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Abstract
In this paper, we define weak θ -contractions on a metric space into itself by
extending θ -contractions introduced by Jleli and Samet (J. Inequal. Appl. 2014:38,
2014) and utilize the same to prove some fixed point results besides proving some
relation-theoretic fixed point results in generalized metric spaces. Moreover, we give
some applications to fractal theory improving the classical Hutchinson–Barnsley′s
theory of iterated function systems. We also give illustrative examples to exhibit the
utility of our results.
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1 Introduction
The Banach contraction principle is one of the pivotal results of nonlinear analysis, which
asserts that every contraction mapping defined on a complete metric space (M, d) to itself
admits a unique fixed point. This principle is a very effective and popular tool for guar-
anteeing the existence and uniqueness of solutions of certain problems arising within and
beyond mathematics. The Banach contraction principle has been extended and general-
ized in many directions (see [1–6] and references therein). With a similar quest, beginning
from a function θ : (0,∞) → (1,∞) satisfying suitable properties (see Definition 3.1 to be
given later), Jleli and Samet [5] proposed a new type of contractive mappings known as
θ -contraction (or JS-contraction) and proved a fixed point result in generalized metric
spaces wherein the authors showed that the Banach contraction principle remains a par-
ticular case of θ -contraction.

In this paper, we observe that the first condition in Definition 3.1 is unnecessarily strin-
gent; its omission enlarges the class of functions θ : (0,∞) → (1,∞). In fact, we consider
the families Θ2,3 and Θ2,4 and utilize the same to define a weak θ -contraction (see Def-
inition 3.2 to be introduced shortly) such that every weak θ -contraction on a complete
metric space is a Picard operator. Also, we provide an example of a weak θ -contraction
that is not a Banach contraction.

The basic concept of fractal theory is the iterated function system (IFS) introduced by
Hutchinson [7] and generalized by Barnsley [8], IFS being the main generator of fractals.
This consists of a finite set of contractions {fi}N

i=1 on a complete metric space (M, d) into
itself. For such an IFS, there is always a unique nonempty compact set A ⊂ M such that
A =

⋃N
i=1 fi(A), wherein generally A is a fractal set called the attractor of the respective IFS.
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In Sect. 4, we apply Theorem 3.2 to obtain the existence and uniqueness of the attrac-
tor of some iterated function system on a complete metric space and, also, to provide an
example to demonstrate our results.

The fixed point theory on metric spaces endowed with a binary relation is a relatively
new area initiated by Turinici [9]. This area becomes very active after the appearance of
the very interesting results of Ran and Reurings [1] and Nieto and Rodriguez-Lopez [2, 10]
with their nice applications. Recently, this branch of fixed point theory has been developed
by many researchers. To mention a few, we recall Bhaskar and Lakshmikantham [11], Ben-
El-Mechaiekh [12], Samet and Turinici [13], Alam and Imdad [14], Imdad et al. [15–17],
and several others.

In Sect. 5, we provide some fixed point results on a generalized metric space equipped
with a binary relation under weak θ -contractions without completeness requirement.
Also, we adopt some examples to exhibit the utility of our results.

Finally, in Sect. 6, we apply Theorems 5.2 and 5.3 to obtain the existence and uniqueness
of an attractor for a countable iterated function system, which is also composed by con-
tractions on a complete metric space besides furnishing an example to exhibit the validity
of our results.

2 Preliminaries
In this section, we recall some notions, notations, and basic results.

Throughout this presentation, N is the set of natural numbers, and N0 = N ∪ {0}. We
write {un} → u whenever {un} converges to u. If M is a nonempty set, u ∈ M, and f : M →
M, then we write fu instead of f (u). The sequence {un} defined by un = f nu0 is called a
Picard sequence based at the point u0 ∈ M.

Definition 2.1 ([18]) A self-mapping f on a metric space (M, d) is said to be a Picard
operator if it has a unique fixed point z ∈ M and z = limn→∞ f nu for all u ∈ M.

Lemma 2.1 ([19]) Let {un} be a sequence in a metric space (M, d). If {un} is not a Cauchy
sequence, then there exist ε > 0 and two subsequences {un(k)} and {um(k)} of {un} such that
k ≤ m(k) < n(k), d(um(k), un(k)) ≥ ε and d(um(k), un(k)–1) < ε ∀k ∈ N.

Furthermore, limk→∞ d(um(k), un(k)) = ε, provided that limn→∞ d(un, un+1) = 0.

Definition 2.2 Let (M, d) be a metric space, and let K(M) the class of all nonempty
compact subsets of M. The function η : K(M) × K(M) → [0,∞) defined by η(A, B) =
max{D(A, B), D(B, A)}, where D(A, B) = supu∈A infv∈B d(u, v), for all A, B ∈ K(M), is a met-
ric known as Hausdorff–Pompeiu metric. It is well known that if (M, d) is complete, then
(K(M),η) is also complete.

Lemma 2.2 ([20]) Let A, B, C ∈K(M). Then we have the following:
(i) A ⊂ B if and only if D(A, B) = 0;

(ii) D(A, B) ≤ D(A, C) + D(C, B).

Lemma 2.3 ([21]) If {Ei}i∈� and {Fi}i∈� are finite collections of elements in K(M), then

η

(⋃

i∈�
Ei,

⋃

i∈�
Fi

)

≤ sup
i∈�

η(Ei, Fi).
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Definition 2.3 ([22]) Let M be a nonempty set. A function d : M × M → [0,∞] is called
a generalized metric on M if it satisfies the following conditions (for all u, v, z ∈ M):

(G1) d(u, v) = 0 if and only if u = v;
(G2) d(u, v) = d(v, u);
(G3) d(u, v) ≤ d(u, z) + d(z, v).

The pair (M, d) is called a generalized metric space. Moreover, if every Cauchy sequence
in M converges to a point in M, then (M, d) is called a generalized complete metric space.

