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Abstract
This article is devoted to the dynamical analysis of an explicit continuous iteration
algorithm, describing its construction, relationship with the explicit trapezoid
method, and error analysis. A theorem demonstrating the equality of these methods
is also established. The accuracy of the theoretical results and universality of the
explicit continuous iteration algorithm are proved by numerical experiments.
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1 Introduction
With developments in the society and economy, scientific computing has recently become
increasingly popular in the world. In fact, it is essential that we derive high order, efficient
numerical methods to solve differential equations, which are widely used in physical prob-
lems. In particular, it is very important to construct fast algorithms for solving practical
problems.

It is well known that many numerical methods are applied to mathematical models to
investigate the solution space. Some of these methods are explicit, such as Euler scheme,
Adams scheme, and Runge–Kutta scheme, we refer the reader to [9, 10] and the refer-
ences therein. Others employ implicit methods. However, implicit approaches have many
shortcomings, such as being overly complex, relatively slow, and requiring excessive in-
ternal memory space. Therefore, explicit methods have become more widely used.

Many uncertainties and practical difficulties involved in models for solving differential
equations mean that there are relatively few reports in the literature up to now. In [1],
Butcher stated that the classic finite stage Runge–Kutta methods could be expanded to
infinite stage Runge–Kutta methods, and suggested that the finite summation should be
changed to definite integration over finite intervals. However, he did not make any further
progress in this field. In 2010, Haier built on this important concept and provided an ex-
pression for a continuous stage Runge–Kutta method [2]. We expand this to the case of
ordinary differential equations (ODEs), which describe many natural phenomena in me-
teorology, biology, and so on [7, 8]. To the best of our knowledge, there are no previous
reports of explicit continuous iterative methods in the literature.

The main motivations for this work are twofold. On the one hand, the classical results
on explicit numerical methods are the basis for this research. A variety of numerical meth-
ods have been applied to different aspects of differential equations, and many important
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results have revealed the mechanisms of dynamical behavior. On the other hand, our ear-
lier work [10, 11] on stability analysis and numerical simulations of stochastic differential
equations have inspired further study in this direction. For example, there has been some
research on the numerical analysis [5, 6, 11] and numerical simulations [10] of stochastic
differential equations. These studies established the foundation of numerical analysis.

In this study, we first construct a class of explicit continuous iterative (ECI) algorithms,
and then compare with other classes in terms of class of numerical methods and error
analysis. Numerical examples are presented to illustrate the feasibility of the ECI algorithm
and to provide accurate solutions within a reasonable time. These results show that, under
some appropriate conditions, ECI algorithm can be used to solve some nonlinear ODEs
more accurately than with some existing numerical approximations.

The remainder of this paper is organized as follows. Section 2 describes the construc-
tion of the ECI algorithm, and introduces some relevant concepts and norms which will
be utilized later. Section 3 is devoted to the theoretical analysis of the ECI algorithm, i.e.,
the error analysis of the solution and equivalence properties. Section 4 presents numeri-
cal experiments in some given areas, including illustrative numerical results for the main
theorem. Section 5 provides the conclusions to this study.

2 Construction of explicit continuous iterative algorithm
We consider the following test equation:

⎧
⎨

⎩

dY
dt = aY ,

Y (0) = II,

where a ∈ R, Y ∈ R
d , II = (1, 1, . . . , 1) ∈ R

d , and d ∈ Z
+. The norm of a variable Y =

(y1, y2, . . . , yd) ∈R
d is defined as follows:

‖Y‖2 =
[|y1|2 + |y2|2 + · · · + |yd|2

] 1
2 < ∞.

For simplicity of notation, the norm ‖ · ‖2 is usually written as ‖ · ‖ unless otherwise stated
in the sequel.

