0, and h1 > 0, (x+, z+) is the unique positive steady state of
system (1.2).

Proof Let H(x) = x(1–x)– h1
1–k x x–q

x+q . From (2.1) and (2.2) we get that only x+ satisfies H(x) =
0, H(x) > 0 for 0 < x < x+, and H(x) < 0 for x > x+. Furthermore, we have H(x+) = 0 and
H ′(x+) < 0. �

We further mainly study the dynamics of the equilibrium point (x+, z+). If the characteristic
equation of system (1.2) has a simple pair of purely imaginary eigenvalues ±iω, a simple
root 0, and all other roots of the characteristic equation have negative real parts, then the
Hopf-zero bifurcation will occur. Let x = x – x+ and z = z – z+. Then we can vary (1.2) as
the following equivalent system:

⎧
⎨

⎩

dx
dt = 1

ε
((x + x+)(1 – x – x+) – h1(z + z+) (x+x+)–q

(x+x+)+q ),
dz
dt = x – z + kz(t – τ ).

(2.3)

The linearization equation of system (2.3) at (0, 0) is

⎧
⎨

⎩

dx
dt = a1x + a2z,
dz
dt = x – z + kz(t – τ ),

(2.4)
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where a1 = 1
ε
( –2qh1z+

(q+x+)2 + 1 – 2x+) and a2 = 1
ε

qh1–h1x+
q+x+

. The characteristic equation of system
(2.4) is

E(λ) = λ2 – b1λ – b2 – kλe–λτ + ka1e–λτ = 0, (2.5)

where b1 = a1 – 1 and b2 = a1 + a2.
If λ = 0 is the root of Eq. (2.5), then ka1 – b2 = 0. If τ = 0, then system (2.5) becomes

E(λ) = λ2 – (b1 + k)λ = 0.

Therefore we obtain that if τ = 0 and b1 + k < 0, then excluding a single zero eigenvalue,
all the roots of Eq. (2.5) have negative real parts.

Next, we consider the case of τ �= 0. Let iω with ω > 0 be a root of λ2 – b1λ– b2 – kλe–λτ +
ka1e–λτ = 0. Then

–ω2 – b1iω – b2 – kiωe–iωτ + ka1e–iωτ = 0.

Separating the real and imaginary parts, we get

⎧
⎨

⎩

–ω2 – b2 = kω sinωτ – ka1 cosωτ ,

–b1ω = kω cosωτ + ka1 sinωτ .
(2.6)

It follows that ω satisfies

ω4 +
(
2b2 + b2

1 – k2)ω2 + b2
2 – k2a2

1 = 0. (2.7)

Suppose m1 = ω2 and denote u1 = 2b2 + b2
1 – k2, r1 = b2

2 – k2a2
1. Then Eq. (2.7) becomes

m2
1 + u1m1 + r1 = 0. (2.8)

Following [27], we consider the following cases:
(B1) r1 < 0.

Then we find that system (2.5) has a unique positive root m1 = –u1+
√

u2
1–4r1

2 .
(B2) r1 > 0, u1 > 0.

Then system (2.5) has no positive root.
(B3) r1 > 0, u1 < 0.

In this case, if system (2.5) has real positive roots, then |k| is very large, and h is infinitely
close to one, which is a contradiction.

Theorem 2.2 For the quadratic Eq. (2.8), we have:

(i) if r1 < 0, then Eq. (2.5) has a unique positive root m1 = –u1+
√

u2
1–4r1

2 .
(ii) if r1 > 0, then Eq. (2.5) has no positive root.

Suppose that Eq. (2.8) has positive roots. Without loss of generality, we assume that it
has a positive root defined by m. Then Eq. (2.7) has a positive root ω, and ω must satisfy
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the equation

(
ω2 + a1b2

k(ω2 + a2
1)

)2

+
(

ω3 + ω(a2
1 + a2)

k(ω2 + a2
1)

)2

= 1.

According to system (2.6), we obtain

cos(ωτ ) =
ω2 + a1b2

k(ω2 + a2
1)

,

sin(ωτ ) = –
ω3 + ω(a2

1 + a2)
k(ω2 + a2

1)
.

Denote

τj =

⎧
⎨

⎩

1
ω

(arccosβ1 + 2jπ ), α1 ≥ 0,
1
ω

(2π – arccosβ1 + 2jπ ), α1 ≤ 0,

where β1 = ω2+a1b2
k(ω2+a2

1) , α1 = – ω3+ω(a2
1+a2)

k(ω2+a2
1) , j = 0, 1, 2, . . . . Then system (2.5) has a pair of purely

imaginary roots ±iω with τ = τj, and τ = τj, j = 0, 1, 2, . . . , satisfy the equation sin(ωτ ) > 0.
We get k < 0 when (B1) holds, and then

τj =
1
ω

(arccosβ1 + 2jπ ), j ∈ {0, 1, 2, . . .}.

We obtain the transversality conditions as follows.

Theorem 2.3 If r < 0, then d Re{λ(τj)}
dτ

�= 0.

Proof Substituting λ(τ ), τ = τj, into Eq. (2.5), we get

dλ

dτ
=

λka1e–λτ – kλ2e–λτ

2λ – b1λ + τkλe–λτ – ke–λτ – τa1λe–λτ
.

So

(
dλ

dτ

)–1

=
τ (k – a1)
k(a1 – λ)

–
1

λ(a1 – λ)
+

(2 – b1)eλτ

k(a1 – λ)
.