Wardowski [3] introduced a new class of auxiliary functions and utilized the same to
define F-contractions as follows:

Definition 2.4 ([3]) Let F be the family of all functions F : (0,∞) → R satisfying the
following conditions:

F1: F is strictly increasing;
F2: for every sequence {αn} ⊂ (0,∞),

lim
n→∞ F(αn) = –∞ ⇔ lim

n→∞βn = 0;

F3: there exists k ∈ (0, 1) such that limα→0+ αkF(α) = 0.
A self-mapping f on a metric space (M, d) is said to be an F-contraction if there exist τ > 0
and F ∈F such that (for all u, v ∈ M)

d(fu, fv) > 0 ⇒ τ + F
(
d(fu, fv)

) ≤ F
(
d(u, v)

)
. (2.1)

Wardowski [3] proved that every F-contraction mapping on a complete metric space is
a Picard operator. Thereafter, Piri and Kumam [23] replaced condition F3 by

F4: F is a continuous mapping.

3 Weak θ -contractions
Definition 3.1 (see [5, 24]) Let θ : (0,∞) → (1,∞) be a function and consider the follow-
ing conditions:

Θ1: θ is nondecreasing;
Θ2: for each sequence {αn} in (0,∞),

lim
n→∞ θ (αn) = 1 ⇔ lim

n→∞αn = 0+;

Θ3: there exist r ∈ (0, 1) and l ∈ (0,∞] such that limα→0+ θ (α)–1
αr = l;

Θ4: θ is continuous.
We adopt the following notations in the sequel:

• Θ1,2,3, the family of all functions θ that satisfy Θ1–Θ3;
• Θ1,2,4, the family of all functions θ that satisfy Θ1,Θ2, and Θ4;
• Θ2,3, the family of all functions θ that satisfy Θ2 and Θ3;
• Θ2,4, the family of all functions θ that satisfy Θ2 and Θ4;
• Θ2, the family of all functions θ that satisfy Θ2.

Remark 3.1 In the following, we observe some relations between Definitions 2.4 and 3.1:
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(i) θ : (0,∞) → (1,∞) satisfies, respectively, Θ1, Θ2, or Θ4 if and only if
ln ln θ : (0,∞) → (–∞,∞) satisfies F1, F2, or F4;

(ii) F : (0,∞) → (–∞,∞) satisfies, respectively, F1, F2, or F4 if and only if
eeF : (0,∞) → (1,∞) satisfies Θ1, Θ2, or Θ4.

Example 3.1 ([5]) Define θ : (0,∞) → (1,∞) by θ (α) = e
√

α . Then θ ∈ Θ1,2,3,4.

Example 3.2 ([5]) Define θ : (0,∞) → (1,∞) by θ (α) = 2 – 2
π

arctan( 1
αr ), 0 < r < 1. Then

θ ∈ Θ1,2,3,4.

Example 3.3 ([24]) Define θ : (0,∞) → (1,∞) by θ (α) = eα . Then θ ∈ Θ1,2,4.

Now, we add some more examples to this effect.

Example 3.4 Define θ : (0,∞) → (1,∞) by θ (α) = eαe
–1
α . Then θ ∈ Θ1,2,4.

Example 3.5 Define θ : (0,∞) → (1,∞) by θ (α) = e
√

α
2 +sinα . Then θ ∈ Θ2,3.

Example 3.6 The following functions θ : (0,∞) → (1,∞) are in Θ2,4:
1 θ (α) = e α

2 +sinα ;
2 θ (α) = αr + 1, r ∈ (0,∞).

For more examples, see [5, 24].
Jleli and Samet [5] proved the following theorem.

Theorem 3.1 (see [5]) Let (M, d) be a complete metric space, and let f : M → M. Assume
that there exist θ ∈ Θ1,2,3 and h ∈ (0, 1) such that (for all u, v ∈ M)

d(fu, fv) > 0 ⇒ θ
(
d(fu, fv)

) ≤ [
θ
(
d(u, v)

)]h. (3.1)

Then f has a unique fixed point.

The following proposition shows that f in Theorem 3.1 is continuous due to Θ2.

Proposition 3.1 Let (M, d) be a metric space, and let f : M → M. If f satisfies (3.1) for
some θ ∈ Θ2 and h ∈ (0, 1), then f is continuous.

Proof Let u, v ∈ M be such that d(u, v) → 0. Then we must have θ (d(u, v)) → 1 (due to
Θ2). This, together with (3.1), implies that θ (d(fu, fv)) → 1. Therefore d(fu, fv) → 0 (due
to Θ2). Hence f is continuous. �

Remark 3.2 Observe that condition Θ1 can be withdrawn, and still Theorem 3.1 (also,
most of the existence results in the literature (e.g., results of [25–29])) survives (in view of
Proposition 3.1).

Now, Proposition 3.1 and Remark 3.2 led us to define a weaker contraction under the
name of weak θ -contraction as follows.
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Definition 3.2 Let (M, d) be a metric space, and let f : M → M. We say that f is a weak
θ -contraction if there exist θ ∈ Θ2,3 (or θ ∈ Θ2,4) and h ∈ (0, 1) such that (3.1) holds for all
u, v ∈ M.

Remark 3.3 It is easy to verify that every Banach contraction is a weak θ -contraction w.r.t.
θ (α) = eα (or θ (α) = e

√
α) for all α > 0.

The following result shows that the completeness assumption of a metric space is a suf-
ficient condition to show that a weak θ -contraction is a Picard operator.

Theorem 3.2 Every weak θ -contraction on a complete metric space is a Picard operator.

