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Abstract
This paper presents a new guaranteed cost control for exponential stability of a
nonlinear system with mixed time-delays in state and feedback control. The
considered mixed time-delays are both discrete and distributed time-varying delays,
but not necessarily differentiable. The proposed conditions allow us to design the
state feedback controllers which stabilize the closed-loop system. By constructing an
appropriate Lyapunov–Krasovskii functional, new delay-dependent sufficient
conditions for the existence of guaranteed cost control are given in terms of linear
matrix inequalities (LMIs). Moreover, we design new quadratic cost functions and
minimize their upper bound. Finally, numerical examples are given to illustrate the
effectiveness and improvement over some existing results in the literature.
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1 Introduction
In fact, nonlinear systems for modeling the behavior of many engineering systems, such as
offshore platforms, earthquake dynamics, electronic circuits, and so on have been widely
explored. In some practical nonlinear systems, there are many kinds of nonlinearities, and
it is quite difficult to handle all nonlinearities in a single unified framework. Therefore,
specialized state observers are designed for different nonlinearities in nonlinear systems
[1–7]. Time-delay naturally appears in most real world systems, for instance, aircraft stabi-
lization, ship stabilization, chemical engineering systems, nuclear reactor, population dy-
namic model, neural network, biological modeling, electrical networks and systems with
lossless transmission lines. It is well known that the existence of time-delay may be the
cause for instability and poor performance of the system. Therefore, the problem of stabil-
ity of time-delay systems has thus received considerable attention during the past several
decades [8–14].

Recently, the basic theoretical and practical problem of exponential stability and control
of a delayed nonlinear system has also been investigated by some researchers [15–18] be-
cause it is also an important index to obtain the convergence rates of prescribed time-delay
systems. In [15], the problem of exponential stabilization of nonlinear dynamical systems
with delayed perturbations was studied by constructing a quadratic Lyapunov functional.
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Dong et al. [16] investigated exponential stabilization problem for a class of uncertain non-
linear systems with time delay. Based on the Lyapunov–Krasovskii functional approach,
sufficient conditions for exponential stabilization of the system have been presented in
terms of a set of matrix inequalities. In [17], the problem of exponential stabilization of
nonlinear systems with interval time-varying delays was studied via feedback control. Un-
fortunately, there have been few papers so far related to the topic of exponential stabiliza-
tion criteria of a the nonlinear system with interval and distributed time-varying delays
via hybrid feedback control. This exponential stabilization of a nonlinear system remains
an open problem and it has to be investigated more.

On the other hand, many practical applications of nonlinear systems demand the de-
sign of controllers that not only stabilize the system but also minimize a target function,
namely the cost function. Thus, the guaranteed cost control technique is an important
and useful tool to design stabilizing controllers that guarantee a specified value of the
closed-loop cost function. For guaranteed cost control, many valuable results about this
topic have been reported for linear systems [19–23], nonlinear systems [17, 24–27], neu-
ral network [28–31], complex dynamical network [32–35], and other systems. In [23], the
dynamic output feedback guaranteed cost control for linear systems with interval time-
varying delays in both states and outputs was investigated. The proposed controller ap-
plied only the delayed output measurement to stabilize the closed-loop system and guar-
antee an adequate level of system performance. On the other hand, a linear–quadratic
cost function is studied as a performance measure for the closed-loop system. An optimal
cost controller for a linear system with mixed time-varying delays in state and control has
been considered in [22]. Moreover, the problem of robust finite-time stabilization with
guaranteed cost control for a class of delayed neural networks is considered in [29] with
nonlinear quadratic cost functions as a delay performance measure for the closed-loop
system. In [17], by applying nonlinear quadratic cost functions, the author studied state
feedback guaranteed cost control of nonlinear systems with time-varying delay. So far, un-
fortunately, there have been no papers related to the topic of guaranteed cost control for
an exponentially stable nonlinear system with nonlinear quadratic cost functions includ-
ing both discrete and distributed delays as their performance measure, simultaneously.
Therefore, it is challenging to solve this guaranteed cost problem for nonlinear system
with mixed time-delays.

Based on the above discussions, we shall handle the new guaranteed cost control for
exponential stability of nonlinear systems with mixed time-delays. The main contributions
of this paper are given as follows:

• Nonlinear quadratic cost functions are considered, including both discrete and
distributed delays as their performance measure for a closed-loop system. And

J =
∫ ∞

0

[
xT (t)Z1x(t) + xT(

t – h1(t)
)
Z2x

(
t – h1(t)

)
+ uT (t)Y1u(t)

+
(∫ t

t–d1(t)
xT (s) ds

)
Z3

(∫ t

t–d1(t)
x(s) ds

)]
dt

is first proposed to analyze the problem of guaranteed cost control for a class of
nonlinear systems with mixed time-varying delays, which is different from
[17, 22, 23, 29, 31].
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• The mixed time-varying delays in state and control input, which consist of discrete
and distributed delays, are considered without assuming the differentiability of the
time-varying delays.

• The upper bound of given quadratic cost functions is minimized by guaranteed cost
control technique.

The proposed conditions allow us to design the state feedback controllers which stabilize
the closed-loop system. By constructing an appropriate Lyapunov–Krasovskii functional,
new delay-dependent sufficient conditions for the existence of guaranteed cost control are
given in terms of linear matrix inequalities (LMIs). Finally, numerical examples are given
to illustrate the effectiveness and improvement over some existing results in the literature.

The outline of the paper is organized as follows. Section 2 presents the definitions and
some well-known technical propositions for the proof of the main result. Sufficient con-
ditions for the existence of guaranteed cost feedback control for exponential stability of
nonlinear system with mixed time-varying delays and numerical examples for showing the
effectiveness of the result are presented in Sects. 3–4. The paper ends with conclusions
and cited references.

2 Model description and mathematic preliminaries
Notations The following notations will be used in this paper: R+ denotes the set of all real
nonnegative numbers; Rn denotes the n-dimensional space and ‖·‖ denotes the Euclidean
vector norm; An×m denotes the space of all n × m matrices; AT denotes the transpose
of matrix A; A is symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes the
set of all eigenvalues of A; λmin(A) = min{Reλ;λ ∈ λ(A)}; λmax(A) = max{Reλ;λ ∈ λ(A)};
xt = {x(t + s) : s ∈ [–h, 0]}; ‖xt‖ = sups∈[–h,0] ‖x(t + s)‖; C([0, t],Rn) denotes the set of all Rn-
valued continuous functions on [0, t]; L2([0, t],Rm) denotes the set of all Rm-valued square
integrable functions on [0, t].

Matrix A is called positive definite (A > 0) if xT Ax > 0 for all x ∈ R
n, x �= 0; matrix A is

called semi-positive definite (A ≥ 0) if xT Ax ≥ 0 for all x ∈R
n; A > B means A – B > 0; the

symmetric term in a matrix is denoted by ∗.