Motivated by Haier’s work [2], i.e., continuous stage Runge–Kutta method, we subdivide
the time axis R+ into the union of subintervals [nt, (n + 1)t], i.e.,

R
+ =

+∞⋃

n=0

[
nt, (n + 1)t

]
,

and utilize the step function and Haier’s construction method to form the following ECI
algorithm:

U(t) =
1 + 0.5a(t – nh)
1 – 0.5a(t – nh)

, nh ≤ t ≤ (n + 1)h, n = 0, 1, 2, . . . . (1)

Theorem 2.1 Yn and Yn+1 obtained by scheme (1) are the same as those by the trapezoid
formula.
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Proof On the one hand, it follows from scheme (1) that we obtain the following results.
When n = 0, we have

(
U(t)

)

n=0 =
1 + 0.5at
1 – 0.5at

, 0 ≤ t ≤ h. (2)

And when n = 1, we have

(
U(t)

)

n=1 =
1 + 0.5a(t – h)
1 – 0.5a(t – h)

, h ≤ t ≤ 2h. (3)

By the continuity of (2) and (3), we can get

(
U(h)

)

n=0 =
(
U(h)

)

n=1.

Therefore, we have

Y1 =
1 + 0.5ah
1 – 0.5ah

Y0.

Similarly, when n = 2, we obtain

(
U(t)

)

n=2 =
1 + 0.5ah
1 – 0.5ah

Y1 =
(

1 + 0.5ah
1 – 0.5ah

)2

Y0, 2h ≤ t ≤ 3h. (4)

By the continuity of (3) and (4), we have

(
U(2h)

)

n=1 =
(
U(2h)

)

n=2.

Therefore, we obtain

Y2 =
(

1 + 0.5ah
1 – 0.5ah

)2

Y0, 2h ≤ t ≤ 3h.

It follows from the same method that we have

Yn+1 =
1 + 0.5ah
1 – 0.5ah

Yn =
(

1 + 0.5ah
1 – 0.5ah

)n+1

Y0, (n + 1)h ≤ t ≤ (n + 2)h.

Therefore, we obtain

Yn =
(

1 + 0.5ah
1 – 0.5ah

)n

Y0, nh ≤ t ≤ (n + 1)h. (5)

On the other hand, by the trapezoid formula, we have

Yn+1 = Yn +
1
2

h(aYn + aYn+1),

i.e.,

Yn+1 =
1 + 0.5ah
1 – 0.5ah

Yn. (6)

Combining (5) and (6), we complete our proof. �
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Remark 1 As known from the above results, the essence of the ECI algorithm is that ex-
plicit iteration is applied to fast obtain approximate solutions, which are continuous and
more accurate, to the true solutions.

3 Error analysis
Lemma 3.1 The function U(t) satisfies the following vector ordinary differential equation:

dU(t)
dt

= aU(t) +
0.25a3(t – nh)2

[1 – 0.5a(t – nh)]2 Yn, t ∈ [
nh, (n + 1)h

]
, n = 0, 1, 2, . . . ,

and initial conditions U(nh) = Yn. Furthermore,

U
(
(n + 1)h

)
= eah

[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

Yn.

Proof Firstly, it follows from the expression of function U(t) that

(
U(t)

)

n=n =
1 + 0.5a(t – nh)
1 – 0.5a(t – nh)

Yn, nh ≤ t ≤ (n + 1)h.

The derivative of function U(t) is given by

dU(t)
dt

=
a

[1 – 0.5a(t – nh)]2 Yn

=
a[1 – 0.25a2(t – nh)2] – a[1 – 0.25a2(t – nh)2] + a

[1 – 0.5a(t – nh)]2 Yn

= a
1 – 0.5a(t + nh)
1 – 0.5a(t – nh)

Yn +
0.25a3(t – nh)2

[1 – 0.5a(t – nh)]2 Yn

= aU(t) +
0.25a3(t – nh)2

[1 – 0.5a(t – nh)]2 Yn.