Proof If θ ∈ Θ2,3, then, in view of Proposition 3.1, the proof runs along the lines of the
proof of Theorem 3.1 (see [5, Thm. 2.1], wherein Θ1 is used only to show the continuity
of f ). Now, assume that θ ∈ Θ2,4. Let (M, d) be a complete metric space, and let f : M → M
be a weak θ -contraction. Let u0 ∈ M be an arbitrary point. Define the Picard sequence
{un} ⊆ M by un+1 = f n+1u0 = fun for all n ∈ N0. If there exists n0 ∈ N0 such that un0 = fun0 ,
then we are done. Assume that un �= un+1 for all n ∈ N0. Applying (3.1), we have (for all
n ∈N0)

θ
(
d(un+1, un)

) ≤ [
θ
(
d(un, un–1)

)]h ≤ [
θ
(
d(un–1, un–2)

)]h2 ≤ · · · ≤ [
θ
(
d(u1, u0)

)]hn
.

Thus we have (for all n ∈N0)

1 < θ
(
d(un+1, un)

) ≤ [
θ
(
d(u1, u0)

)]hn
.

Letting n → ∞, we have

lim
n→∞ θ

(
d(un+1, un)

)
= 1.

Using Θ2, we obtain

lim
n→∞ d(un+1, un) = 0. (3.2)

Now, we show that {un} is a Cauchy sequence employing contradiction. To do so, assume
that {un} is not a Cauchy sequence. Then Lemma 2.1 and (3.2) ensure the existence of ε > 0
and two subsequences {un(k)} and {um(k)} of {un} such that

k ≤ m(k) < n(k), d(un(k)–1, um(k)) < ε ≤ d(un(k), um(k)) ∀k ≥ 0 (3.3)

and

lim
k→∞

d(un(k), um(k)) = ε. (3.4)

Observe that

ε ≤ d(un(k), um(k))
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≤ d(un(k), u(m(k)–1)) + d(um(k)–1, um(k))

≤ d(un(k), u(n(k)–1)) + d(un(k)–1 + um(k)–1) + d(um(k)–1, um(k))

≤ d(un(k), u(n(k)–1)) + d(un(k)–1 + um(k)) + 2 d(um(k)–1, um(k)).

Letting k → ∞ and using (3.2), (3.3), and (3.4), we obtain

lim
k→∞

d(un(k)–1, um(k)–1) = ε. (3.5)

It follows that there exists N ∈ N0 such that d(un(k), um(k)) > 0 for all k ≥ N (due to (3.4)).
Applying (3.1), we have (for all k ≥ N )

θ
(
d(un(k), um(k))

) ≤ [
θ
(
d(un(k)–1, um(k)–1)

)]h. (3.6)

Letting k → ∞ in (3.6) and using Θ4, (3.4), and (3.5), we obtain θ (ε) ≤ θ (ε)h, a contradic-
tion. Hence {un} is a Cauchy sequence. The completeness of M implies that there exists
u ∈ M such that {un} converges to u. The continuity of f and the uniqueness of the limit
give rise to fu = u. For the uniqueness part, assume by contradiction that f has another
fixed point, say v �= u. Applying (3.1), we have θ (d(u, v)) ≤ [θ (d(u, v))]h, a contradiction.
This concludes the proof. �

Remark 3.4 In view of Remark 3.1, Theorem 3.2 with θ ∈ Θ2,4 remains a weaker version
of the main result of Piri and Kumam [23].

In the following example (inspired by [30]), we show that weak θ -contractions are a
proper generalization of Banach contractions.

Example 3.7 Let M = [0,∞) be endowed with the usual metric, and let β ∈ M. Define
f : M → M by f (u) = u

iu+1 + β , where i ≥ 1. Consider the function θ : (0,∞) → (1,∞) given
in Example 3.4. Then

(a) f is not a Banach contraction;
(b) f is a weak θ -contraction;
(c) f is a Picard operator.

Proof (a) Define un = 1
2n and vn = 1

n for all n ∈N. Observe that

lim
n→∞

|fun – fvn|
|un – vn| = lim

n→∞
| un

iun+1 – vn
ivn+1 |

|un – vn| = lim
n→∞

1
( i

2n + 1)( i
n + 1)

= 1.

Thus there is no h ∈ (0, 1) such that d(fu, fv) ≤ hd(u, v) for all u, v ∈ M. Hence f is not a
Banach contraction.

(b) To prove (3.1), it is equivalent to show that (for all u, v ∈ M with fu �= fv)

d(fu, fv)e
–1

d(fu,fv) ≤ hd(u, v)e
–1

d(u,v) for some h ∈ (0, 1),

or

ln
(
d(fu, fv)

)
–

1
d(fu, fv)

≤ ln h + ln
(
d(u, v)

)
–

1
d(u, v)

for some h ∈ (0, 1). (3.7)
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Now, observe that (for all u, v ∈ M with fu �= fv and u > v)

ln
(
d(fu, fv)

)
–

1
d(fu, fv)

– ln
(
d(u, v)

)
–

1
d(u, v)

= ln

(
u

iu + 1
–

v
iv + 1

)

–
(

u
iu + 1

–
v

iv + 1

)–1

– ln(u – v) +
1

u – v

= – ln
(
(iu + 1)(iv + 1)

)
+

1 – (iu + 1)(iv + 1)
u – v

≤ –
i2uv + iu + iv

u – v

≤ –i

≤ –1.

The case u < v can be treated analogously. Hence (3.7) holds for any h ∈ (0, 1) with ln h ≥
–1. Therefore, f is a weak θ -contraction.

(c) Follows immediately from Theorem 3.2 as (M, d) is a complete metric space and in

view of (b). The fixed point of f is z = βi+
√

β2i2+4βi
2i . �

Theorem 3.2 can be improved as follows.

Theorem 3.3 Let (M, d) be a complete metric space, and let f : M → M. If there exists
n ∈N such that f n is a weak θ -contraction, then f is a Picard operator.

Proof Theorem 3.2 ensures that f n is a Picard operator, so that there exists a unique z ∈ M
such that f nz = z and limm→∞(f nu)m = z for all u ∈ M. Observe that f n+1z = fz. Thus fz is
also a fixed point of f n. Therefore fz = z. Moreover, if z∗ is another fixed point of f , then it
is also a fixed point of f n. Hence z = z∗. Thus f has a unique fixed point.