Consequently, we obtain

(
d(Reλ(τ ))

dτ

)–1

τ=τj

= Re

{
τ (k – a1)
k(a1 – λ)

–
1

λ(a1 – λ)
+

(2 – b1)eλτ

k(a1 – λ)

}

τ=τj

=
τa1(k – a1)
k(a2

1 + ω2)
+

ω2

ω4 + a2
1ω

2 +
(2 – b1)(ω2 + b2)

k2(a2
1 + ω2)

�= 0. �

Theorem 2.4 If ka1 = b2, b1 + k < 0, and r1 < 0, then, for τ = τj (j = 0, 1, 2, . . .), system (1.2)
undergoes a Hopf-zero bifurcation at equilibrium (x+, z+).
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3 Normal form for Hopf-zero bifurcation
In this section, we use the center manifold theory and normal form method [6, 23] to
study Hopf-zero bifurcations. The normal form of a Hopf-zero bifurcation for a general
delay-differential equations has been given in the following two papers: one is for a saddle-
node-Hopf bifurcation [11], and the other is for a steady-state Hopf bifurcation [20]. After
scaling t → t/τ , system (2.3) becomes

⎧
⎨

⎩

dx
dt = τ

ε
((x + x+)(1 – x – x+) – h1(z + z+) (x+x+)–q

(x+x+)+q ),
dz
dt = τ (x – z + kz(t – 1)).

(3.1)

Let τ = τ1 +μ1, k = 1+ a2
a1

+μ2, where μ1 and μ2 are bifurcation parameters. Then system
(3.1) can be written as

⎧
⎨

⎩

dx
dt = (τ1 + μ1)(a1x + a2z + M1),
dz
dt = (τ1 + μ1)(x – z + (1 + a2

a1
+ μ2)z(t – 1)),

(3.2)

where M1 = 1
ε
[ h1z+(q–x++1)

(q+x+)2 ]x2 + 1
ε

–2qh1
q+x+

xz + 1
ε

–2qh1x+
(x++q)4 x3 + 1

ε

2qh1
(x++q)3 x2z.

Choose the phase space C = C([–1, 0]; R4) with supremum norm and define Xt ∈ C by
Xt(θ ) = X(t + θ ), –τ ≤ θ ≤ 0, and ‖Xt‖ = sup |Xt(θ )|. Then system (3.2) becomes

Ẋ(t) = L(μ)Xt + F(Xt ,μ), (3.3)

where

L(μ)Xt = (τ1 + μ1)

(
a1x + a2z

x – z + (1 + a2
a1

+ μ2)z(t – 1)

)

and

F(Xt ,μ) =

(
(τ1 + μ1)M1

0

)

,

where L(μ)ϕ =
∫ 0

–1 dη(θ ,μ)ϕ(ξ ) dξ for ϕ ∈ ([–1, 0], R4),

η(θ ,μ) =

⎧
⎪⎪⎨

⎪⎪⎩

0, θ = 0,

–(τ1 + μ1)A, θ ∈ (–1, 0),

–(τ1 + μ1)(A + B), θ = –1,

with

A =

(
a1 a2

1 –1

)

and B =

(
0 0
0 1 + a2

a1

)

.

Consider the linear system

Ẋ(t) = L(0)Xt .
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Between C and C′ = C([0, τ ], Cn∗), the bilinear form is defined by

(
ψ(s),ϕ(θ )

)
= ψ(0)ϕ(0) –

∫ 0

–1

∫ θ

0
ψ(ξ – θ ) dη(θ , 0)ϕ(ξ ) dξ

= ψ(0)ϕ(0) –
∫ 0

–1

∫ θ

0
ψ(ξ – θ ) d

(
Aϕ(θ ) + Bϕ(θ + 1)

)
ϕ(ξ ) dξ

= ψ(0)ϕ(0) –
∫ 0

–1
ψ(ξ + 1)Bϕ(ξ ) dξ ∀ψ ∈ C′,∀ϕ ∈ C,

where ϕ(θ ) = (ϕ1(θ ),ϕ2(θ ),ϕ3(θ )) ∈ C, ψ(s) = (
ψ1(s)
ψ2(s)
ψ3(s)

) ∈ C∗.

We know that L(0) has a pair of purely imaginary eigenvalues ±iω (ω > 0), a simple 0,
and all other eigenvalues have negative real parts. Let Λ = {iω, –iω, 0}, let P be the gener-
alized eigenspace associated with Λ, and let P∗ is the space adjoint with P. Then C can be
decomposed as C = P

⊕
Q, where Q = {ϕ ∈ C : (ψ ,ϕ) = 0 for all ψ ∈ P∗}. We can choose

the bases Φ and Ψ for P and P∗ such that (Ψ (s),Φ(θ )) = I , Φ̇ = ΦJ , and –Ψ = JΨ , where
J = diag(iω, –iω, 0).

We calculate Φ(θ ) and Ψ (s) as follows:

Φ(θ ) =

(
a2

iω–a1
eiwτ1θ a2

–iω–a1
e–iwτ1θ –a2

eiwτ1θ e–iwτ1θ a1

)

and

Ψ (s) =

⎛

⎜
⎝

D1
iω–a1

e–iwτ1s D1e–iwτ1s

D1
iω–a1

eiwτ1s D1e–iwτ1s

–D2 a1D2

⎞

⎟
⎠ ,

where

D1 =
(

a2

(iω – a1)2 + 1 + τ1

(

1 +
a2

a1

))–1

,

D2 =
(
a2 + a2

1 + a1τ1b2
)–1.

Let us enlarge the space C to the following space:

BC =
{
ϕ is a continuous function on [–1, 0), and lim

θ→0–
ϕ(θ ) exists

}
.

Its elements can be written as ψ = ϕ + X0α with ϕ ∈ C, α ∈Cn, and

X0(θ ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

I, θ = 0.