Consider the nonlinear system with mixed time-varying delays as follows:

ẋ(t) = Ax(t) + Bx
(
t – h1(t)

)
+ C

∫ t

t–d1(t)
x(s) ds

+ f
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
+ U(t),

U(t) = D1u(t) + D2u
(
t – h2(t)

)
+ D3

∫ t

t–d2(t)
u(s) ds,

x(t) = φ(t), t ∈ [–d3, 0], d3 = max{h1M, h2, d1, d2},

(1)

where x(t) ∈ R
n, u(t) ∈ R

m are the state and control, respectively, the control u(·) ∈
L2([0, t],Rm), u(t) = Kx(t), K is a constant matrix gain; φ(t) ∈ C([–d3, 0],Rn) is the initial
function with the norm

‖φ‖ = sup
t∈[–d3,0]

√∥∥φ(t)
∥∥2 +

∥∥φ̇(t)
∥∥2,
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while A, B, C, D1, D2, D3 are given constant matrices with appropriate dimensions. The
delay functions h1(t), h2(t), d1(t) and d2(t) satisfy the conditions:

0 ≤ h1m ≤ h1(t) ≤ h1M, 0 ≤ h2(t) ≤ h2,

0 ≤ d1(t) ≤ d1, 0 ≤ d2(t) ≤ d2, h12 = h1M – h1m,

where h2(t) and d2(t) are given functions; f (t, x(t), x(t – h1(t)),
∫ t

t–d1(t) x(s) ds, u(t)) : R+ ×
R

n ×R
n ×R

n ×R
m → R

n is a given continuous function satisfying f (t, 0, 0, 0, 0) = 0, ∀t ∈
R

+, and f (t, x, y, z, u) is globally Lipschitz with respect to (x, y, z, u), such that

∃a, b, c, d > 0:
∥∥f (t, x, y, z, u)

∥∥ ≤ a‖x‖ + b‖y‖ + c‖z‖ + d‖u‖,

∀(t, x, y, z, u) ∈R
+ ×R

n ×R
n ×R

n ×R
m. (2)

Moreover, throughout this paper, we define the following new nonlinear quadratic cost
function of the associated system (1) as follows:

J =
∫ ∞

0

[
xT (t)Z1x(t) + xT(

t – h1(t)
)
Z2x

(
t – h1(t)

)
+ uT (t)Y1u(t)

+
(∫ t

t–d1(t)
xT (s) ds

)
Z3

(∫ t

t–d1(t)
x(s) ds

)]
dt, (3)

where Z1, Z2, Z3 ∈ R
n×n and Y1 ∈R

m×m are positive definite matrices.

Remark 1 This is the first time such a new nonlinear quadratic cost function is defined. If
Z3 = 0, the quadratic cost function (3) turns into the quadratic cost function of Niamsup
and Phat [17], and if Z2 = 0 and Z3 = 0, the quadratic cost function (3) turns into the
quadratic cost function of Thuan and Phat [22]. We can see that the quadratic cost func-
tions of earlier works are included in our work, which can be regarded as a special case of
the quadratic cost function.

The objectives of this paper are to design a feedback controller u(t) = Kx(t) and a finite
number J∗ > 0, such that the result of the closed-loop system

ẋ(t) = (A + D1K)x(t) + Bx
(
t – h1(t)

)
+ C

∫ t

t–d1(t)
x(s) ds

+ f
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, Kx(t)

)

+ D2u
(
t – h2(t)

)
+ D3

∫ t

t–d2(t)
u(s) ds (4)

is exponentially stable and the value J(u) ≤ J∗.
To get the main result in this paper, the definitions of exponential stability are introduced

as follows.
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Definition 2.1 ([3]) Consider an α > 0. The zero solution of closed-loop system (4) is α-
exponentially stabilizable if there exists a positive number N > 0 such that every solution
x(t,φ) satisfies the following condition

∥∥x(t,φ)
∥∥ ≤ Ne–αt‖φ‖, ∀t ∈R

+.

The guaranteed cost control problem to be addressed in this section is formulated as
follows.

Definition 2.2 Consider the control system (1). If there exist a continuous stabilizing state
feedback control law u∗(t) = Kx(t) and a positive number J∗ such that the zero solution of
the closed-loop system (4) is exponentially stable and the value (3) satisfies J(u∗) ≤ J∗ then
the cost value J∗ is a guaranteed cost value, u∗(t) is a guaranteed cost controller of the
system.

Next, we present some preliminary propositions, which are needed in the proof of our
main results.

Proposition 2.3 ([8], Cauchy inequality) For any symmetric positive definite matrix N ∈
Mn×n and x, y ∈ R

n we have

±2xT y ≤ xT Nx + yT N–1y.

Proposition 2.4 ([8], Schur complement lemma) Given constant symmetric matrices X, Y
and Z with appropriate dimensions satisfying X = XT , Y = Y T > 0, one has X + ZT Y –1Z < 0
if and only if

[
X ZT

∗ –Y

]
< 0 or

[
–Y Z
∗ X

]
< 0.

Proposition 2.5 ([12]) For any constant matrix Z = ZT > 0 and positive numbers h, h̄ such
that the following integrals are well defined, one has

(i) –
∫ t

t–h
x(s)T Zx(s) ds ≤ –

1
h

(∫ t

t–h
x(s) ds

)T

Z
(∫ t

t–h
x(s) ds

)
,

(ii) –
∫ –h

–h̄

∫ t

t+s
x(τ )T Zx(τ ) dτ ds ≤ –

2
h̄2 – h2

(∫ –h

–h̄

∫ t

t+s
x(τ ) dτ ds

)T

Z

×
(∫ –h

–h̄

∫ t

t+s
x(τ ) dτ ds

)
.

Proposition 2.6 ([12]) Let f1, f2, . . . , fN : Rm → R have positive values in an open subset D
of Rm. Then, the reciprocally convex combination of fi over D satisfies

min
{ri|ri>0,

∑
i ri=1}

∑
i

1
ri

fi(t) =
∑

i

fi(t) + max
gi,j(t)

∑
i�=j

gi,j(t)
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subject to
{

gi,j : Rm →R, gj,i(t) = gi,j(t),

[
fi(t) gi,j(t)

gi,j(t) fj(t)

]
≥ 0

}
.

3 Guaranteed cost control for exponential stability of a nonlinear system
In this section, based on Lyapunov–Krasovskii stability theory, the guaranteed cost control
of exponential stability for a nonlinear system with mixed time-varying delays is studied.
The following theorem presents a sufficient condition for the existence of the guaranteed
cost control laws for the exponential stability of the nonlinear system (1).