Secondly, we have U(nh) = Yn.
Lastly, we integrate the derivative dU(t)

dt and obtain

∫ (n+1)h

nh

dU(t)
dt

dt =
∫ (n+1)h

nh
aU(t) dt +

∫ (n+1)h

nh

0.25a3(t – nh)2

[1 – 0.5a(t – nh)]2 Yn dt.

We make the transform t – nh = τ and have

U
(
(n + 1)h

)
– U(nh) =

∫ h

0
aU(t) dt +

1
4

a3
∫ h

0

τ 2

(1 – 0.5aτ )2 dτYn.

Therefore, we can obtain the claim of Lemma 3.1 as follows:

U
(
(n + 1)h

)
= eah

[

1 +
1
4

a3
∫ h

0

τ 2

(1 – 0.5aτ )2 dτ

]

Yn.

This completes our proof. �
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Lemma 3.2 Let the local error be En = Yn – Y (nh). Then it satisfies the following equality:

En+1 = eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

En +
1
4

a3e(n+1)ha
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ II. (7)

Proof If t satisfies the condition (n + 1)h ≤ t ≤ (n + 2)h, we have

U(t) =
1 + 0.5a(t – (n + 1)h)
1 – 0.5a(t – (n + 1)h)

Yn+1.

Then we can obtain U((t + 1)h) = Yn+1. It follows from Lemma 3.1 that

Yn+1 = eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

Yn.

By the vector differential equation Y ′ = aY , Y (0) = II , its solution is Y (t) = eatII . By the
definition of local error En, we have

En+1 = Yn+1 – Y
(
(n + 1)h

)

= eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

Yn – e(n+1)ahII

= eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]
(
En + Y (nh)

)
– e(n+1)ahII

= eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

En

+ eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

enhaII – e(n+1)ahII

= eah
[

1 +
1
4

a3
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

En +
1
4

a3e(n+1)ha
∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ II.

This completes our proof. �

By the conclusions of Lemmas 3.1 and 3.2, we obtain the following error control theo-
rem.

Theorem 3.1 If a < 0, the ECI algorithm (1) satisfies the following error propagation in-
equality:

‖En+1‖ ≤ eah
[

1 +
1
4
|a|3

∫ h

0
e–τaτ 2 dτ

]

‖En‖ +
1
4
|a|3e(n+1)ha

∫ h

0
e–τaτ 2 dτ .

Proof When a < 0, it follows from the condition 0 < τ < h that we have the conclusion
1 – 0.5aτ > 1. By the properties of the integral, we obtain

∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ ≤
∫ h

0
e–τaτ 2 dτ .
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Therefore, by Lemma 3.2 and the triangle inequality of the norm, we obtain

‖En+1‖ ≤ eah
[

1 +
1
4
|a|3

∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

]

‖En‖ +
1
4
|a|3e(n+1)ha

∫ h

0

e–τaτ 2

(1 – 0.5aτ )2 dτ

≤ eah
[

1 +
1
4
|a|3

∫ h

0
e–τaτ 2 dτ

]

‖En‖ +
1
4
|a|3e(n+1)ha

∫ h

0
e–τaτ 2 dτ .

Therefore, the conclusion of Theorem 3.1 follows from Lemma 3.1. �

Remark 2 The advantages of this method are not only in its convergence, that is, the iter-
ated error being limited in a small interval, but also in its ability to simulate the solutions
of ODEs continuously and explicitly, which can help simulate the true solutions more ac-
curately.

4 Numerical experiments
4.1 Comparison with classic methods
As for the test equation in Sect. 2, we only consider the special case Y ∈ R, a = –4.0 and
Y (0) = 1.0. We compare numerical solutions obtained by the ECI algorithm with those
yielded by some classic methods, such as Euler method and implicit trapezoid method.
We choose the step size h = 0.01, and the different results are shown as follows.

From the data shown in Table 1, we see that the results obtained by the ECI algorithm
and trapezoid method are almost the same, and with the increasing number of iterations,
the solutions become closer to zero.