In BC, system (3.3) varies an abstract ODE:

d
dt

Xt = Au + X0F̃(u,μ), (3.4)
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where u ∈ C, and A is defined by

A : C1 → BC, Au = u̇ + X0
[
L(0)u – u̇(0)

]

and

F̃(u,μ) =
[
L(μ) – L0

]
u + F(u,μ).

Then the enlarged phase space BC can be decomposed as BC = P⊕Kerπ . Let Xt = Φx(t)+
ỹ(θ ), where x(t) = (x1, x2, x3)T , namely

⎧
⎨

⎩

x(θ ) = a2
iω–a1

eiwτ1θ x1 + a2
–iω–a1

e–iwτ1θ x2 – a2x3 + y1(θ ),

z(θ ) = eiwτ1θ x1 + e–iwτ1θ x2 + a1x3 + y2(θ ).

Let

Ψ (0) =

⎛

⎜
⎝

ψ11 ψ12

ψ21 ψ22

ψ31 ψ32

⎞

⎟
⎠ =

⎛

⎜
⎝

D1
iω–a1

D1
D1

–iω–a1
D1

–D2 a1D2

⎞

⎟
⎠ .

Equation (3.4) can be expressed as

ẋ = Jz + Ψ (0)F̃
(
Φz + ỹ(θ ),μ

)
,

˙̃y = AQ1ỹ + (I – π )Y0F̃
(
Φz + ỹ(0),μ

)
,

(3.5)

where ỹ(θ ) ∈ Q1 := Q
⋂

C1 ⊂ Kerπ , and AQ1 is the restriction of A as an operator from Q1

to the Banach space Kerπ .
System (3.5) can be rewritten as

⎧
⎨

⎩

ẋ = Jx + 1
2! f

1
2 (x, y,μ) + 1

3! f
1

3 (x, y,μ) + h.o.t.,

ẏ = AQ1 y + 1
2! f

2
2 (x, y,μ) + 1

3! f
2

3 (x, y,μ) + h.o.t.,

where

f 1
2 (x, y,μ) =

⎛

⎜
⎝

ψ11F1
2 (x, y,μ) + ψ12F2

2 (x, y,μ)
ψ21F1

2 (x, y,μ) + ψ22F2
2 (x, y,μ)

ψ31F1
2 (x, y,μ) + ψ32F2

2 (x, y,μ)

⎞

⎟
⎠ ,

f 1
3 (x, y,μ) =

⎛

⎜
⎝

ψ11F1
3 (x, y,μ) + ψ12F2

3 (x, y,μ)
ψ21F1

3 (x, y,μ) + ψ22F2
3 (x, y,μ)

ψ31F1
3 (x, y,μ) + ψ32F2

3 (x, y,μ)

⎞

⎟
⎠
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with

1
2

F1
2 = μ2

[

a1

(
a2

iω – a1
x1 +

a2

–iω – a1
x2 – a2x3 + y1(0)

)

+ a2
(
x1 + x2 + a1x3 + y2(0)

)
]

+ τ1

[
1
ε

[
hz+(q – x+ + 1)

(q + x+)2

](
a2

iω – a1
x1 +

a2

–iω – a1
x2 – a2x3 + y1(0)

)2

+
1
ε

–2qh
q + x+

(
a2

iω – a1
x1 +

a2

–iω – a1
x2 – a2x3 + y1(0)

)
(
x1 + x2 + a1x3 + y2(0)

)
]

,

1
2

F2
2 = μ2

(
a2

iω – a1
x1 +

a2

–iω – a1
x2 – a2x3 + y1(0)

)

– μ2
(
x1 + x2 + a1x3 + y2(0)

)

+
(

1 +
a2

a1

)

μ2
(
e–iwτ1 x1 + eiwτ1 x2 + a1x3 + y2(–1)

)

+ τ1μ1
(
e–iwτ1 x1 + eiwτ1 x2 + a1x3 + y2(–1)

)
,

1
3!

F1
3 =

τ1

ε

–2qhx+

(q + x+)4

(
a2

iω – a1
x1 +

a2

–iω – a1
x2 – a2x3 + y1(0)

)3

+
τ1

ε

2qh
(q + x+)3

(
a2

iω – a1
x1 +

a2

–iω – a1
x2 – a2x3 + y1(0)

)2

× (
x1 + x2 + a1x3 + y2(0)

)
,

F2
3 = 0.

According to [25], (Im(M1
2))c is spanned by

{
z2

1e1, z2z3e1, z1μie1,μ1μ2e1, z1z2e2, z2μie2, z1z3e3, z3μie3
}

, i = 1, 2,

with e1 = (1, 0, 0)T , e2 = (0, 1, 0)T , e3 = (0, 0, 1)T .
(Im(M1

3))c is spanned by

{
z3

1e1, z1z2z3e1, z2
1z2e2, z2

2z3e2, z2
1z3e3, z2z2

3e3
}

.

Then we get

g1
2 (x, 0,μ) = Proj(Im(M1

2))c f 1
2 (x, 0,μ) = ProjS1

f 1
2 (x, 0,μ) + O

(|μ|2),
g1

3 (x, 0,μ) = Proj(Im(M1
3))c f̃ 1

3 (x, 0,μ) = ProjS2
f̃ 1
3 (x, 0, 0) + O

(|μ|2|x| + |μ||x|2),

where S1 and S2 are spanned, respectively, by

z1μie1, z2μie2, z3μie3, i = 1, 2,

and

z3
1e1, z1z2z3e1, z2

1z2e2, z2
2z3e2, z2

1z3e3, z2z2
3e3.