Now, let m be a positive integer greater than n. Then there exist l ≥ 1 and s ∈
{0, 1, 2, . . . , n – 1} such that m = nl + s. Notice that (for all u ∈ M)

lim
m→∞ f mu = lim

l→∞
f nl(f su

)
= z.

This concludes the proof. �

4 Application: weak θ -iterated function systems
In this section, we apply our results to obtain the existence and uniqueness of the attractors
of some iterated function systems composed by weak θ -contractions on a complete metric
space. In the following, (M, d) is a complete metric space, N ∈N, and θ ∈ Θ1,2,4.

Definition 4.1 Let {fi}N
i=1 be a finite family of self-mappings on M. If (for each i) fi : M →

M is a weak θ -contraction, then the family {fi}N
i=1 is called a weak θ -iterated function system

(weak θ -IFS).
The set function G : K(M) → K(M) defined by G(B) =

⋃N
i=1 fi(B) (for all B ∈ K(M)) is

called the associated Hutchinson operator. A set A ∈ K(M) is called an attractor of the
weak θ -IFS if G(A) = A.
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Now, we prove that the weak θ -IFS has a unique attractor. To do so, we begin with the
following:

Lemma 4.1 Let f : M → M be a weak θ -contraction. Then the mapping A �−→ f (A) is also
a weak θ -contraction from K(M) into itself.

Proof Let A, B ∈K(M) be such that η(f (A), f (B)) > 0. Assume that

η
(
f (A), f (B)

)
= D

(
f (A), f (B)

)
= sup

u∈A
inf
v∈B

d(fu, fv) > 0. (4.1)

As f is a weak θ -contraction, there exists h ∈ (0, 1) such that θ (d(fu, fv)) ≤ [θ (d(u, v))]h for
all u, v ∈ M with fu �= fv. Now, using (4.1), the compactness of A, and the continuity of f ,
we can find a ∈ A such that D(f (A), f (B)) = infv∈B d(fa, fv) > 0, so that d(fa, fv) > 0 for all
v ∈ B. Hence

θ
(

inf
v∈B

d(fa, fv)
)

≤ θ
(
d(fa, fv)

) ≤ [
θ
(
d(a, v)

)]h for all v ∈ B.

Thus

θ
(
η
(
f (A), f (B)

)) ≤ [
θ
(
d(a, v)

)]h for all v ∈ B. (4.2)

Now, let b ∈ B be such that d(a, b) = infv∈B d(a, v). From (4.2) we have

θ
(
η
(
f (A), f (B)

)) ≤ [
θ
(
d(a, b)

)]h

=
[
θ
(

inf
v∈B

d(a, v)
)]h

≤
[
θ
(

sup
u∈A

inf
v∈B

d(u, v)
)]h

=
[
θ
(
D(A, B)

)]h

≤ [
θ
(
η(A, B)

)]h.

This completes the proof. �

Now, we can state and prove our main result in this section.

Theorem 4.1 If {fi}N
i=1 is a weak θ -IFS, then it has a unique attractor A. Moreover, A =

limn→∞ Gn(B) for all B ∈K(M), the limit being taken w.r.t. the Hausdorff–Pompeiu metric.

Proof For each i ∈ {1, 2, . . . , N}, let hi be the constant given by (3.1), which is associated
with fi. Let B, C ∈K(M) be such that η(G(B),G(C)) > 0. Now, Lemma 2.3 implies that

0 < η
(
G(B),G(C)

) ≤ sup
1≤i≤N

η
(
fi(B), fi(C)

)
= η

(
fi0 (B), fi0 (C)

)

for some i0 ∈ {1, 2, . . . , N}. Using Θ1 and Lemma 4.1, we have

θ
(
η
(
G(B),G(C)

)) ≤ θ
(
η
(
fi0 (B), fi0 (C)

)) ≤ [
θ
(
η(B, C)

)]hi0 .
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Therefore G is a weak θ -contraction on the complete metric space (K(M),η). Hence The-
orem 3.2 ensures the existence and uniqueness of A ∈ K(M) such that G(A) = A and
A = limn→∞ Gn(B) for all B ∈K(M), as required. �

In support of Theorem 4.1, we provide the following:

Example 4.1 Let M = [0,∞) be endowed with the usual metric, i ∈ {1, 2, . . . , N}, and βi ∈
M (for all i). Define fi : M → M by: fi(u) = u

iu+1 + βi. Consider the function θ : (0,∞) →
(1,∞) given in Example 3.4. Then {fi}N

i=1 is a weak θ -IFS and has a unique attractor, which
is approximated (w.r.t. the Hausdorff–Pompeiu metric) by the sequence {Gn(B)} for all
B ∈K(M). Furthermore {fi}N

i=1 is not a classical Hutchinson IFS.

Proof In view of Example 3.7, we conclude that fi, i ∈ {1, 2, . . . , N}, are weak θ -contractions
and are not Banach contractions. Hence, the conclusion follows immediately from Theo-
rem 4.1. �

5 Relation-theoretic fixed point results
Let M be a nonempty set, and let u, v ∈ M. A subset R of M ×M is called a binary relation
on M. If (u, v) ∈ R, then we write uRv. Two elements u, v ∈ M are said to be comparable
under R if either uRv or vRu, which is often denoted by [u, v] ∈ R. A binary relation R
is said to be: reflexive if uRu for any u ∈ M; transitive if for any u, v, z ∈ M, uRv and vRz
imply uRz; antisymmetric if for any u, v ∈ M, uRv and vRu imply u = v; partial order if it
is reflexive, transitive, and antisymmetric. If f : M → M, then R is said to be f -transitive
if it is transitive on f (M).

In the following results, θ : (0,∞] → (1,∞] is such that θ (α) = ∞ if and only if α = ∞.
Now, we can state and prove our results in this section.