It follows from Table 2 and Figs. 1–2 that the accuracy of the numerical solutions ob-
tained by the ECI algorithm is much higher than that obtained by Euler method, and the
error approaches zero much faster. Meanwhile, Fig. 3 shows that this algorithm is stable
for different initial values. All these facts verify the theoretical results.

Table 1 Comparison of numerical solutions for different number of steps, N, obtained by different
methods

N Euler method ECI algorithm Trapezoid method

0 1.0 1.0 1.0
50 0.1353 0.1408 0.1408
100 0.0176 0.0191 0.0191
200 2.9647e–04 3.4878e–04 3.4878e–04
500 1.4235e–09 2.1396e–09 2.1396e–09
1000 1.9452e–18 4.3982e–18 4.3982e–18

Table 2 Comparison of errors for different number of steps, N, obtained by different methods

N Euler method ECI algorithm Trapezoid method

0 0 0 0
50 3.7582e–05 0.0055 0.0055
100 7.4239e–04 7.3741e–04 7.3741e–04
200 3.8996e–05 1.3320e–05 1.3320e–05
500 6.3769e–10 7.8414e–11 7.8414e–11
1000 2.3032e–18 1.4988e–19 1.4988e–19
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Figure 1 Comparison of the numerical solutions in the time interval [0, 2] for two methods

Figure 2 Comparison of the numerical solutions in the time interval [1, 2] for two methods

Figure 3 Stability of the ECI algorithm
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4.2 Applications in numerical simulations
We consider a nonlinear ordinary differential equation with initial value

⎧
⎨

⎩

dY
dt = –2Y – 2t,

Y (0) = 1.0, Y ∈R.

Firstly, we make a transformation as follows. Let Z = Y + t, then we have

dZ
dt

=
dY
dt

+ 1.

So dZ
dt = –2Z + 1. And if we let X = Z – 1

2 , then dX
dt = –2X. Therefore, the analytic solution

is

Y =
1
2

e–2t – t +
1
2

.

Secondly, the ECI algorithm is applied to this equation and the numerical solution is
obtained as follows:

U(t) =
1 + 0.5a(t – nh)
1 – 0.5a(t – nh)

(

Yn + tn –
1
2

)

, nh ≤ t ≤ (n + 1)h, a = –2, n = 0, 1, . . .

We choose the step size h = 0.01 and iterative step N = 600. The numerical results are
shown as the following Figs. 4 and 5.

And we obtain the computational time when the error tolerance is no more than ‖E‖ =
4.91e–06. The results are as follows.

Figures 4–5 and Table 3 demonstrate that the accuracy of the ECI algorithm is much
higher than that of the trapezoid method, and the iteration times decrease obviously, so
that the computational efficacy of the ECI algorithm is better than that of Euler and trape-
zoid methods. Altogether, the ECI algorithm is an excellent and appropriate method for
some nonlinear ODEs.

Figure 4 Comparison of numerical solution given by the ECI algorithm and analytic solution
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Figure 5 Comparison of errors from Euler scheme and ECI algorithm

Table 3 Comparison of various characteristics for different methods

Main properties Euler method ECI algorithm Trapezoid method

computational time 4.431 3.852 4.231
number of iterations 890 773 1369
average iteration times 2.011 2.008 3.237
used CPU time 0.527 0.471 0.508

Remark 3 As we see from this numerical experiment, although the ECI algorithm is con-
structed for simple test equations, it can be extended to some nonlinear ODEs, which
can generate dynamical systems by some parameter transformations. However, the con-
ditions, which should be satisfied for such nonlinear ODEs, are still to be investigated, and
the associated algorithm will be revised, if needed. All these questions will be tackled in
our future work.

5 Conclusion
The main result of this paper is the dynamical analysis of the ECI algorithm and its ap-
plications in simulating the solutions of ODEs. The results show that this algorithm is
effective and the numerical results can match the results of theoretical analysis. Although
some progress is made, more practical models and methods, which are needed to solve a
system of ODEs or stochastic differential equations, will be shown in our future work.
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