System (3.5) can be transformed on the center manifold in the following normal form:

ẋ = Jx +
1
2

g1
2 (x, 0,μ) +

1
6

g1
3 (x, 0,μ) + h.o.t. (3.6)
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We need to compute g1
2 (x, 0,μ) and g1

3 (x, 0,μ) in (3.6). We can compute 1
2 g1

2 (x, 0,μ):

1
2

g1
2 (x, 0,μ) =

1
2

ProjS1
f 1
2 (x, 0,μ) + ϑ

(|u|2)

=

⎛

⎜
⎝

(a11μ1 + a12μ2)x1 + a13x1x3

(a11μ1 + a12μ2)x1 + a13x1x3

(a21μ1 + a22μ2)x3 + a23x1x2 + a24x2
3

⎞

⎟
⎠ + ϑ

(|u|2),

where

a11 = D1τ1e–iωτ1 ,

a12 = D1

(
a1a2

(iω – a1)2 +
2a2

iω – a1
– 1 +

(

1 +
a2

a1

)

e–iωτ1

)

,

a13 =
D1

iω – a1

[
τ1

ε

hz+(q – x+ + 1)
(q + x+)2

(

–
2a2

2
iω – a1

)

–
2qhτ1

ε(q + x+)

(
a1a2

iω – a1
– a2

)]

,

a21 = a2
1τ1D2, a22 = –a2b1D2,

a23 = –D2

[
τ1

ε

hz+(q – x+ + 1)
(q + x+)2

(
2a2

2
a2

1 – ω2

)

–
τ1

ε

2qh
q + x+

(
a2

iω – a1
+

a2

–iω – a1

)]

,

a24 = –
τ1D2

ε

[
hz+(q – x+ + 1)

(q + x+)2 a2
2 +

2qh
q + x+

a1a2

]

.

Next, we compute g1
3 (x, 0,μ):

1
6

g1
3 (x, 0,μ) =

1
6

ProjKer(M1
2) f̃

1
3 (x, 0,μ)

=
1
6

ProjS2
f̃ 1
3 (x, 0, 0) + ϑ

(|x||u|2 + |x|2|μ|)

=
1
6

ProjS2
f 1
3 (x, 0, 0)

+
1
4

ProjS2

[(
Dxf 1

2
)
(x, 0, 0)U1

2 (x, 0) +
(
Dyf 1

2
)
(x, 0, 0)U2

2 (x, 0)
]

+ ϑ
(|x||u|2 + |x|2|μ|).

We can get ProjS2
f 1
3 (x, 0, 0). Since

1
6

f 1
3 (x, 0, 0) =

τ1

ε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1
–2qhx+
(x++q)4 ( a2

iω–a1
x1 + a2

–iω–a1
x2 – a2x3)3

+ 2qh
(x++q)3 ( a2

iω–a1
x1 + a2

–iω–a1
x2 – a2x3)2

D1
–2qhx+
(x++q)4 ( a2

iω–a1
x1 + a2

–iω–a1
x2 – a2x3)3

+ 2qh
(x++q)3 ( a2

iω–a1
x1 + a2

–iω–a1
x2 – a2x3)2(x1 + x2 + a1x3)

a1D2
–2qhx+
(x++q)4 ( a2

iω–a1
x1 + a2

–iω–a1
x2 – a2x3)3

+ 2qh
(x++q)3 ( a2

iω–a1
x1 + a2

–iω–a1
x2 – a2x3)2(x1 + x2 + a1x3)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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we have

1
6

ProjS2
f 1
3 (x, 0, 0) =

⎛

⎜
⎝

b11x2
1x2 + b12x1x2

3

b11x1x2
2 + b12x2x2

3

b21x1x2x3 + b22x3
3

⎞

⎟
⎠ + ϑ

(|u|2),

where

b11 =
τ1

ε
D1

–2qhx+

(x+ + q)4

(
a2

2
ω2 + a2

1
+

2a3
2

(ω2 + a2
1)(iω – a1)

)

+
τ1

ε
D1

2qh
(x+ + q)3

(
a2

iω – a1
+

a2
2

ω2 + a2
1

)

,

b12 =
τ1

ε
D1

–2qhx+

(x+ + q)4
2a3

2
iω – a1

–
τ1

ε
D1

2qh
(x+ + q)3

2a2
2a1

iω – a1
,

b21 =
τ1

ε
a1D2

2qhx+

(x+ + q)4
6a3

2
ω2 + a2

1
+

τ1

ε
a1D2

2qh
(x+ + q)3

(
2a2

2a1

ω2 + a2
1

+
4a2

1
iω – a1

)

,

b22 =
τ1

ε
a1D2

2qhx+

(x+ + q)4 a3
2 +

τ1

ε
a1D2

2qh
(x+ + q)3 a1a2

2.

Next, we compte ProjS2
[(Dxf 1

2 (x, 0, 0))U1
2 (x, 0)].

From [25] we know that because J is a diagonal matrix, the operators M1
j , j ≥ 2, are

defined in V 5
j (C3), so we have a diagonal representation relative to the canonical ba-

sis {μpxqek : k = 1, 2, 3, p ∈ N
2
0, q ∈ N

3
0, |p| + |q| = j} of V 5

j (C3), where e1 = (1, 0, 0)T , e2 =
(0, 1, 0)T , e3 = (0, 0, 1)T . Clearly, we get

M1
j
(
μpxqek

)
= iω

(
q1 – q2 + (–1)k)μpxqek , k = 1, 2,

M1
j
(
μpxqe3

)
= iω(q1 – q2)μpxqe3, |p| + |q| = j.

