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Abstract
We consider the Kirchhoff-type p-Laplacian Dirichlet problem containing the left and
right fractional derivative operators. By using the Nehari method in critical point
theory, we obtain the existence theorem of ground state solutions for such Dirichlet
problem.
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1 Introduction
In the present paper, we discuss the existence of ground state solutions for the Kirchhoff-
type fractional Dirichlet problem with p-Laplacian of the form

⎧
⎨

⎩

(a + b
∫ T

0 |0Dα
t u(t)|p dt)p–1

tDα
Tφp(0Dα

t u(t)) = f (t, u(t)), t ∈ (0, T),

u(0) = u(T) = 0,
(1)

where a, b > 0, p > 1 are constants, 0Dα
t and tDα

T are the left and right Riemann–Liouville
fractional derivatives of order α ∈ (1/p, 1], respectively, φp : R → R is the p-Laplacian de-
fined by

φp(s) = |s|p–2s (s �= 0), φp(0) = 0,

and f ∈ C1([0, T] ×R,R).
The Kirchhoff equation [21] is an extension of the wave equation which comes from

the free vibrations of elastic strings and takes into account the changes in length of the
string produced by transverse vibrations. In addition, the fractional order models are more
appropriate than the integer order models in real world owing to the fact that the fractional
derivatives offer a wonderful tool to describe the memory and hereditary properties of a
great deal of processes and materials [12, 15, 16, 22, 25]. Moreover, the p-Laplacian [23]
often appears in non-Newtonian fluid theory, nonlinear elastic mechanics, and so on.

Notice that, when a = 1, b = 0, and p = 2, the left-hand side of equation of BVP (1), which
is nonlinear and nonlocal, reduces to the linear operator tDα

T 0Dα
t , and further reduces to

the local operator –d2/dt2 when α = 1.
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In recent years, there have been many authors to study the fractional boundary value
problems (BVPs for short) [1, 3, 4, 7, 11, 17] and the Kirchhoff equations [2, 6, 8, 10, 24,
26], and to obtain numerous important results. In addition, the models containing left and
right fractional derivatives have been recently gaining more attention [5, 9, 13, 14, 18, 19,
28] because of the applications in physical phenomena exhibiting anomalous diffusion.

Motivated by the above works, in this paper, we discuss the existence of nontrivial
ground state solutions for BVP (1). The main tool used here is the Nehari method.

For the nonlinearity f , we make the following assumptions throughout this paper.
(H1) The mapping x → f (t, x)/|x|p2–1 is strictly increasing on R \ {0} for ∀t ∈ [0, T].
(H2) f (t, x) = o(|x|p–1) as |x| → 0 uniformly for ∀t ∈ [0, T].
(H3) There exist two constants μ > p2, R > 0 such that

0 < μF(t, x) ≤ xf (t, x), ∀t ∈ [0, T], x ∈R with |x| ≥ R,

where F(t, x) =
∫ x

0 f (t, s) ds.
Now we state our main result.

Theorem 1.1 Let (H1)–(H3) be satisfied. Then BVP (1) possesses at least one nontrivial
ground state solution.

The rest of this paper is organized as follows. Some preliminary results are presented in
Sect. 2. Section 3 is devoted to proving Theorem 1.1.

2 Preliminaries
In this section, we present some basic definitions and notations of the fractional calculus
[20, 27]. Moreover we introduce a fractional Sobolev space and some properties of this
space [19].

Definition 2.1 For γ > 0, the left and right Riemann–Liouville fractional integrals of or-
der γ of a function u : [a, b] →R are given by

aIγ
t u(t) =

1
�(γ )

∫ t

a
(t – s)γ –1u(s) ds,

tIγ

b u(t) =
1

�(γ )

∫ b

t
(s – t)γ –1u(s) ds,

provided that the right-hand side integrals are pointwise defined on [a, b], where �(·) is
the gamma function.

Definition 2.2 For n – 1 ≤ γ < n (n ∈ N), the left and right Riemann–Liouville fractional
derivatives of order γ of a function u : [a, b] →R are given by

aDγ
t u(t) =

dn

dtn aIn–γ
t u(t),

tDγ

b u(t) = (–1)n dn

dtn tIn–γ

b u(t).
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Remark 2.3 When γ = 1, one can obtain from Definitions 2.1 and 2.2 that

aD1
t u(t) = u′(t), tD1

bu(t) = –u′(t),

where u′ is the usual first-order derivative of u.