Theorem 3.1 The nonlinear system (1) with the quadratic cost function (3) is exponen-
tially stabilized with convergence rate α > 0 if there exist symmetric positive definite matri-
ces P, Q1, Q2, R1, R2, R3, R4, S1, T1, T2, W1, W2 and W3 satisfying the following LMI:

� =

⎡
⎢⎣

�11 �12 �13

∗ �22 �23

∗ ∗ �33

⎤
⎥⎦ < 0, (5)

where

�11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1,1 M1,2 M1,3 M1,4 M1,5

∗ M2,2 0 0 0
∗ ∗ M3,3 0 0
∗ ∗ ∗ M4,4 0
∗ ∗ ∗ ∗ M5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 M1,7 M1,8 M1,9 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

M5,6 M5,7 M5,8 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�13 =

⎡
⎢⎢⎢⎢⎢⎢⎣

M1,11 M1,12 M1,13 M1,14 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 M5,14 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

M6,6 0 0 0 0
∗ M7,7 M7,8 0 0
∗ ∗ M8,8 0 0
∗ ∗ ∗ M9,9 M9,10

∗ ∗ ∗ ∗ M10,10

⎤
⎥⎥⎥⎥⎥⎥⎦

,

�23 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 M9,14 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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�33 =

⎡
⎢⎢⎢⎢⎢⎢⎣

M11,11 0 0 0 0
∗ M12,12 0 0 0
∗ ∗ M13,13 0 0
∗ ∗ ∗ M14,14 M14,15

∗ ∗ ∗ ∗ M15,15

⎤
⎥⎥⎥⎥⎥⎥⎦

,

M1,1 = [A + αI]P + P[A + αI]T + (a + b + c + 0.5d)I – D1DT
1 + dD1DT

1

+ 0.25D1Y1DT
1 + Q1 + Q2 + d2

1T2 + 3e2αh2 D2S1DT
2

+ 2e2αd2 D3T1DT
3 – e–2αh1m R1 – e–2αh1M R2 – 2e–4αh1m W1

– 2e–4αh1M W2 –
2e–4αh1M h12

(h1M + h1m)
W3,

M1,2 = P, M1,3 = D1, M1,4 = d2
2D1, M1,5 = BP,

M1,7 = e–2αh1m R1, M1,8 = e–2αh1M R2, M1,9 = CP,

M1,11 =
2e–4αh1m

h1m
W1, M1,12 =

2e–4αh1M

h1M
W2,

M1,13 =
2e–4αh1M

(h1M + h1m)
W3, M1,14 = PAT – 0.5D1DT

1 ,

M2,2 = –(2aI + Z1)–1, M3,3 = –2e2αh2 S1, M4,4 = –4d2
2T1,

M5,5 = –2e–2αh1M R3 + e–2αh1M
(
R4 + RT

4
)
, M5,6 = P,

M5,7 = e–2αh1M R3 – e–2αh1M R4,

M5,8 = e–2αh1M R3 – e–2αh1M RT
4 ,

M5,14 = PBT , M6,6 = –(2bI + Z2)–1,

M7,7 = –e–2αh1m Q1 – e–2αh1m R1 – e–2αh1M R3,

M7,8 = e–2αh1M RT
4 ,

M8,8 = –e–2αh1M Q2 – e–2αh1M R2 – e–2αh1M R3,

M9,9 = –e–2αd1 T2, M9,10 = P, M9,14 = PCT ,

M10,10 = –(2cI + Z3)–1, M11,11 =
–2e–4αh1m

h2
1m

W1,

M12,12 =
–2e–4αh1M

h2
1M

W2,

M13,13 =
–2e–4αh1M

(h2
1M – h2

1m)
W3,

M14,14 = h2
1mR1 + h2

1MR2 + h2
12R3 + h2

1mW1 + h2
1MW2 + h12h1MW3

+ 3e2αh2 D2S1DT
2 + 2e2αd2 D3T1DT

3

+ (a + b + c + 0.5d)I – 2P,

M14,15 = h2
2D1, M15,15 = –4h2

2S1.
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Moreover, the feedback control is

u(t) = –
1
2

DT
1 P–1x(t), t ∈R

+, (6)

and an upper bound of the quadratic cost function (3) is as follows:

J ≤ λ2‖φ‖2. (7)

The solution x(t,φ) satisfies

∥∥x(t,φ)
∥∥ ≤

√
λ2

λ1
e–αt‖φ‖, ∀t ∈R

+,

where

λ1 = λmin
(
P–1),

λ2 = λmax
(
P–1) + h1mλmax

(
P–1Q1P–1) + h1Mλmax

(
P–1Q2P–1)

+ h3
1mλmax

(
P–1R1P–1) + h3

1Mλmax
(
P–1R2P–1)

+ h3
12λmax

(
P–1R3P–1) +

1
4

h3
2λmax

(
P–1D1S–1

1 DT
1 P–1)

+
1
4

d3
2λmax

(
P–1D1T–1

1 DT
1 P–1) + d3

1λmax
(
P–1T2P–1)

+ h3
1mλmax

(
P–1W1P–1) + h3

1Mλmax
(
P–1W2P–1)

+ h12h2
1Mλmax

(
P–1W3P–1).

Proof We let Y = P–1 and y(t) = Yx(t). Using the feedback control (6), we consider a can-
didate Lyapunov–Krasovskii functional for the closed-loop system (4):

V (t, xt) =
12∑
i=1

Vi(t, xt), (8)

where

V1(t, xt) = xT (t)Yx(t),

V2(t, xt) =
∫ t

t–h1m

e2α(s–t)xT (s)YQ1Yx(s) ds,

V3(t, xt) =
∫ t

t–h1M

e2α(s–t)xT (s)YQ2Yx(s) ds,

V4(t, xt) = h1m

∫ 0

–h1m

∫ t

t+s
e2α(θ–t)ẋT (θ )YR1Y ẋ(θ ) dθ ds,

V5(t, xt) = h1M

∫ 0

–h1M

∫ t

t+s
e2α(θ–t)ẋT (θ )YR2Y ẋ(θ ) dθ ds,

V6(t, xt) = h12

∫ –h1m

–h1M

∫ t

t+s
e2α(θ–t)ẋT (θ )YR3Y ẋ(θ ) dθ ds,
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V7(t, xt) = h2

∫ 0

–h2

∫ t

t+s
e2α(θ–t)u̇T (θ )S–1

1 u̇(θ ) dθ ds,

V8(t, xt) = d2

∫ 0

–d2

∫ t

t+s
e2α(θ–t)uT (θ )T–1

1 u(θ ) dθ ds,

V9(t, xt) = d1

∫ 0

–d1

∫ t

t+s
e2α(θ–t)xT (θ )YT2Yx(θ ) dθ ds,

V10(t, xt) =
∫ 0

–h1m

∫ 0

τ

∫ t

t+s
e2α(θ+s–t)ẋT (θ )YW1Y ẋ(θ ) dθ ds dτ ,

V11(t, xt) =
∫ 0

–h1M

∫ 0

τ

∫ t

t+s
e2α(θ+s–t)ẋT (θ )YW2Y ẋ(θ ) dθ ds dτ ,

V12(t, xt) =
∫ –h1m

–h1M

∫ 0

τ

∫ t

t+s
e2α(θ+s–t)ẋT (θ )YW3Y ẋ(θ ) dθ ds dτ .