So

Ker
(
M1

j
)

= span
{
μpxqek : (q,λ) = λk , k = 1, 2, 3, p ∈N

2
0, q ∈N

3
0, |p| + |q| = j

}

with λ = (λ1,λ2,λ3) = (iω, –iω, 0). The elements of the canonical basis of V 5
2 (C3) are

μ1μ2e1,μ2
i e1,μix1e1,μix2e1,μix3e1, x1x2e1, x1x3e1, x2x3e1, x2

1e1, x2
2e1, x2

3e1,

μ1μ2e2,μ2
i e2,μix1e2,μix2e2,μix3e2, x1x2e2, x1x3e2, x2x3e2, x2

1e2, x2
2e2, x2

3e2,

μ1μ2e3,μ2
i e3,μix1e3,μix2e3,μix3e3, x1x2e3, x1x3e3, x2x3e3, x2

1e3, x2
2e3, x2

3e3, i = 1, 2,

the images of which under 1
iω M1

2 are

–μ1μ2e1, –μ2
i e1, 0, –2μix2e1, –μix3e1, –x1x2e1, 0, –2x2x3e1, x2

1e1, –3x2
2e1, –x2

3e1,

μ1μ2e2,μ2
i e2, 2μix1e2, 0,μix3e2, x1x2e2, 2x1x3e2, 0, 3x2

1e2, –x2
2e2, x2

3e2,

0, 0,μix1e3, –μix2e3, 0, 0, x1x3e3, –x2x3e3, 2x2
1e3, –2x2

2e3, 0, i = 1, 2.
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Hence

U1
2 (x, 0) = U1

2 (x,μ)|μ=0 =
(
M1

2
)–1ProjIm(M1

2)f
1

2 (x, 0, 0)

=
(
M1

2
)–1ProjIm(M1

2)
τ1

ε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1h[(a2hx1 + a2hx2 – a2x3)2 · m
+ n · (a2hx1 + a2hx2 – a2x3)(x1 + x2 + a1x3)]
D1h[(a2hx1 + a2hx2 – a2x3)2 · m
+ n · (a2hx1 + a2hx2 – a2x3)(x1 + x2 + a1x3)]
– D2[(a2hx1 + a2hx2 – a2x3)2 · m
+ n · (a2hx1 + a2hx2 – a2x3)(x1 + x2 + a1x3)]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=
τ1

iωε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1h[m(a2
2h2x2

1 – 2a2
2hhx1x2 + a2

2hx2x3 – 1
3 a2

2h2 – a2
2x2

3)
+ n(a2hx2

1 – a2(h + h)x1x2 – 1
3 a2hx2

2 – 1
2 a2(a1h + 1)x2x3

+ a1a2x2
3)]

D1h[m( 1
3 a2

2h2x2
1 – a2

2h2x2
2 + a2

2x2
3 + 2a2

2hhx1x2 – a2
2hx1x3)

+ n( 1
3 a2hx2

1 + 1
2 a2(a1h – 1)x1x3 – a2hx2

2 + 1
2 a1a2hx2x3

– a1a2x2
3 + a2(h + h)x1x2)]

– D2[m( 1
2 a2

2h2x2
1 – 1

2 a2
2h2x2

2 – 2a2
2hx1x3 + 2a2

2hx2x3)
+ n( 1

2 a2hx2
1 + a1a2hx1x3 – 1

2 a2hx2
2 – a1a2hx2x3

– a2x1x3 + a2x2x3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where m = hz+(q–x++1)
(q+x+)2 , n = –2qh

q+x+
, and h = 1

iω–a1
.

Therefore we obtain

1
4

ProjS2

[(
Dxf 1

2 (x, 0, 0)
)
U1

2 (x, 0)
]

=

⎛

⎜
⎝

c11x2
1x2 + c12x1x2

3

c11x1x2
2 + c12x2x2

3

c21x1x2x3 + c22x3
3

⎞

⎟
⎠ ,

where

c11 =
τ 2

1
iωε2

[

D2
1h2m2(–2a4

2h3h
)

+ D2
1h2mn

(
–a3

2h3) + D2
1h2mn

(
–3a3

2h2h
)

+ D2
1h2n2a2

2h(–h – h) + D1D1hhm2
(

16
3

a4
2h2h2

)

+ D1D1hhmn
(

14
3

a3
2h2h +

14
3

a3
2hh2 + a2

2h2 + a2
2hh

)

+ D1D1hhn2
(

2
3

a2
2hh

)

+ D1D2hm2(a4
2h2h

)
+ D1D2hmn

(
a3

2hh
)

– D1D2hmn
(

1
2

a1a3
2h2h –

1
2

a3
2h2

)

– D1D2hn2
(

1
2

a1a2
2hh –

1
2

a2
2h
)]

,



Cai et al. Advances in Difference Equations        (2018) 2018:438 Page 13 of 21

c12 =
τ 2

1
iωε2

[

D2
1h2m2(–2a4

2h2) + 2D2
2h2mna3

2
(
a1h2 + h

)
+ D1h2n2(2a1a2

2h
)

+ D1D1hhm2(4a4
2hh

)
+ D1D1hhmn

(
–4a1a3

2hh + 2a3
2h + 2a3

2h
)

+ D1D1hhn2
(

–
3
2

a1a2
2(h + h) +

1
2

a2
2
(
a2

1hh + 1
)
)

+ D1D2hm2(4a4
2h
)

– D1D2hmn
(
6a1a3

2h – 2a3
2
)

+ 2D1D2hn2(a2
1a2

2h – a1a2
2
)
]

,

c21 =
τ 2

1
iωε2

[
–D1D2hm2(6a4

2h2h
)