Theorem 5.1 Let (M, d,R) be a generalized metric space endowed with binary relation,
u0 ∈ M, and f : M → M. Suppose that the following conditions are satisfied:

(a) u0Rfu0, and R is f -transitive;
(b) for any u, v ∈ M, uRv implies fuRfv;
(c) every Cauchy sequence {un} ⊆ M with unRun+1 converges to some u ∈ M;
(d) there exist θ ∈ Θ2,3 and h ∈ (0, 1) such that (3.1) holds for all u, v ∈ M with uRv and

d(u, v) < ∞;
(e) f is continuous.

Then one of the following assertions holds:
(I) d(f nu0, f n+1u0) = ∞ for all n ∈N; or

(II) f has a fixed point that is approximated by {f nu0}.

Proof Define a sequence {un} of Picard iterates based on u0, that is, un = f nu0. Consider
the sequence {d(un, un+1)} of nonnegative real numbers. There are two mutually exclusive
possibilities:

(i) for every n ∈N, d(un, un+1) = ∞, which is precisely the alternative (I) of the
conclusion of the theorem; or

(ii) there exists n ∈N such that d(un, un+1) < ∞; in such a case, we will show that
conclusion (II) of the theorem is fulfilled.
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If case (ii) holds, then let p be the smallest integer satisfying (ii). If d(un, un+1) = 0 for
some n ≥ p, then we are done. Suppose that d(un, un+1) > 0 for all n ≥ p. Applying con-
dition (d), we have θ (d(fup, fup+1)) ≤ [θ (up, up+1)]h < θ (d(up, up+1)) < ∞, which implies
d(up+1, up+2) < ∞. Hence by mathematical induction we have d(up+n, up+n+1) < ∞ for all
n ∈ N. In other words, d(un, un+1) < ∞ for all n ≥ p. Now, as u0Rfu0, using assumption
(b), we have unRun+1 for all n ≥ 0. Applying assumption (d), we obtain (for all n ≥ p)

θ
(
d(un, un+1)

) ≤ [
θ
(
d(un–1, un)

)]h ≤ [
θ
(
d(un–2, un–1)

)]h2 ≤ · · · ≤ [
θ
(
d(up, up+1)

)]hn–p
.

Thus we have (for all n ≥ p)

1 < θ
(
d(un, un+1)

) ≤ [
θ
(
d(up, up+1)

)]hn–p
. (5.1)

Letting n → ∞ in (5.1), we obtain limn→∞ θ (d(un, un+1)) = 1, which (in view of Θ2) implies
that

lim
n→∞ d(un, un+1) = 0. (5.2)

Now, by Θ3 there exist r ∈ (0, 1) and 0 < l ≤ ∞ such that

lim
n→∞

θ (d(un, un+1)) – 1
[d(un, un+1)]r = l. (5.3)

Two cases can occur depending on l. Firstly, assume that l < ∞. Let A = l
2 . By the definition

of the limit there exists a positive integer N0 > p such that

∣
∣
∣
∣
θ (d(un, un+1)) – 1

[d(un, un+1)]r – l
∣
∣
∣
∣ ≤ A for all n ≥ N0,

which implies

θ (d(un, un+1)) – 1
[d(un, un+1)]r ≥ l – A = A for all n ≥ N0,

and so

n
[
d(un, un+1)

]r ≤ nA∗[θ
(
d(un, un+1)

)
– 1

]
for all n ≥ N0,

where A∗ = 1
A . Secondly, if l = ∞, then let B > 0 be a given real number. Again, the defini-

tion of the limit implies that there exists a positive integer N1 > p such that

θ (d(un, un+1)) – 1
[d(un, un+1)]r ≥ B for all n ≥ N1,

which implies

n
[
d(un, un+1)

]r ≤ nB∗[θ
(
d(un, un+1)

)
– 1

]
for all n ≥ N1,
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where B∗ = 1
B . Therefore, in all cases, there exist a real constant C > 0 and a positive integer

N2 > p such that

n
[
d(un, un+1)

]r ≤ nC
[
θ
(
d(un, un+1)

)
– 1

]
for all n ≥ N2.

Using (d), we have

n
[
d(un, un+1)

]r ≤ nC
([

θ
(
d(up, up+1)

)]kn–p
– 1

)
for all n ≥ N2.

Letting n → ∞ in the last inequality, we have

lim
n→∞ n

[
d(un, un+1)

]r = 0.

Hence, there exists a positive integer N3 > p such that

d(un, un+1) ≤ 1
n 1

r
for all n ≥ N3.

Now, for m > n > N3, we have

d(un, um) ≤
m–1∑

i=n

d(un, un+1) ≤
m–1∑

i=n

1
i 1

r
.

The convergence of the series
∑∞

i=n
1

i
1
r

(as 1
r > 1) implies that {un}n≥p is a Cauchy sequence

and hence converges to some u ∈ M (due to condition (c)). The continuity of f and the
uniqueness of the limit give fu = u. This concludes the proof. �

Now, we give the following example, which exhibits the utility of Theorem 5.1.

Example 5.1 Let M = (0,∞) be endowed with the usual metric. Then d(u, v) < ∞ for all
u, v ∈ M, and hence alternative (I) of Theorem 5.1 is excluded. Consider the sequence {πn}
in M defined by

πn =
(n + 1)(n + 2)

2
for all n ∈N.

Define the binary relation R as follows:

R =
{

(π1,π1)
} ∪ {

(πn,πn+1) : n ∈N
}

.

Observe that M satisfies condition (c) of Theorem 5.1. Now, define the mapping f : M →
M by

fu =

⎧
⎪⎪⎨

⎪⎪⎩

u if 0 < u ≤ π1;

π1 if π1 ≤ u ≤ π2;

πi + ( πi+1–πi
πi+2–πi+1

)(u – πi+1) if πi+1 ≤ u ≤ πi+2, i = 1, 2, . . . .
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Then f is continuous, π1Rf π1, and R is f -transitive and satisfies condition (b). Now, we
will show that f satisfies condition (d) with the function θ : (0,∞] → (1,∞] defined by
θ (α) = e

√
αeα for α > 0. It easy to show that θ ∈ Θ2,3 and θ (α) = ∞ if and only if α = ∞.