It is easy to check that

λ1
∥∥x(t)

∥∥2 ≤ V (t, xt) ≤ λ2‖xt‖2, ∀t ≥ 0. (9)

Taking the derivative of Vi(t, xt) along the solution of the system, we get

V̇1(t, xt) = 2xT (t)Y ẋ(t) (10)

= yT (t)
[
AP + PAT]

y(t) – yT (t)D1DT
1 y(t) + 2yT (t)BPy

(
t – h1(t)

)
(11)

+ 2yT (t)CP
∫ t

t–d1(t)
y(s) ds + 2yT (t)f

(
t, x(t), x

(
t – h1(t)

)
,

∫ t

t–d1(t)
x(s) ds, u(t)

)
+ 2yT (t)D2u

(
t – h2(t)

)

+ 2yT (t)D3

∫ t

t–d2(t)
u(s) ds,

V̇2(t, xt) = yT (t)Q1y(t) – e–2αh1m yT (t – h1m)Q1y(t – h1m) – 2αV2(t, xt),

V̇3(t, xt) = yT (t)Q2y(t) – e–2αh1M yT (t – h1M)Q2y(t – h1M) – 2αV3(t, xt),

V̇4(t, xt) ≤ h2
1mẏT (t)R1ẏ(t) – h1me–2αh1m

∫ t

t–h1m

ẏT (s)R1ẏ(s) ds

– 2αV4(t, xt),

V̇5(t, xt) ≤ h2
1MẏT (t)R2ẏ(t) – h1Me–2αh1M

∫ t

t–h1M

ẏT (s)R2ẏ(s) ds

– 2αV5(t, xt),

V̇6(t, xt) ≤ h2
12ẏT (t)R3ẏ(t) – h12e–2αh1M

∫ t–h1m

t–h1M

ẏT (s)R3ẏ(s) ds

– 2αV6(t, xt),

V̇7(t, xt) ≤ h2
2u̇T (t)S–1

1 u̇(t) – h2e–2αh2

∫ t

t–h2

u̇T (s)S–1
1 u̇(s) ds (12)
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– 2αV7(t, xt),

V̇8(t, xt) ≤ d2
2uT (t)T–1

1 u(t) – d2e–2αd2

∫ t

t–d2

uT (s)T–1
1 u(s) ds

– 2αV8(t, xt),

V̇9(t, xt) ≤ d2
1yT (t)T2y(t) – d1e–2αd1

∫ t

t–d1

yT (s)T2y(s) ds

– 2αV9(t, xt),

V̇10(t, xt) ≤ h2
1mẏT (t)W1ẏ(t) – e–4αh1m

∫ 0

–h1m

∫ t

t+τ

ẏT (s)W1ẏ(s) ds dτ

– 2αV10(t, xt),

V̇11(t, xt) ≤ h2
1MẏT (t)W2ẏ(t) – e–4αh1M

∫ 0

–h1M

∫ t

t+τ

ẏT (s)W2ẏ(s) ds dτ

– 2αV11(t, xt),

V̇12(t, xt) ≤ h12h1MẏT (t)W3ẏ(t) – e–4αh1M

∫ –h1m

–h1M

∫ t

t+τ

ẏT (s)W3ẏ(s) ds dτ

– 2αV12(t, xt).

We have

∫ t–h1m

t–h1M

ẏT (s)R3ẏ(s) ds =
∫ t–h1(t)

t–h1M

ẏT (s)R3ẏ(s) ds +
∫ t–h1m

t–h1(t)
ẏT (s)R3ẏ(s) ds.

Using Proposition 2.5, we have

–h12e–2αh1M

∫ t–h1(t)

t–h1M

ẏT (s)R3ẏ(s) ds

≤ –
h12e–2αh1M

h1M – h1(t)
[
y
(
t – h1(t)

)
– y(t – h1M)

]T R3

× [
y
(
t – h1(t)

)
– y(t – h1M)

]

–
h12e–2αh1M

h1(t) – h1m

[
y(t – h1m) – y

(
t – h1(t)

)]T R3

× [
y(t – h1m) – y

(
t – h1(t)

)]
.

Given
[ R3 R4

RT
4 R3

] ≥ 0, using Proposition 2.6 with r1 = (h1M – h1(t))/h12 and r2 = (h1(t) –
h1m)/h12 gives the following inequality:

⎡
⎣

√
r2
r1

[y(t – h1(t)) – y(t – h1M)]

–
√

r1
r2

[y(t – h1m) – y(t – h1(t))]

⎤
⎦

T [
R3 R4

RT
4 R3

]

×
⎡
⎣

√
r2
r1

[y(t – h1(t)) – y(t – h1M)]

–
√

r1
r2

[y(t – h1m) – y(t – h1(t))]

⎤
⎦ ≥ 0.



Khongja et al. Advances in Difference Equations        (2018) 2018:435 Page 11 of 23

Then

–
h1M – h1m

h1M – h1(t)
[
y
(
t – h1(t)

)
– y(t – h1M)

]T R3
[
y
(
t – h1(t)

)
– y(t – h1M)

]

–
h1M – h1m

h1(t) – h1m

[
y(t – h1m) – y

(
t – h1(t)

)]T R3
[
y(t – h1m) – y

(
t – h1(t)

)]

≤ –
[
y
(
t – h1(t)

)
– y(t – h1M)

]T R3
[
y
(
t – h1(t)

)
– y(t – h1M)

]

–
[
y(t – h1m) – y

(
t – h1(t)

)]T R3
[
y(t – h1m) – y

(
t – h1(t)

)]

–
[
y
(
t – h1(t)

)
– y(t – h1M)

]T R4
[
y(t – h1m) – y

(
t – h1(t)

)]

–
[
y(t – h1m) – y

(
t – h1(t)

)]T RT
4
[
y
(
t – h1(t)

)
– y(t – h1M)

]
.