Definition 2.4 For 0 < α ≤ 1 and 1 < p < ∞, the fractional derivative space Eα,p
0 is defined

by the closure of C∞
0 ((0, T),R) with respect to the following norm:

‖u‖Eα,p =
(‖u‖p

Lp +
∥
∥0Dα

t u
∥
∥p

Lp
) 1

p ,

where ‖u‖Lp = (
∫ T

0 |u(t)|p dt)1/p is the norm of Lp((0, T),R).

Remark 2.5 It is obvious that, for u ∈ Eα,p
0 , one has

u, 0Dα
t u ∈ Lp((0, T),R

)
, u(0) = u(T) = 0.

Lemma 2.6 (see [19]) Let 0 < α ≤ 1 and 1 < p < ∞. The fractional derivative space Eα,p
0 is

a reflexive and separable Banach space.

Lemma 2.7 (see [19]) Let 0 < α ≤ 1 and 1 < p < ∞. For u ∈ Eα,p
0 , one has

‖u‖Lp ≤ Cp
∥
∥0Dα

t u
∥
∥

Lp , (2)

where

Cp =
Tα

�(α + 1)
> 0

is a constant. Moreover, if α > 1/p, then

‖u‖∞ ≤ C∞
∥
∥0Dα

t u
∥
∥

Lp , (3)

where ‖u‖∞ = maxt∈[0,T] |u(t)| is the norm of C([0, T],R) and

C∞ =
Tα– 1

p

�(α)(αq – q + 1)
1
q

> 0, q =
p

p – 1
> 1

are two constants.

Remark 2.8 By (2), we can consider the space Eα,p
0 with the norm

‖u‖Eα,p =
∥
∥0Dα

t u
∥
∥

Lp (4)

in what follows.

Lemma 2.9 (see [19]) Let 1/p < α ≤ 1 and 1 < p < ∞. The imbedding of Eα,p
0 in C([0, T],R)

is compact.



Chen and Liu Advances in Difference Equations        (2018) 2018:436 Page 4 of 9

3 Ground state solutions of BVP (1)
The purpose of this section is to prove our main result via the Nehari method. To this end,
we are going to set up the corresponding variational framework of BVP (1).

Define the functional I : Eα,p
0 →R by

I(u) =
1

bp2

(

a + b
∫ T

0

∣
∣0Dα

t u(t)
∣
∣p dt

)p

–
∫

T
0 F

(
t, u(t)

)
dt –

ap

bp2

=
1

bp2

(
a + b‖u‖p

Eα,p
)p –

∫ T

0
F
(
t, u(t)

)
dt –

ap

bp2 .

Then there is one-to-one correspondence between the critical points of energy functional
I and the weak solutions of BVP (1). It is easy to check from (3), (4), and f ∈ C1([0, T] ×
R,R) that the functional I is well defined on Eα,p

0 and is second-order continuously Fréchet
differentiable, that is, I ∈ C2(Eα,p

0 ,R). Furthermore, we have

〈
I ′(u), v

〉
=

(
a + b‖u‖p

Eα,p
)p–1

∫ T

0
φp

(
0Dα

t u(t)
)

0Dα
t v(t) dt

–
∫ T

0
f
(
t, u(t)

)
v(t) dt, ∀u, v ∈ Eα,p

0 ,

which yields

〈
I ′(u), u

〉
=

(
a + b‖u‖p

Eα,p
)p–1‖u‖p

Eα,p –
∫

T
0 f

(
t, u(t)

)
u(t) dt.

Now let us define

N =
{

u ∈ Eα,p
0 \ {0}|G(u) = 0

}
,

where

G(u) =
〈
I ′(u), u

〉
.

Thus we know that any non-zero critical point of I must be on N . In the following, for
simplicity, let

Mu = a + b‖u‖p
Eα,p .

From (H1), one has

f ′
2(t, x)x2 ≥ (

p2 – 1
)
f (t, x)x, ∀(t, x) ∈ [0, T] × (

R \ {0}), (5)

where f ′
2(t, x) = ∂f (t,x)

∂x . Then, for u ∈N , we have

〈
G′(u), u

〉
= bp(p – 1)Mp–2

u ‖u‖2p
Eα,p + pMp–1

u ‖u‖p
Eα,p

–
∫ T

0
f ′
2
(
t, u(t)

)
u2(t) dt –

∫ T

0
f
(
t, u(t)

)
u(t) dt
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≤ Mp–2
u ‖u‖p

Eα,p
(
bp2‖u‖p

Eα,p + ap
)

– p2
∫ T

0
f
(
t, u(t)

)
u(t) dt

= a
(
p – p2)Mp–2

u ‖u‖p
Eα,p < 0, (6)

which means that N has a C1 structure and is a manifold.