Now, let u, v ∈ M be such that uRv and fu �= fv. It must be the case u = πn and v = πn+1 for
some n ∈N. To prove condition (3.1), it is enough to show that

d(fu, fv)ed(fu,fv) ≤ h2d(u, v)ed(u,v)

for some h ∈ (0, 1), that is, we have to show that

d(fu, fv)
d(u, v)

ed(fu,fv)–d(u,v) ≤ h2 (5.4)

for some h ∈ (0, 1). Now, observe that

d(fu, fv)
d(u, v)

ed(fu,fv)–d(u,v) =
πn – πn–1

πn+1 – πn
e(πn–πn–1)–(πn+1–πn) < e–1.

Hence inequality (5.4) holds for h = e –1
2 . Therefore, all the hypotheses of Theorem 5.1

(alternative (II)) are satisfied. Observe that f has infinitely many fixed points (Fix(f ) =
(0, 3]).

Remark 5.1
1 Theorems 3.1 and 3.2 are not applicable in the context of Example 5.1 as condition

(3.1) does not hold on (0, 3] and also (M, d) is not a complete space.
2 Theorems of [14, 22, 31] do not work in the context of Example 5.1 as

limn→∞ d(f πn ,f 1)
d(πn ,1) = 1, so that their contraction conditions do not hold.

Next, we present an analogue of Theorem 5.1 avoiding the continuity assumption of f .

Theorem 5.2 The conclusions of Theorem 5.1 remain true if condition (e) is replaced by
the following one:

(e′) for every convergent sequence {un} ⊆ M and all u ∈ M,

[
unRun+1 and {un} → u

] ⇒ [unRu for all n ∈ N].

Proof Following the proof of Theorem 5.1, we have that {un}n≥p is a convergent sequence
with unRun+1 (for all n) and converges to u ∈ M. From our assumption we have unRu
(for all n). Let P = {n ≥ p : fun = fu}. If P is an infinite set, then {un}n≥p has a subse-
quence converging to fu. The uniqueness of the limit gives fu = u. Now, assume that P
is finite. Then {un}n≥p has a subsequence {unk } such that funk �= fu for all k ∈ N. Observe
that limk→∞ d(unk , u) = 0 implies that d(unk , u) < ∞ for all k ∈ N. Now, applying (3.1), we
have

θ
(
d(funk , fu)

) ≤ [
θ
(
d(unk , u)

)]h for all k ∈ N.

Letting k → ∞ and using Θ2, we obtain limk→∞ d(funk , fu) = 0. Again the uniqueness of
the limit implies fu = u. This concludes the proof. �
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The following example exhibits the utility of Theorem 5.2.

Example 5.2 Let M = (–1, 3] be equipped with the usual metric. Define the binary relation
R on M as follows:

R =
{

(0, 0), (0, 1), (1, 0), (1, 1), (0, 3)
}

.

Also, define f : M → M by

fu =

⎧
⎨

⎩

0 if – 1 < u ≤ 1;

1 if 1 < u ≤ 3.

Observe that f is not continuous. Now, we have the following:
• d(u, v) < ∞ for all u, v ∈ M, so that alternative (I) of Theorem 5.2 is excluded;
• 0 ∈ M and 0Rf 0 (as (0, 0) ∈R);
• R is f -transitive (as R is transitive on {0, 1});
• for any u, v ∈ M, uRv implies fuRfv;
• if {un} is a Cauchy sequence in M with unRun+1, then there exists N ∈N such that

either un = 0 for all n ≥ N or un = 1 for all n ≥ N so that {un} converges to either 0 or
1, which are in M;

• f satisfies (3.1) for all u, v ∈ M with uRv and fu �= fv (namely, for u, v ∈ {0, 3}) with θ

given in Example 3.1 and any h ∈ [ 1
2 , 1);

• if {un} is a sequence in M such that unRun+1, then we may observe that
(un, un+1) /∈ {(0, 3)}, so that (un, un+1) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, and hence
{un} ⊂ {0, 1}, which is closed, so that unRu for all n.

Thus all the assumptions of Theorem 5.2 (alternative (II)) are satisfied ensuring the exis-
tence of a fixed point of f (namely u = 0).

Now, we present a corresponding uniqueness result as follows.

Theorem 5.3 If in addition to the hypotheses of Theorem 5.1 (or Theorem 5.2), we assume
that, for each u, v ∈ Fix(f ), there exists z0 ∈ M comparable to both u and v, d(u, z0) < ∞,
and d(v, z0) < ∞, then f is a Picard operator.

Proof In view of Theorem 5.1 (or Theorem 5.2), the set Fix(f ) is nonempty. Let u, v ∈
Fix(f ). By our assumption there exists z0 ∈ M such that [u, z0] ∈R and [v, z0] ∈R. Let {zn}
be the Picard sequence under f based on z0, that is, zn = f nz0 for all n ≥ 0. Now, we show
that u = v by proving {zn} → u and {zn} → v.

As [u, z0] ∈R, either uRz0 or z0Ru. Assume that uRz0. If u = zn0 for some n0 ≥ 0, then
u = zn for all n ≥ n0. Thus {zn} → u. Assume that u �= zn for all n ≥ 0. Using condition (b),
we have uRzn for all n ≥ 0. Observe that θ (d(u, z1)) ≤ [θ (d(u, z0))]h < ∞ implies d(u, z1) <
∞, so that by induction we have d(u, zn) < ∞ for all n ≥ 0. Now, applying condition (d),
we have (for all n ≥ 0)

θ
(
d(u, zn)

) ≤ [
θ
(
d(u, zn–1)

)]h ≤ [
θ
(
d(u, zn–2)

)]h2 ≤ · · · ≤ [
θ
(
d(u, z0)

)]hn
.
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Thus, we have (for all n ≥ 0)

1 < θ
(
d(u, zn)

) ≤ [
θ
(
d(u, z0)

)]hn
. (5.5)

Letting n → ∞ in (5.5), we obtain limn→∞ θ (d(u, zn)) = 1, which (in view of Θ2) implies
that limn→∞ d(u, zn) = 0. The proof of the case z0Ru is similar. Similarly, we can prove that
{zn} → v. This concludes the proof. �

The following example exhibits the utility of Theorem 5.3.