Therefore, we have

V̇4(t, xt) ≤ h2
1mẏT (t)R1ẏ(t) – 2αV4(t, xt)

– e–2αh1m
[
y(t) – y(t – h1m)

]T R1
[
y(t) – y(t – h1m)

]
, (13)

V̇5(t, xt) ≤ h2
1MẏT (t)R2ẏ(t) – 2αV5(t, xt)

– e–2αh1M
[
y(t) – y(t – h1M)

]T R2
[
y(t) – y(t – h1M)

]
, (14)

V̇6(t, xt) ≤ h2
12ẏT (t)R3ẏ(t) – 2αV6(t, xt)

– e–2αh1M
[
y
(
t – h1(t)

)
– y(t – h1M)

]T R3
[
y
(
t – h1(t)

)
– y(t – h1M)

]

– e–2αh1M
[
y(t – h1m) – y

(
t – h1(t)

)]T R3
[
y(t – h1m) – y

(
t – h1(t)

)]

– e–2αh1M
[
y
(
t – h1(t)

)
– y(t – h1M)

]T R4
[
y(t – h1m) – y

(
t – h1(t)

)]

– e–2αh1M
[
y(t – h1m) – y

(
t – h1(t)

)]T RT
4
[
y
(
t – h1(t)

)
– y(t – h1M)

]
. (15)

Applying Propositions 2.3, 2.5 and the Newton–Leibniz formula gives

–h2e–2αh2

∫ t

t–h2

u̇T (s)S–1
1 u̇(s) ds

≤ –e–2αh2

[∫ t

t–h2(t)
u̇(s) ds

]T

S–1
1

[∫ t

t–h2(t)
u̇(s) ds

]

= –e–2αh2 uT (t)S–1
1 u(t) + 2e–2αh2 uT (t)S–1

1 u
(
t – h2(t)

)

– e–2αh2 uT(
t – h2(t)

)
S–1

1 u
(
t – h2(t)

)

≤ 0.5e–2αh2 yT (t)D1S–1
1 DT

1 y(t)

+
e–2αh2

3
uT(

t – h2(t)
)
S–1

1 u
(
t – h2(t)

)

– e–2αh2 uT(
t – h2(t)

)
S–1

1 u
(
t – h2(t)

)
, (16)

–d2e–2αd2

∫ t

t–d2

uT (s)T–1
1 u(s) ds

≤ –d2(t)e–2αd2

∫ t

t–d2(t)
uT (s)T–1

1 u(s) ds, (17)
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and

–d1e–2αd1

∫ t

t–d1

yT (s)T2y(s) ds

≤ –e–2αd1

[∫ t

t–d1(t)
yT (s) ds

]
T2

[∫ t

t–d1(t)
y(s) ds

]
. (18)

Using Proposition 2.5, we have

–e–4αh1m

∫ 0

–h1m

∫ t

t+τ

ẏT (s)W1ẏ(s) ds dτ

≤ –2e–4αh1m

h2
1m

[
h1my(t) –

∫ t

t–h1m

y(τ ) dτ

]T

W1

[
h1my(t) –

∫ t

t–h1m

y(τ ) dτ

]
, (19)

–e–4αh1M

∫ 0

–h1M

∫ t

t+τ

ẏT (s)W2ẏ(s) ds dτ

≤ –2e–4αh1M

h2
1M

[
h1My(t) –

∫ t

t–h1M

y(τ ) dτ

]T

W2

[
h1My(t) –

∫ t

t–h1M

y(τ ) dτ

]
(20)

and

–e–4αh1M

∫ –h1m

–h1M

∫ t

t+τ

ẏT (s)W3ẏ(s) ds dτ

≤ –2e–4αh1M

h2
1M – h2

1m

[
h12y(t) –

∫ t–h1m

t–h1M

y(τ ) dτ

]T

W3

[
h12y(t) –

∫ t–h1m

t–h1M

y(τ ) dτ

]
. (21)

Using Proposition 2.3, we get

2yT (t)D2u
(
t – h2(t)

) ≤ 3e2αh2 yT (t)D2S1DT
2 y(t)

+
e–2αh2

3
uT(

t – h2(t)
)
S–1

1 u
(
t – h2(t)

)
, (22)

2yT (t)D3

∫ t

t–d2(t)
u(s) ds ≤ 2e2αd2 yT (t)D3T1DT

3 y(t)

≤ 2e2αd2 yT (t)D3T1DT
3 y(t)

+
d2(t)e–2αd2

2

∫ t

t–d2(t)
uT (s)T–1

1 u(s) ds. (23)

From (2) and Proposition 2.3, we have

2yT (t)f
(

t, Py(t), Py
(
t – h1(t)

)
, P

∫ t

t–d1(t)
y(s) ds, u(t)

)

≤ 2
(

a
∥∥Py(t)

∥∥ + b
∥∥Py

(
t – h1(t)

)∥∥ + c
∥∥∥∥P

∫ t

t–d1(t)
y(s) ds

∥∥∥∥ + d
∥∥u(t)

∥∥
)∥∥y(t)

∥∥

≤ (a + b + c + 0.5d)yT (t)y(t) + ayT (t)P2y(t) + byT(
t – h1(t)

)
P2y

(
t – h1(t)

)

+ c
∫ t

t–d1(t)
yT (s) dsP2

∫ t

t–d1(t)
y(s) ds + 0.5dyT (t)D1DT

1 y(t). (24)
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Now we obtain the following identity:

0 = Pẏ(t) – APy(t) – BPy
(
t – h1(t)

)
– CP

∫ t

t–d1(t)
y(s) ds

– f
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)

– D1u(t) – D2u
(
t – h2(t)

)
– D3

∫ t

t–d2(t)
u(s) ds

= –2ẏT (t)Pẏ(t) + 2ẏT (t)APy(t) + 2ẏT (t)BPy
(
t – h1(t)

)

+ 2ẏT (t)CP
∫ t

t–d1(t)
y(s) ds – ẏT (t)D1DT

1 y(t)

+ 2ẏT (t)f
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)

+ 2ẏT (t)D2u
(
t – h2(t)

)
+ 2ẏT (t)D3

∫ t

t–d2(t)
u(s) ds, (25)

from which we have

2ẏT (t)D2u
(
t – h2(t)

) ≤ 3e2αh2 ẏT (t)D2S1DT
2 ẏ(t)

+
e–2αh2

3
uT(

t – h2(t)
)
S–1

1 u
(
t – h2(t)

)
, (26)

2ẏT (t)D3

∫ t

t–d2(t)
u(s) ds ≤ 2e2αd2 ẏT (t)D3T1DT

3 ẏ(t)

+
d2(t)e–2αd2

2

∫ t

t–d2(t)
uT (s)T–1

1 u(s) ds, (27)

and

2ẏT (t)f
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)

≤ (a + b + c + 0.5d)ẏT (t)ẏ(t) + ayT (t)P2y(t) + byT(
t – h1(t)

)
P2y

(
t – h1(t)

)

+ c
(∫ t

t–d1(t)
yT (s) ds

)
P2

(∫ t

t–d1(t)
y(s) ds

)
+0.5dyT (t)D1DT

1 y(t). (28)

We let

L
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)

≤
[

yT (t)PZ1Py(t) + yT(
t – h1(t)

)
PZ2Py

(
t – h1(t)

)