– D1D2hmn
(
–3a1a3

2h2h + 6a3
2hh + 3a3

2h2)

– D1D2hn2(–2a1a2
2hh + 2a2

2h – a1a2
2h2 + a2

2h
)

+ D1D2hm2(6a4
2hh2)

– D1D2hmn
(
3a1a3

2hh2 – 3a3
2h2 – 6a3

2hh
)

– D1D2hn2(2a1a2
2hh – 2a2

2h + a1a2
2h2 – a2

2h
)]

,

c22 =
τ 2

1
iωε2

[
–D1D2hm2(2a4

2h
)

– D1D2hmn
(
a3

2 – 3a1a3
2h
)

– D1D2hn2(a2
1a2

2h – a1a2
2
)

– D1D2hm2(–2a4
2h
)

– D1D2hmn
(
3a1a3

2h – a3
2
)

+ D1D2hn2(a2
1a2

2h – a1a2
2
)]

.

Finally, we can compute ProjS2
[(Dyf 1

2 )(x, 0, 0)U2
2 (x, 0)]. Define h = h(x)(θ ) = U2

2 (x, 0) and
write

h(θ ) =

(
h(1)(θ )
h(2)(θ )

)

= h200x2
1 + h020x2

2 + h002x2
3 + h110x1x2 + h101x1x3 + h011x2x3,

where h200, h020, h002, h110, h101, h011 ∈ Q1. (M2
2h)(x) = f 2

2 (x, 0, 0) decides the coefficients of
h, which is equivalent to

DxhJx – AQ1 (h) = (I – π )X0F2(Φx, 0).

We use the definitions of AQ1 and π to obtain

ḣ – DxhJx = Φ(θ )Ψ (0)F2(Φx, 0),

h(0) – Lh = F2(Φx, 0),

where ḣ is the derivative of h(θ ) with respect to θ . Let

F2(Φx, 0) = A200x2
1 + A020x2

2 + A002x2
3 + A110x1x2 + A101x1x3 + A011x2x3,

where Aijk ∈ C, 0 ≤ i, j, k ≤ 2, i+ j+k = 2. We can compare the coefficients of x2
1, x2

2, x2
3, x1x2,

x1x3, x2x3, and we get that h020 = h200, h011 = h101, and the following differential equations
are satisfied by h200, h011, h110, h002, respectively:

⎧
⎨

⎩

ḣ200 – 2iωτ1h200 = Φ(θ )Ψ (0)A200,

ḣ200(0) – L(h200) = A200,
(3.7)
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⎧
⎨

⎩

ḣ101 – iωτ1h101 = Φ(θ )Ψ (0)A101,

ḣ101(0) – L(h101) = A101,
(3.8)

⎧
⎨

⎩

ḣ110 = Φ(θ )Ψ (0)A110,

ḣ110(0) – L(h110) = A110,
(3.9)

⎧
⎨

⎩

ḣ002 = Φ(θ )Ψ (0)A002,

ḣ002(0) – L(h002) = A002,
(3.10)

where

A200 =

(
τ1a2h(ma2h + n)

0

)

, A020 =

(
τ1a2h̄(ma2h̄ + n)

0

)

,

A002 =

(
τ1a2(ma2 – na1)

0

)

, A110 =

(
τ1a2h̄(2mhh̄ + nh + h̄n)

0

)

,

A101 =

(
τ1a2(–2ma2h + nha1 – n)

0

)

, A011 =

(
τ1a2(–2ma2h̄ + a1nh̄ – n)

0

)

.

Since

F2(ut , 0) =

(
τ1
ε

(mx2 + nxz)
0

)

,

we have

f 1
2 (x, y, 0) = Ψ (0)F1(Φx + y, 0)

=
τ1

ε

⎛

⎜
⎝

D1h D1

D1h D1

–D2 a1D2

⎞

⎟
⎠

⎛

⎜
⎜
⎜
⎝

m(a2hx1 + a2hx2 – a2x3 + y1(0))2

+ n(a2hx1 + a2hx2 – a2x3 + y1(0))
× (x1 + x2 + a1x3 + y2(0))
0

⎞

⎟
⎟
⎟
⎠

=
τ1

ε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1h[m(a2hx1 + a2hx2 – a2x3 + y1(0))2)
+ n(a2hx1 + a2hx2 – a2x3 + y1(0))(x1 + x2 + a1x3 + y2(0))]
D1h[m(a2hx1 + a2hx2 – a2x3 + y1(0))2)
+ n(a2hx1 + a2hx2 – a2x3 + y1(0))(x1 + x2 + a1x3 + y2(0))]
– D2[m(a2hx1 + a2hx2 – a2x3 + y1(0))2)
+ n(a2hx1 + a2hx2 – a2x3 + y1(0))(x1 + x2 + a1x3 + y2(0))]

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

which gives

1
4

Dyf 1
2 |y=0,μ=0(h) =

τ1

2ε

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

D1h[m(a2hx1 + a2hx2 – a2x3)
+ n(a2hx1 + a2hx2 – a2x3 + x1 + x2 + a1x3]h(1)(0)
D1h[m(a2hx1 + a2hx2 – a2x3)
+ n(a2hx1 + a2hx2 – a2x3 + x1 + x2 + a1x3]h(1)(0)
– D2[m(a2hx1 + a2hx2 – a2x3)
+ n(a2hx1 + a2hx2 – a2x3 + x1 + x2 + a1x3]h(1)(0)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Thus