Lemma 3.1 Assume that (H1) holds. If u ∈N is a critical point of I|N , then I ′(u) = 0, that
is, N is a natural constraint for I .

Proof If u ∈N is a critical point of I|N , then there exists a Lagrange multiplier λ ∈R such
that

I ′(u) = λG′(u).

Then we get

〈
I ′(u), u

〉
= λ

〈
G′(u), u

〉
= 0,

which together with (6) yields λ = 0. So we have I ′(u) = 0. �

In order to discuss the critical points of I|N , we need to investigate the structure of N .

Lemma 3.2 Assume that (H1)–(H3) hold. For each u ∈ Eα,p
0 \ {0}, there is unique s = s(u) ∈

R
+ such that su ∈N .

Proof First, we claim that there exist constants ρ,σ > 0 such that

I(u) > 0, ∀u ∈ Bρ(0) \ {0}, I(u) ≥ σ , ∀u ∈ ∂Bρ(0), (7)

where Bρ(0) is an open ball in Eα,p
0 with the radius ρ and centered at 0, and ∂Bρ(0) denotes

its boundary. That is, by I(0) = 0, 0 is a strict local minimizer of I . In fact, from (H2), there
are two constants 0 < ε < 1, δ > 0 such that

F(t, x) ≤ (1 – ε)ap–1

pCp
p

|x|p, ∀(t, x) ∈ [0, T] × [–δ, δ], (8)

where Cp > 0 is a constant defined in (2). Let ρ = δ/C∞ and σ = εap–1ρp/p, where C∞ > 0
is a constant defined in (3). Then, by (3) and (4), one has

‖u‖∞ ≤ C∞‖u‖Eα,p ≤ δ, ∀u ∈ Bρ(0),

which together with (2), (4), and (8) yields

I(u) =
1

bp2 Mp
u –

∫ T

0
F
(
t, u(t)

)
dt –

ap

bp2

≥ ap–1

p
‖u‖p

Eα,p –
(1 – ε)ap–1

pCp
p

∫ T

0

∣
∣u(t)

∣
∣p dt
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≥ ap–1

p
‖u‖p

Eα,p –
(1 – ε)ap–1

p
‖u‖p

Eα,p

=
εap–1

p
‖u‖p

Eα,p = σ , ∀u ∈ ∂Bρ(0).

Second, we claim that I(ξu) → –∞ as ξ → ∞. In fact, from (H3), a simple argument
can show that there are two constants c1, c2 > 0 such that

F(t, x) ≥ c1|x|μ – c2, ∀(t, x) ∈ [0, T] ×R.

Thus, for each u ∈ Eα,p
0 \ {0}, ξ ∈R

+, we obtain from μ > p2 that

I(ξu) =
1

bp2 Mp
ξu –

∫ T

0
F
(
t, ξu(t)

)
dt –

ap

bp2

≤ 1
bp2 Mp

ξu – c1

∫ T

0

∣
∣ξu(t)

∣
∣μ dt + c2T –

ap

bp2

=
1

bp2

(
a + bξp‖u‖p

Eα,p
)p – c1ξ

μ‖u‖μ

Lμ + c2T –
ap

bp2

→ –∞ as ξ → ∞.

Let

gu(s) = I(su), ∀s ∈R
+.

Then, from what we have proved, gu has at least one maximum point s(u) with maximum
value greater than σ > 0. Next, we prove that gu has a unique critical point for s ∈ R

+,
which then must be the global maximum point. Considering a critical point of gu, one has

g ′
u(s) =

〈
I ′(su), u

〉

= ‖u‖p
Eα,p Mp–1

su sp–1 –
∫ T

0
f
(
t, su(t)

)
u(t) dt

= 0,

which together with (5) yields

g ′′
u(s) = bp(p – 1)‖u‖2p

Eα,p Mp–2
su s2p–2

+ (p – 1)‖u‖p
Eα,p Mp–1

su sp–2 –
∫ T

0
f ′
2
(
t, su(t)

)
u2(t) dt

< ‖u‖p
Eα,p Mp–2

su
(
b
(
p2 – 1

)‖u‖p
Eα,p s2p–2 + a(p – 1)sp–2)

–
p2 – 1

s

∫ T

0
f
(
t, su(t)