+
(∫ t

t–d1(t)
yT (s) ds

)
PZ3P

(∫ t

t–d1(t)
y(s) ds

)]
+ 0.25yT (t)D1Y1DT

1 y(t). (29)
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From (10)–(29), we obtain

V̇ (t, xt) + 2αV (t, xt) ≤ ξT (t)	ξ (t)

– L
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
, (30)

where

ξ (t) =
[

y(t), y
(
t – h1(t)

)
, y(t – h1m), y(t – h1M),

∫ t

t–d1(t)
y(s) ds,

∫ t

t–h1m

y(τ ) dτ ,
∫ t

t–h1M

y(τ ) dτ ,
∫ t–h1m

t–h1M

y(τ ) dτ , ẏ(t)
]

,

	 =

⎡
⎢⎣

	11 	12 	13

∗ 	22 	23

∗ ∗ 	33

⎤
⎥⎦ < 0,

	11 =

⎡
⎢⎣

N1,1 N1,2 N1,3

∗ N2,2 N2,3

∗ ∗ N3,3

⎤
⎥⎦ , 	12 =

⎡
⎢⎣

N1,4 N1,5 N1,6

N2,4 0 0
N3,4 0 0

⎤
⎥⎦ ,

	13 =

⎡
⎢⎣

N1,7 N1,8 N1,9

0 0 N2,9

0 0 0

⎤
⎥⎦ , 	22 =

⎡
⎢⎣

N4,4 0 0
∗ N5,5 0
∗ ∗ N6,6

⎤
⎥⎦ ,

	23 =

⎡
⎢⎣

0 0 0
0 0 N5,9

0 0 0

⎤
⎥⎦ , 	33 =

⎡
⎢⎣

N7,7 0 0
∗ N8,8 0
∗ ∗ N9,9

⎤
⎥⎦ ,

N1,1 = [A + αI]P + P[A + αI]T + (a + b + c + 0.5d)I – D1DT
1 + dD1DT

1

+ 0.25D1Y1DT
1 + Q1 + Q2 + d2

1T2 + 3e2αh2 D2S1DT
2 + 2e2αd2 D3T1DT

3

– e–2αh1m R1 – e–2αh1M R2 – 2e–4αh1m W1 – 2e–4αh1M W2

–
2e–4αh1M h12

(h1M + h1m)
W3 + P(2aI + Z1)P + 0.5e–2αh2 D1S–1

1 DT
1

+ 0.25d2
2D1T–1

1 DT
1 ,

N1,2 = BP,

N1,3 = e–2αh1m R1, N1,4 = e–2αh1M R2, N1,5 = CP,

N1,6 =
2e–4αh1m

h1m
W1, N1,7 =

2e–4αh1M

h1M
W2,

N1,8 =
2e–4αh1M

(h1M + h1m)
W3, N1,9 = PAT – 0.5D1DT

1 ,

N2,2 = –2e–2αh1M R3 + e–2αh1M
(
R4 + RT

4
)

+ P(2bI + Z2)P,

N2,3 = e–2αh1M R3 – e–2αh1M R4,

N2,4 = e–2αh1M R3 – e–2αh1M RT
4 ,
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N2,9 = PBT ,

N3,3 = –e–2αh1m Q1 – e–2αh1m R1 – e–2αh1M R3,

N3,4 = e–2αh1M RT
4 ,

N4,4 = –e–2αh1M Q2 – e–2αh1M R2 – e–2αh1M R3,

N5,5 = –e–2αd1 T2 + P(2cI + Z3)P, N5,9 = PCT ,

N6,6 =
–2e–4αh1m

h2
1m

W1, N7,7 =
–2e–4αh1M

h2
1M

W2,

N8,8 =
–2e–4αh1M

(h2
1M – h2

1m)
W3,

N9,9 = h2
1mR1 + h2

1MR2 + h2
12R3 + h2

1mW1 + h2
1MW2 + h12h1MW3

+ 3e2αh2 D2S1DT
2 + 2e2αd2 D3T1DT

3 + (a + b + c + 0.5d)I – 2P

+ 0.25h2
2D1S–1

1 DT
1 .

Using Proposition 2.4 (Schur complement lemma), condition (5) is equivalent to condition
	 < 0. Thus, from (5)–(29) and (30), we obtain

V̇ (t, xt) + 2αV (t, xt) ≤ L
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
. (31)

Since L(t, x(t), x(t – h1(t)),
∫ t

t–d1(t) x(s) ds, u(t)) > 0, we have

V̇ (t, xt) ≤ –2αV (t, xt), ∀t ∈ R
+. (32)

Integrating both sides of (32) from 0 to t, we obtain

V (t, xt) ≤ V (0, x0)e–2αt , ∀t ∈R
+. (33)

Furthermore, taking condition (9) into account in (33), we have

λ1
∥∥x(t,φ)

∥∥2 ≤ V (t, xt) ≤ V (0, x0)e–2αt ≤ λ2e–2αt‖φ‖2,

and then

∥∥x(t,φ)
∥∥ ≤

√
λ2

λ1
e–αt‖φ‖, ∀t ≥ 0,

which implies the exponential stability of the closed-loop system (4).
To find an upper bound of the cost function (3), we consider the derived condition (31)

and, since V (t, xt) > 0, we have

V̇ (t, xt) ≤ –L
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
, ∀t ∈R

+. (34)
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Integrating both sides of (34) from 0 to t, we obtain

∫ t

0
L
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
dt ≤ V (0, x0) – V (t, xt) ≤ V (0, x0),

because V (t, xt) > 0. Hence, letting t → ∞, we finally obtain

J =
∫ ∞

0
L
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
dt ≤ V (0, x0) ≤ λ2‖φ‖2 = J∗.

This completes the proof of the theorem. �

Remark 2 In the proof of Theorem 3.1, we need to cancel some integral terms in equation
(10). In order to do that, we need Proposition 2.3 to estimate some integral terms. This al-
lows achieving such a goal but using this technique causes the complexity of the presented
conditions.

Remark 3 In addition, when C = 0, D2 = 0 and D3 = 0, system (1) reduces to a nonlinear
system with interval time-varying delay of the form

ẋ(t) = Ax(t) + Bx
(
t – h1(t)

)
+ D1u(t) + f

(
t, x(t), x

(
t – h1(t)

)
, u(t)

)
,

x(t) = φ(t), t ∈ [–h1M, 0],
(35)

which was proposed by Niamsup and Phat [17]. If f (·) = 0, then system (1) turns into the
linear system with mixed interval time-varying delays considered by Thuan and Phat [22].
Hence, the previous systems were included in the nonlinear system (1), which can be re-
garded as a special case of a nonlinear system. According to the proof technique in The-
orem 3.1, the guaranteed cost control of exponential stability of a nonlinear system with
interval time-varying delay (35) can be easily obtained. Thus, we get the following result
from Theorem 3.1.