1
4

ProjS2
Dyf 1

2 |y=0,μ=0U2
2 =

⎛

⎜
⎝

d11x2
1x2 + d12x1x2

3

d11x1x2
2 + d12x2x2

3

d21x1x2x3 + d22x1x3
3

⎞

⎟
⎠ ,

where

d11 =
τ1

ε
D1h(m + n)a2

(
h · h(1)

110(0) + h · h(1)
200(0)

)
+

τ1

ε
D1hn

(
h(1)

110(0) + h(1)
200(0)

)
,

d12 =
τ1

ε
D1h(m + n)a2

(
h · h(1)

002(0) – h(1)
101(0)

)
+

τ1

ε
D1hn

(
h(1)

002(0) + a1h(1)
101(0)

)
,

d21 =
τ1

ε
D2h(m + n)a2

(
h · h(1)

011(0) + h · h(1)
101(0) – h(1)

110(0)
)

+
τ1

ε
D2hn

(
a1 · h(1)

011(0) + h(1)
101(0) + h(1)

011(0)
)
,

d22 = –D2h(m + n)a2h(1)
002(0) + D2hna1h(1)

002(0).

So, we can obtain

1
6

g1
3 (x, 0,μ) =

⎛

⎜
⎝

(b11 + c11 + d11)x2
1x2 + (b12 + c12 + d12)x1x2

3

(b11 + c11 + d11)x1x2
2 + (b12 + c12 + d12)x2x2

3

(b21 + c21 + d21)x1x2x3 + (b22 + c22 + d22)x3
3

⎞

⎟
⎠ + ϑ

(|x||μ|2 + |x|2|μ|).

Therefore, on the center manifold, the system ẋ = Jx + 1
2 g1

2 (x, 0,μ) + 1
6 g1

3 (x, 0,μ) + h.o.t.
becomes

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = (a11μ1 + a12μ2)x1 + a13x1x3 + (b11 + c11 + d11)x2
1x2

+ (b12 + c12 + d12)x1x2
3 + h.o.t.,

ẋ2 = (a11μ1 + a12μ2)x2 + a13x2x3 + (b11 + c11 + d11)x1x2
2

+ (b12 + c12 + d12)x2x2
3 + h.o.t.,

ẋ3 = (a21μ1 + a22μ2)x3 + a23x1x2 + a24x2
3 + (b21 + c21 + d21)x1x2x3

+ (b22 + c22 + d22)x3
3 + h.o.t.

(3.11)

By changing variables x1 = ρ1 – iρ2, x2 = ρ1 + iρ2, x3 = ρ3, and introducing the cylindrical
coordinates ρ1 = r cos θ , ρ2 = r sin θ , ρ3 = γ , r > 0, system (3.11) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ṙ = α1(μ)r + β11rγ + β30r3 + β12rγ 2 + h.o.t.,

γ̇ = α2(μ)γ + m20r2 + m02γ
2 + m21r2γ + m03γ

3 + h.o.t.,

θ̇ = –ω + (Im[a11]μ1 + Im[a12]μ2),

where

α1(μ) = Re[a11]μ1 + Re[a12]μ2, β11 = Re[a13], β30 = Re[b11 + c11 + d11],

β12 = Re[b12 + c12 + d12], α2(μ) = a21μ1, m20 = a23, m02 = a24,

m21 = b21 + c21 + d21, m03 = b22 + c22 + d22.
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Therefore we can get the system in the plane (r,γ ):

⎧
⎨

⎩

ṙ = α1(μ)r + β11rγ + β30r3 + β12rγ 2 + h.o.t.,

ζ̇ = α2(μ)γ + m20r2 + m02γ
2 + m21r2γ + m03γ

3 + h.o.t.
(3.12)

From [25] we know that Eq. (3.12) becomes

⎧
⎪⎨

⎪⎩

ṙ = (α1(μ) + β11δ + β12δ
2)r + (β11 + 2β12δ)rγ + β30r3 + β12rγ 2,

γ̇ = (α2(μ)δ + m02δ
2 + m03δ

3) + (α2(μ) + 2m02δ + 3m03δ
2)γ

+ (m20 + m21δ)r2 + (m02 + 3m03δ)γ 2 + m21r2γ + m03γ
3.

(3.13)

Choose δ = δ(μ) such that

α2(μ) + 2m02δ + 3m03δ
2 = 0.

To simplify the above system, we only discuss the case of m20 �= 0, m03 �= 0. Clearly, for
small α2(μ), the equation has two real roots. We take

δ =

⎧
⎨

⎩

1
3m03

[–m02 +
√

m2
02 – 3m03α2(μ)] if m02 > 0,

1
3m03

[–m02 –
√

m2
02 – 3m03α2(μ)] if m02 < 0.

Then δ = δ(μ) is differentiable at μ = 0, and δ(0) = 0.
Define k1 = α1(μ) + β11δ + β12δ

2, k2 = α2(μ)δ + m02δ
2 + m03δ

3, a = β11 + 2β12δ, b = m20 +
m21δ, c = m02 + 3m03δ and choose x = r, y = γ . Then Eq. (3.13) becomes

⎧
⎨

⎩

ẋ = k1x + axy + β30x3 + β12xy2,

ẏ = k2 + bx2 + cy2 + γ21x2y + γ03y3.
(3.14)

Let

x → √|c|x, y → √|b|y, t → –c
√|b|t

and

η1 = –
k1

c
√|b| , η2 = –

k2

c|b| .

Then system (3.14) becomes

⎧
⎨

⎩

ẋ = η1x + Bxy + d1x3 + d2xy2,

ẏ = η2 + ηx2 – y2 – y2 + d3x2y + d4y3,
(3.15)

where

B = –
a
c

�= 0, η = – sgn(bc)
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and

d1 = –
β30|c|
c
√|b| , d2 =

√|b|β12

c
, d3 = –

m21|c|
c
√|b| , d4 = –

√|b|m03

c
.