Example 5.3 Let M = [3,∞) be endowed with the usual metric and define f : M → M by

fu =

⎧
⎨

⎩

3 if 3 ≤ u ≤ π2,

πi + ( πi+1–πi
πi+2–πi+1

)(u – πi+1) if πi+1 ≤ u ≤ πi+2, i = 1, 2, . . . .

If we set out the rest as in Example 5.1, then all the hypotheses of Theorem 5.3 are satisfied,
and f has a unique fixed point (namely u = 3).

Setting R = M × M in Theorem 5.3, we deduce the following corollary.

Corollary 5.1 Let (M, d) be a generalized complete metric space, and let f : M → M. If
there exist θ ∈ Θ2,3 and h ∈ (0, 1) such that (3.1) holds for all u, v ∈ M with d(u, v) < ∞,
then f is a Picard operator.

Remark 5.2 Corollary 5.1 remains a sharpened version of Theorem 3.1 due to Jleli and
Samet [5].

6 Application: weak θ -countable iterated function systems
In this section, inspired by [30], we apply our results to obtain the existence and unique-
ness of the attractors of some countable iterated function systems composed by weak θ -
contractions on a generalized complete metric space. In the following, (M, d) is a complete
metric space, CL(M) is the class of all nonempty closed subsets of M, and θ ∈ Θ1,2,3.

Definition 6.1 Let {fi}i≥1 be a countable family of self-mappings on M. If (for each i)
fi : M → M is a weak θ -contraction, then the countable family {fi}i≥1 is called a weak θ -
countable iterated function system (weak θ -CIFS).

The set function G : CL(M) → CL(M) defined by G(B) =
⋃

i≥1 fi(B) (for all B ∈ CL(M))
is called the associated Hutchinson operator. A set A ∈ CL(M) is called an attractor of the
weak θ -CIFS if G(A) = A.

Before giving our main result in this section, we prove the following lemma.

Lemma 6.1 Assume that θ is continuous and f : M → M is a weak θ -contraction with
constant from (3.1) equal to h2. Then

θ
(
η
(
f (B), f (C)

)) ≤ [
θ
(
η(B, C)

)]h

for all B, C ∈ CL(M) with C ⊂ B or B ⊂ C, η(B, C) < ∞, and f (B) �= f (C).
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Proof Let B, C ∈ CL(M) with C ⊂ B, η(B, C) < ∞, and f (B) �= f (C). Then f (C) ⊂ f (B),
D(B, C) < ∞, and D(C, B) = 0 (in view of Lemma 2.2). Now, if f is a weak θ -contraction
for θ ∈ Θ1,2,3, then d(fu, fv) ≤ d(u, v) for all u ∈ B, v ∈ C. This implies that

D
(
f (B), f (C)

)
= sup

u∈B
inf
v∈C

d(fu, fv) ≤ sup
u∈B

inf
v∈C

d(u, v) = D(B, C) < ∞.

Observe that η(f (B), f (C)) > 0 and D(f (C), f (B)) = 0 imply that D(f (B), f (C)) > 0. Now, if
θ : (0,∞) → (1,∞) is a continuous mapping, then θ∗ : (0,∞) → (–∞,∞) given by θ∗(α) =
ln ln θ (α) for all α > 0 is also a continuous mapping. By the continuity of θ∗, for – ln h > 0,
there exists a positive ε0 < D(f (B), f (C)) such that

α ∈ (
D

(
f (B), f (C)

)
– ε0, D

(
f (B), f (C)

)
+ ε0

)

⇒ θ∗(α) > θ∗(D
(
f (B), f (C)

))
+ ln h. (6.1)

Now, we can find b ∈ B such that infv∈C d(fb, fv) + ε0 > D(f (B), f (C)). Observe that f (b) /∈
f (C) since otherwise ε0 > D(f (B), f (C)), which contradicts the choice of b. Putting α =
infv∈C d(fb, fv) in (6.1), we obtain

θ∗(D
(
f (B), f (C)

))
< – ln h + θ∗

(
inf
v∈C

d(fb, fv)
)

. (6.2)

Now, by the hypothesis we have θ (d(fu, fv)) ≤ [θ (d(u, v))]h2 for all u ∈ B and v ∈ C with fu �=
fv, that is, θ∗(d(fu, fv)) ≤ 2 ln h + θ∗(d(u, v)) for all u ∈ B and v ∈ C with fu �= fv. Therefore,
using (6.2) and the fact that ln h < 0, we have

– ln h + θ∗(D
(
f (B), f (C)

))
< –2 ln h + θ∗

(
inf
v∈C

d(fb, fv)
)

≤ –2 ln h + θ∗(d(fb, fv)
)

≤ θ∗(d(b, v)
)

for all v ∈ C. Accordingly, using the continuity of θ∗, we have

– ln h + θ∗(D
(
f (B), f (C)

)) ≤ θ∗
(

inf
v∈C

d(b, v)
)

≤ θ∗(D(B, C)
)

= θ∗(η(B, C)
)
. (6.3)

Now, as D(f (C), f (B)) = 0, we have

– ln h + θ∗(η
(
f (B), f (C)

)) ≤ θ∗(η(B, C)
)

or

ln ln θ
(
η
(
f (B), f (C)

)) ≤ ln h + ln ln θ
(
η(B, C)

)
,

which implies that

θ
(
η
(
f (B), f (C)

)) ≤ [
θ
(
η(B, C)

)]h.
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This completes the lemma. �

Now, we can present our main result of this section.