Corollary 3.2 Consider the system (1) and cost function (3) for given α > 0, C = 0, D2 = 0
and D3 = 0. If there exist symmetric positive definite matrices P, Q1, Q2, R1, R2, R3, R4, W1,
W2 and W3 satisfying the LMI


 =

[

11 
12

∗ 
22

]
< 0, (36)

then

u(t) = –
1
2

DT
1 P–1x(t), J∗ = λ2‖φ‖2

are the guaranteed cost controller and guaranteed cost value, respectively, where


11 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω1,1 ω1,2 ω1,3 0 ω1,5

∗ ω2,2 0 0 0
∗ ∗ ω3,3 ω3,4 ω3,5

∗ ∗ ∗ ω4,4 0
∗ ∗ ∗ ∗ ω5,5

⎤
⎥⎥⎥⎥⎥⎥⎦

,
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12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω1,6 ω1,7 ω1,8 ω1,9 ω1,10

0 0 0 0 0
ω3,6 0 0 0 ω3,10

0 0 0 0 0
ω5,6 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

,


22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ω6,6 0 0 0 0
∗ ω7,7 0 0 0
∗ ∗ ω8,8 0 0
∗ ∗ ∗ ω9,9 0
∗ ∗ ∗ ∗ ω10,10

⎤
⎥⎥⎥⎥⎥⎥⎦

,

ω1,1 = [A + αI]P + P[A + αI]T + (a + b + 0.5d)I – D1DT
1 + dD1DT

1

+ 0.25D1Y1DT
1 + Q1 + Q2 – e–2αh1m R1 – e–2αh1M R2 – 2e–4αh1m W1

– 2e–4αh1M W2 –
2e–4αh1M h12

(h1M + h1m)
W3,

ω1,2 = P, ω1,3 = BP, ω1,5 = e–2αh1m R1, ω1,6 = e–2αh1M R2,

ω1,7 =
2e–4αh1m

h1m
W1, ω1,8 =

2e–4αh1M

h1M
W2, ω1,9 =

2e–4αh1M

(h1M + h1m)
W3,

ω1,10 = PAT – 0.5D1DT
1 ,

ω2,2 = –(2aI + Z1)–1, ω3,3 = –2e–2αh1M R3 + e–2αh1M
(
R4 + RT

4
)
,

ω3,4 = P, ω3,5 = e–2αh1M R3 – e–2αh1M R4,

ω3,6 = e–2αh1M R3 – e–2αh1M RT
4 , ω3,10 = PBT ,

ω4,4 = –(2bI + Z2)–1, ω5,5 = –e–2αh1m Q1 – e–2αh1m R1 – e–2αh1M R3,

ω5,6 = e–2αh1M RT
4 , ω6,6 = –e–2αh1M Q2 – e–2αh1M R2 – e–2αh1M R3,

ω7,7 =
–2e–4αh1m

h2
1m

W1, ω8,8 =
–2e–4αh1M

h2
1M

W2, ω9,9 =
–2e–4αh1M

(h2
1M – h2

1m)
W3,

ω10,10 = h2
1mR1 + h2

1MR2 + h2
12R3 + h2

1mW1 + h2
1MW2 + h12h1MW3

+ (a + b + 0.5d)I – 2P.

Remark 4 From an engineering point of view, the guaranteed cost functions measured by
delay state vector x(t – h1(t)) are more general than those where delays are not considered.
For instance, congestion control on the Internet based on transmission control protocol
(TCP) networks was studied in [36] and included a generally applicable nonlinear sys-
tem with mixed time-varying delays. This paper is the first time when nonlinear quadratic
cost functions are studied, which include both discrete and distributed delays as their per-
formance measure for the closed-loop system. It should be noted that the proposed cost
function is different from the existing literature [17, 22, 23, 29, 31]. The definition pro-
vides a more useful description, because it takes full advantage of the characteristics of
distributed delay term of the nonlinear system. It is worth pointing out that the obtained
exponential stability in this work is more applicable in the sense that it may still be ap-
plied to the situation when there is a distributed delay term in nonlinear quadratic cost
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functions, which can be applied in nonlinear systems with mixed time-varying delays, for
example, in a population model with nonlinear death rate and distributed delays [37], and
a perturbed Chua’s circuit system with mixed time-varying delays [38]. Moreover, the dis-
crete and distributed delays are not necessarily differentiable, which allows the delays to
be fast time-varying functions, leading to less conservative stability criteria. In the next
section, numerical examples will be given to show that our result is less conservative than
some existing results in the literature [17].

4 Numerical examples
In this section, we present two examples to illustrate the effectiveness and the reduced
conservatism of our results.

Example 4.1 Consider the nonlinear system with mixed time-varying delays via feedback
control (6):

ẋ(t) = Ax(t) + Bx
(
t – h1(t)

)
+ C

∫ t

t–d1(t)
x(s) ds

+ f
(

t, x(t), x
(
t – h1(t)

)
,
∫ t

t–d1(t)
x(s) ds, u(t)

)
+ U(t),

U(t) = D1u(t) + D2u
(
t – h2(t)

)
+ D3

∫ t

t–d2(t)
u(s) ds,

x(t) = φ(t), t ∈ [–d3, 0], d3 = max{h1M, h2, d1, d2},

(37)

where

A =

[
0 0
0 1

]
, B =

[
–2 –0.5
0 –1

]
, C =

[
–0.2 0

0 –0.1

]
,

D1 =

[
2 0
0 3

]
, D2 =

[
0.1 0
0 0.1

]
, D3 =

[
0.1 0
0 0.1

]
,

Z1 = Z2 = Z3 = Y1 =

[
0.1 0
0 0.1

]
, a = b = c = d = 0.001, α = 0.2.

By using the LMI Toolbox in MATLAB, we can verify that the LMI (5) is satisfied with

h1m = 0.01, h1M = 0.1341, h2 = 0.01, d1 = 0.05, d2 = 0.07,

P =

[
4.2902 –0.7037

–0.7037 3.9642

]
, Q1 =

[
2.6601 1.1601
1.1601 0.6259

]
,

Q2 =

[
2.8835 0.3865
0.3865 0.1653

]
, R1 =

[
146.2015 –353.8107

–353.8107 919.9144

]
,

R2 =

[
0.0340 –0.0889

–0.0889 0.2374

]
, R3 =

[
23.9016 1.6174
1.6174 5.6507

]
,

R4 =

[
0.0453 –0.1185

–0.1185 0.3150

]
, S1 =

[
4.6367 –0.6837

–0.6837 9.3435

]
,
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T1 =

[
0.2839 –0.0501

–0.0501 0.5842

]
, T2 =

[
12.8421 –2.8269
–2.8269 4.9277

]
,

W1 =

[
8.2059 –21.0969

–21.0969 55.7939

]
, W2 =

[
0.0456 –0.1172

–0.1172 0.3100

]
,

W3 =

[
0.0129 –0.0293

–0.0293 0.0724

]
, K =

[
–0.2401 –0.0426
–0.0639 –0.3897

]
,

and the feedback controller is

u(t) =

[
–0.2401 –0.0426
–0.0639 –0.3897

]
x(t). (38)

We take the initial condition φ(t) =
[ 0

cos t

]
, ‖φ‖ = 1. Then, the upper bound on the cost

function value is

J∗ = 0.3254.