According to [25], we assume that

K3 = η

(
2
B

+ 2
)

d1 +
2
B

d2 + ηd3 + 3d4 �= 0.

For small η1 and η2, the qualitative behavior of (3.15) near (0, 0) is the same as that of the
following system (see [9]):

⎧
⎨

⎩

ẋ = η1x + Bxy + xy2,

ẏ = η2 – x2 – y2.
(3.16)

In Eq. (3.16), there are two trivial equilibrium points E1,2 = (0,±√
η2),η2 > 0, and two

nontrivial equilibrium points E3,4 = (
√

1
2 B(–B ±√

B2 – 4η1) + η1 + η2, 1
2 (–B±√

B2 – 4η1)).
In [3] and [16], we can find the complete bifurcation diagrams of system (3.13). Here we

list some of them.

Theorem 3.1
(a) If B < 0, then the bifurcation diagram of system (3.13) consists of the origin and the

following curves:

M =
{

(η1,η2) : η2 = 0,η1 �= 0
}

,

N =
{

(η1,η2) : η2 =
1

B2 η2
1 + ϑ

(
η3

1
)
,η1 �= 0

}

.

Along M and N , a saddle-node bifurcation and pitchfork bifurcation occur,
respectively. System (3.13) has no periodic orbits. Moreover, if (η1,η2) is in the region
between M and N , then the solution of system (3.13) goes asymptotically to one of the
equilibrium points E1, E2, and E3.

(b) If B > 0, then the bifurcation diagram of system (3.13) consists of the origin, the curves
M and N , and the following curves:

H =
{

(η1,η2) : η1 = 0,η2 > 0
}

,

S =
{

(η1,η2) : η1 = –
B

3B + 2
η2 + ϑ

(|η2|3/2),η2 > 0
}

.

Along M and N , we have exactly the same bifurcation as in (a). Along H and S, a
Hopf bifurcation and a heteroclinic bifurcation occur, respectively. If (η1,η2) lies
between the curves H and S, then system (3.13) has a unique limit cycle, which is
unstable and becomes a heteroclinic orbit when (η1,η2) ∈ S.

Figures 1 and 2 show (a) and (b) of Theorem 3.1, respectively.
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Figure 1 When B < 0, the bifurcation diagrams and phase portraits of system (3.13) (see [18])

Figure 2 When B > 0, the bifurcation diagrams and phase portraits of system (3.13) (see [18])

4 Numerical simulations
In this section, we give some examples to explain the theoretical results. Set q = 8 × 10–4,
h = 2

3 , k = –2.5, and ε = 4 × 10–2 and consider the following system:

⎧
⎨

⎩

dx
dt = 1

ε
(x(1 – x) – hz x–u

x+u ),
dz
dt = x – z + kz(t – τ ).

By calculations we obtain a11 = 0.8842 – 0.76654i, a12 = –1.5560 + 1.1531, a13 = 2.1439 –
1.3414i, a21 = 2.9430, a22 = 2.4523, a23 = –0.0483, a24 = –1.6154, b11 = –0.5236 + 0.0396i,
b12 = –1.0801 + 1.4187i, b21 = –2.0122 + 0.0853i, b22 = –1.8473, c11 = 0.0187 – 0.01301i,
c12 = 0.0046 – 0.0033i, c21 = –0.0171, c22 = –0.0130, d11 = –0.0005814 – 0.004575i, d12 =
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Figure 3 The system is asymptotically stable around the equilibrium point for (μ1,μ2) = (–0.17, –0.10). The
green line represents x, the red line represents z. Waveform diagram for variable of x, z (left). Phase diagram for
variable (x, z) (right)

Figure 4 The system has an asymptotically stable periodic orbit near τ1 for (μ1,μ2) = (0.11, 0.10). The green
line represents x, the red line represents z. Waveform diagram for variable of x, z (left). Phase diagram for
variable (x, z) (right)

–0.0007235 – 0.002548i, d21 = –0.008275, d22 = –0.002301; the equilibrium point is
(0.8075, 0.2307), and τ1 = 1.6735. For small μ, we obtain k3 �= 0.

5 Conclusions
In this article, we have discussed the Hopf-zero bifurcation of Oregonator oscillator with
delay. We thoroughly analyze the distribution of the eigenvalues of the corresponding
characteristic equation and find some specific conditions ensuring that all the eigenval-
ues have negative real parts. We also can discover the factors that make system (1.2) un-
dergo a Hopf-zero bifurcation at equilibrium (x+, z+). Meanwhile, by using the normal
form method and the center manifold theorem we have derived the normal form of the
reduced system on the center manifold and discussed the Hopf-zero bifurcation with pa-
rameters in system (1.2). Besides, we have obtained bifurcation diagrams and phase por-
traits of system (3.13) when B > 0 and B < 0, respectively. We also note that a saddle-node
bifurcation and pitchfork bifurcation occur along M and N , respectively, and a Hopf bifur-
cation and a heteroclinic bifurcation occur along H and S, respectively. Finally, numerical
stimulations (see Figure 3, 4 and 5) have been given to illustrate the theoretical results.

Our work is a further study of the Oregonator oscillator, which will be useful in the re-
search of the complex phenomenon caused by high codimensional bifurcation of a delay-
differential equation.
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Figure 5 Waveform diagram for variable of x, z. The first two figures show that when τ = 1.50 < τ10, the
system is stable around the equilibrium point. When τ = 1.80 > τ10, the next two figures show that the
system is unstable around the equilibrium point
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