)
u(t) dt

= ‖u‖p
Eα,p Mp–2

su
(
b
(
p2 – 1

)‖u‖p
Eα,p s2p–2 + a(p – 1)sp–2)

–
(
p2 – 1

)‖u‖p
Eα,p Mp–1

su sp–2

= a‖u‖p
Eα,p Mp–2

su
(
p – p2)sp–2 ≤ 0. (9)
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Hence, if s is a critical point of gu, then it must be a strict local maximum point. This
ensures the uniqueness of a critical point of gu. Finally, from

g ′
u(s) =

1
s
〈
I ′(su), su

〉
, ∀t ∈R

+, (10)

we obtain that, if s is a critical point of gu, then su ∈N . �

Let us define

m = inf
N

I.

Then we get from (7) that

m ≥ inf
∂Bρ (0)

I ≥ σ > 0.

Lemma 3.3 Assume that (H1)–(H3) hold. Then there exists u∗ ∈N such that I(u∗) = m.

Proof By Lemma 2.9, we obtain that the functional

u →
∫ T

0
F
(
t, u(t)

)
dt, ∀u ∈ Eα,p

0

is weakly continuous. Thus, as the sum of a convex continuous functional and a weakly
continuous one, I is weakly lower semi-continuous on Eα,p

0 .
Let {uk} ⊂N be a minimizing sequence of I , then one has

I(uk) = m + o(1), G(uk) = 0. (11)

Next, we prove that {uk} is bounded in Eα,p
0 . Based on the continuity of μF(t, x) – xf (t, x)

and (H3), we see that there exists a constant c > 0 such that

F(t, x) ≤ 1
μ

xf (t, x) + c, ∀(t, x) ∈ [0, T] ×R.

Thus, from (11), we have

m + o(1) = I(uk)

≥ 1
bp2 Mp

uk
–

1
μ

∫ T

0
f
(
t, uk(t)

)
uk(t) dt – cT –

ap

bp2

=
1

bp2 Mp
uk

–
1
μ

Mp–1
uk

‖uk‖p
Eα,p – cT –

ap

bp2

= Mp–1
uk

((
1
p2 –

1
μ

)

‖uk‖p
Eα,p +

a
bp2

)

– cT –
ap

bp2 .

Hence it follows from μ > p2 that {uk} is bounded in Eα,p
0 .
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Since Eα,p
0 is a reflexive Banach space (see Lemma 2.6), up to a subsequence, we can

assume uk ⇀ u in Eα,p
0 . Moreover, from Lemma 2.9, one has uk → u in C([0, T],R). Next,

we prove u �= 0. By (H2), we get that, for ∀ε > 0, there exists a constant δ > 0 such that

f (t, x)x ≤ ε|x|p, ∀(t, x) ∈ [0, T] × [–δ, δ].

Then, assume ‖uk‖∞ ≤ δ, we obtain from (3), (4), and uk ∈N that

C–p
∞

(
a + bC–p

∞ ‖uk‖p
∞

)p–1‖uk‖p
∞ ≤ (

a + b‖uk‖p
Eα,p

)p–1‖uk‖p
Eα,p

=
∫ T

0
f
(
t, uk(t)

)
uk(t) dt

≤ ε

∫ T

0

∣
∣uk(t)

∣
∣p dt

≤ εT‖uk‖p
∞,

which is a contradiction from the arbitrariness of ε. Hence we have

‖u‖∞ = lim
k→∞

‖uk‖∞ ≥ δ > 0,

and then u �= 0. Thus, by Lemma 3.2, there exists s ∈ R
+ such that su ∈ N . Therefore,

together with the fact that I is weakly lower semi-continuous, we obtain

m ≤ I(su) ≤ lim
k→∞

I(suk) ≤ lim
k→∞

I(suk). (12)

Finally, for ∀uk ∈N , we see from (9) and (10) that s = 1 is the global maximum point of
guk . So one has

I(suk) ≤ I(uk),

which together with (12) implies

m ≤ I(su) ≤ lim
k→∞

I(uk) = m.

That is, m is achieved at su ∈N . �

Now we give the proof of our main result.

Proof of Theorem 1.1 By Lemma 3.3, we get u∗ ∈ N such that I(u∗) = m = infN I > 0, that
is, u∗ is a non-zero critical point of I|N . Then, from Lemma 3.1, we know I ′(u∗) = 0, and
so u∗ is a nontrivial ground state solution of BVP (1). �
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