By Theorem 3.1, the system is exponential stable and solution x(t,φ(t)) satisfies

∥∥x(t,φ(t)
∥∥ ≤ 0.3092e–0.2t , t ≥ 0.

Numerical simulations are carried out using the explicit Runge–Kutta-like method
(dde45), interpolation and extrapolation by splines of the third order. Figure 1 shows
the trajectories x1(t) and x2(t) of nonlinear system (37) with mixed time-varying delays

Figure 1 Trajectories x1(t) and x2(t) of nonlinear system (37) with mixed time-varying delays
h1(t) = 0.01 + 0.13| sin t|, h2(t) = 0.01| cos t|, d1(t) = 0.05| cos t| and d2(t) = 0.07| cos t| and feedback control (38)
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Table 1 Maximum allowable upper bound h1M and an upper bound on the cost function J∗ when
α = 0.2 for Example 4.1

h1m maxh1M J∗

0 0.0808 0.3377
0.0100 0.1341 0.3254
0.1300 0.2106 0.3842
0.2100 0.2483 0.4221
0.2400 0.2606 0.4365
0.2600 0.2684 0.4461
0.2700 0.2722 0.4506
0.2720 0.2730 0.4516
0.2730 0.2734 0.4519
0.2731 0.2734 0.4523
0.2732 0.2734 0.4522
0.2733 0.2735 0.4520
0.2734 0.2735 0.4523
0.2736 0.2736 0.4522

h1(t) = 0.01 + 0.13| sin t|, h2(t) = 0.01| cos t|, d1(t) = 0.05| cos t| and d2(t) = 0.07| cos t| and
feedback control (38). We see that the trajectories x1(t) and x2(t) of the nonlinear system
converge to zero under the above conditions. In Table 1, we give the maximum allow-
able upper bounds of delay h1M and upper bounds on the cost function J∗ for α = 0.2 and
different values of lower bounds h1m.

Remark 5 In Example 4.1, we show the effect of changes in the lower bound on the de-
lay h1m in computed maximum upper bounds of delay h1M and upper bound on the cost
function. In Table 1, it can be argued that increasing the maximum upper bound on the
delay leads to an increase in the upper bound on the cost function.

Example 4.2 Consider the nonlinear system with interval time-varying delay, which is
described by [17]

ẋ(t) = Ax(t) + Bx
(
t – h1(t)

)
+ D1u(t) + f

(
t, x(t), x

(
t – h1(t)

)
, u(t)

)
,

x(t) = φ(t), t ∈ [–h1M, 0],

where

A =

[
0 0
0 1

]
, B =

[
–2 –0.5
0 –1

]
, D1 =

[
0
1

]
,

Z1 = Z2 = I, Y1 = 1, a = b = d = 0.001, α = 0.2, ‖φ‖ = 1.

We obtain the solution of LMI (36) for h1m = 0.01, h1M = 0.1155 in Corollary 3.2 as follows:

P =

[
0.6907 –0.0278

–0.0278 0.2866

]
, Q1 =

[
0.0885 0.0686
0.0686 0.0542

]
,

Q2 =

[
0.3128 0.0631
0.0631 0.0348

]
, R1 =

[
24.6092 –7.3215
–7.3215 3.4457

]
,

R2 =

[
0.0027 –0.0005

–0.0005 0.0002

]
, R3 =

[
5.5719 0.2140
0.2140 0.6035

]
,
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Table 2 Maximum allowable upper bounds h1M and an upper bound on the cost function J∗ when
α = 0.2

h1m h1M J∗

[17] Corollary 3.2 [17] Corollary 3.2 [17] Corollary 3.2

0 0 0.0287 0.0657 289.10 3.6484
0.0100 0.0100 0.0247 0.1155 4.0100 3.6542
0.0200 0.0200 0.0205 0.1211 3.6900 3.6654
0.0204 0.0204 0.0248 0.1213 3.6900 3.6656
0.0245 0.0245 0.0248 0.1236 3.6900 3.6701
0.0246 0.0246 0.0248 0.1236 3.6900 3.6703
0.0247 0.0247 0.0248 0.1237 3.6900 3.6703
0.0248 0.0248 0.0248 0.1237 3.6900 3.6706
infeasible 0.0500 infeasible 0.1369 infeasible 3.7045
infeasible 0.1000 infeasible 0.1595 infeasible 3.7792
infeasible 0.1500 infeasible 0.1781 infeasible 3.8607
infeasible 0.1700 infeasible 0.1847 infeasible 3.8959
infeasible 0.1912 infeasible 0.1912 infeasible 3.9335

R4 =

[
0.0034 –0.0007

–0.0007 0.0002

]
, W1 =

[
0.4600 –0.0727

–0.0727 0.0237

]
,

W2 =

[
0.0034 –0.0005

–0.0005 0.0002

]
, W3 =

[
0.0012 –0.0001

–0.0001 0.0000

]
,

with the guaranteed cost feedback controller being u(t) = [–0.0706 – 1.7517]x(t), and an
upper bound on the cost function J∗ given by

J∗ = 3.6542‖φ‖2 = 3.6542.

For this example, we apply Corollary 3.2 and calculate the maximum allowable upper
bounds on h1M and minimum upper bounds on the cost function J∗ with α = 0.2 and dif-
ferent h1m. Those results are displayed in Table 2. This example shows that the proposed
guaranteed cost control method gives lower guaranteed cost values than the correspond-
ing result in [17].

5 Conclusion and future study
In this paper, we have investigated the problem of guaranteed cost control for exponen-
tial stability of a nonlinear system with mixed time-varying delays in state and feed-
back control. The mixed time-varying delays, which consisted of both interval and dis-
tributed time-varying delays, were considered without assuming the differentiability of
the time-varying delays. Moreover, a novel state-feedback controller was designed which
includes the state term, discrete time-varying delay term and distributed time-varying
delay term for guaranteed cost control of exponential stability of the nonlinear system.
Based on an improved Lyapunov–Krasovskii functional with triple integral terms, new
delay-dependent sufficient conditions for the existence of guaranteed cost feedback con-
trol for the system were given in terms of linear matrix inequalities (LMIs). A performance
measure for the system was considered by new nonlinear quadratic cost functions. Finally,
numerical examples were given to illustrate the effectiveness and improvement over some
existing results in the literature. Our goal in the future is to apply the nonlinear quadratic
cost functions to other systems or networks that arise in other areas of science.
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