Theorem 6.1 Let {fi}i≥1 be a weak θ -CIFS on the complete metric space (M, d), and let
G : CL(M) → CL(M) be defined as in Definition 6.1. Assume that θ is continuous and hi is
the constant given by (3.1) associated with fi for each i ≥ 1. If h = supi≥1 hi < 1 and for every
nonempty K ⊂ N, we put CK = {zi : i ∈ K}, where zi is the fixed point of fi, then one of the
following assertions holds:

(i) η(Gn(CK ),Gn+1(CK )) = ∞ for all n ∈N, or
(ii) there exists an attractor A ∈ CL(M) of the considered weak θ -CIFS and

A = limn→∞ Gn(CK ), the limit being taken w.r.t. the generalized Hausdorff–Pompeiu
metric.

Moreover, if G(M) is bounded or, in particular, G(M) is compact, then the attractor A is
unique and approximated by the sequence {Gn(B)} for all B ∈ CL(M).

Proof Define the binary relation R on CL(M) by

BRC ⇔ B ⊂ C for all B, C ∈ CL(M).

Observe thatR is transitive and henceG-transitive. Now, we show that all the assumptions
of Theorem 5.3 are fulfilled.

• In view of Theorem 3.2, for each i ≥ 1, there is a unique fixed point zi of fi. Therefore,
for every nonempty K ⊂N, {zi : i ∈ K} =

⋃
i∈K {fi(zi)} ⊂ ⋃

i≥1 fi(CK ), and hence
CK ⊂ G(CK ), so that assumption (a) is satisfied.

• for any B, C ∈ CL(M), B ⊂ C clearly implies that G(B) ⊂ G(C), and therefore
assumption (b) holds.

• According to [30, 32], the completeness of (M, d) implies the completeness of
(CL(M),η), and hence assumption (c) clearly holds.

• Let B, C ∈ CL(M) be such that C ⊂ B, η(B, C) < ∞, and G(B) �= G(C). As G(B) �= G(C),
we can find i ∈N such that fi(B) �= fi(C), so that D(fi(B), fi(C)) > 0. Hence, using
Lemma 2.2, Lemma 6.1 and the continuity of θ , we have

θ
(
D

(
G(B),G(C)

)) ≤ θ
(

sup
i≥1

D
(
fi(B), fi(C)

))

≤ sup
i≥1

θ
(
D

(
fi(B), fi(C)

))

≤ sup
i≥1

[
θ
(
D(B, C)

)]hi =
[
θ
(
D(B, C)

)]h,

where in the last inequality we used (6.3). As C ⊂ B and G(C) ⊂ G(B), we have
D(C, B) = D(G(C),G(B)) = 0, so that

θ
(
η
(
G(B),G(C)

)) ≤ [
θ
(
η(B, C)

)]h.

Therefore, assumption (d) is fulfilled.
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• Next, we show that assumption (e′) is satisfied. To this end, let {Bn} be a sequence of
closed subsets of M such that Bn ⊂ Bn+1 (for all n ∈N) and limn→∞ Bn = B for some
B ∈ CL(M). We will show that Bn ⊂ B for all n ∈N. Let n0 ∈N and b ∈ Bn0 be fixed.
Observe that, for each n ≥ n0, we have b ∈ Bn (as Bn0 ⊂ Bn). Therefore, for all n ≥ n0,
we have

inf
u∈B

d(b, u) ≤ sup
v∈Bn

inf
u∈B

d(v, u) = D(Bn, B) → 0 as n → ∞
(
∵ lim

n→∞ Bn = B
)

.

Hence b ∈ B = B, and therefore Bn0 ⊂ B.
Now, conclusions (i) and (ii) follow from Theorem 5.2. Finally, if we assume that G(M) is
bounded, then (i) does not occur. As B ∪ C ∈ CL(M) for all B, C ∈ CL(M), the addition
assumption of Theorem 5.3 is satisfied, and hence there exists a unique A ∈ CL(M) such
that A =

⋃
i≥1 fi(A) and limn→∞ Gn(B) = A for all B ∈ CL(M). This completes the proof. �

In support of Theorem 6.1, we provide the following example.

Example 6.1 Let M = [0,∞) be equipped with the usual metric. For each i ∈ N, define fi :
M → M by fi(u) = u

iu+1 + βi for all u ∈ M, where βi ≥ 0. Consider the function θ : (0,∞) →
(1,∞) given in Example 3.4. Then we have the following:

(i) for each i ∈N, fi is not a Banach contraction;
(ii) {fi}i≥1 is a weak θ -CIFS, and for each i ∈N, hi = e–1 ∈ (0, 1), hi being the constant

associated with fi from (3.1). Furthermore, if CK = { iβi+
√

i2β2
i +4iβi

2i ; i ∈ K} for every
nonempty K ⊂N and G : CL(M) → CL(M) be defined as in Definition 6.1, then one
of the following cases occurs:

(I) η(Gn(CK ),Gn+1(CK )) = ∞ for all n ∈N; or
(II) there exists an attractor A ∈ CL(M) of the considered weak θ -CIFS and

A = limn→∞ Gn(CK ), the limit being taken w.r.t. the generalized
Hausdorff–Pompeiu metric.

(iii) if supi≥1 βi < ∞, then the attractor A is unique, and A = limn→∞ Gn(B) for all
B ∈ CL(M).

Proof In view of Example 3.7, for each i ∈N, fi is a weak θ -contraction (with hi = e–1), not a

Banach contraction, and its fixed point is zi = iβi+
√

i2β2
i +4iβi

2i . Observe that supi≥1 hi = e–1 < 1
and, for each i ∈ N, fi(M) ⊂ [βi,βi + 1

i ], so that G(M) ⊂ [0, supi≥1 βi + 1], and hence G(M)
is bounded. Therefore, the conclusion of this example follows from Theorem 6.1. �
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