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Abstract
In this paper, we first discuss some properties of the neutral operator with multiple
delays and variable coefficients (Ax)(t) := x(t) –

∑n
i=1 ci(t)x(t – δi). Afterwards, by using

an extension of Mawhin’s continuation theorem, a second order p-Laplacian neutral
differential equation

(

φp

(

x(t) –
n∑

i=1

ci(t)x(t – δi)
)′)′

= f̃ (t, x(t), x′(t))

is studied. Some new results on the existence of a periodic solution are obtained.
Meanwhile, the approaches to estimate a priori bounds of periodic solutions are
different from those known in the literature.
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1 Introduction
In this paper, we consider a second order p-Laplacian neutral differential equation

(

φp

(

x(t) –
n∑

i=1

ci(t)x(t – δi)

)′)′
= f̃

(
t, x(t), x′(t)

)
, (1.1)

where φp : R → R is given by φp(s) = |s|p–2s, here p > 1 is a constant, ci(t) ∈ C1(R,R) and
ci(t + T) = ci(t) and δi are constants in [0, T) for i = 1, 2, . . . , n; f̃ : [0, T] × R × R → R

is an L2-Carathéodory function, i.e., it is measurable in the first variable and continu-
ous in the second variable, and for every 0 < r < s there exists hr,s ∈ L2[0, T] such that
|f̃ (t, x(t), x′(t))| ≤ hr,s for all x ∈ [r, s] and a.e. t ∈ [0, T].

The study of the properties of the neutral operator (A1x)(t) := x(t) – cx(t – δ) began with
the paper of Zhang [2]. In 2004, Lu and Ge [14] investigated an extension of A1, namely the
neutral operator (A2x)(t) := x(t) –

∑n
i=1 cix(t – δi). Afterwards, Du [6] discussed the neu-

tral operator (A3x)(t) := x(t) – c(t)x(t – δ), here c(t) is a T-periodic function. And by using
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Mawhin’s continuation theorem and the properties of A3, they obtained sufficient condi-
tions for the existence of periodic solutions to the following Liénard neutral differential
equation:

(
x(t) – c(t)x(t – τ )

)′′ + f
(
x(t)

)
x′(t) + g

(
x
(
t – γ (t)

))
= e(t).

In recent years, many works have been published on the existence of periodic solutions
of second-order neutral differential equations (see [1, 3–5, 7, 9, 11–13, 16–19]). In 2007,
Zhu and Lu [19] discussed the existence of periodic solutions for a p-Laplacian neutral
differential equation

(
φp

(
x(t) – cx(t – τ )

)′)′ + g
(
t, x

(
t – δ(t)

))
= p(t).

Since (φp(x′(t)))′ is nonlinear (i.e., quasilinear), Mawhin’s continuation theorem [8] can-
not be applied directly. In order to get around this difficulty, Zhu and Lu translated the
p-Laplacian neutral differential equation into a two-dimensional system

⎧
⎨

⎩

(x1(t) – cx1(t – τ ))′(t) = φq(x2(t)) = |x2(t)|q–2x2(t),

x′
2(t) = –g(t, x1(t – δ(t))) + p(t),

where 1
p + 1

q = 1, for which Mawhin’s continuation theorem can be applied. Afterwards,
Du [5] discussed the existence of a periodic solution for a p-Laplacian neutral differential
equation

(
φp

(
x(t) – c(t)x(t – τ )

)′)′ + f
(
x(t)

)
x′(t) + g

(
x
(
t – γ (t)

))
= e(t),

by applying Mawhin’s continuation theorem.
However, the existence of a periodic solution for p-Laplacian neutral differential equa-

tion (1.1) has not been studied until now. The obvious difficulty lies in the following two
respects. First, although (Ax)(t) = x(t) –

∑n
i=1 ci(t)x(t – δi) is a natural generalization of

the operators A1, A2 and A3, the class of neutral differential equations with A typically
possesses a more complicated nonlinearity than neutral differential equations with A1, A2

and A3. Second, we do not get (Ax)′(t) = (Ax′)(t), meanwhile a priori bounds of periodic
solutions are not easy to estimate.

The remaining part of the paper is organized as follows. In Sect. 2, we analyze qualita-
tive properties of the generalized neutral operator A. In Sect. 3, by employing an extension
of Mawhin’s continuation theorem, we state and prove the existence of periodic solutions
for Eq. (1.1). In Sect. 4, we investigate the existence of periodic solutions for a p-Laplacian
neutral differential equation by applying Theorem 3.2. In comparison to [5] and [19], we
avoid translating the equation into a two-dimensional system. In Sect. 5, we discuss the
existence of periodic solutions for a p-Laplacian neutral differential equation with sin-
gularity by applying Theorem 3.2. In Sect. 6, we give four examples to demonstrate the
validity of the methods.
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2 Analysis of the generalized neutral operator
Let

‖ci‖ := max
t∈[0,T]

∣
∣ci(t)

∣
∣, i = 1, 2, . . . n; ‖ck‖ := max

{‖c1‖,‖c2‖, . . . ,‖cn‖
}

.

Set CT := {x ∈ C(R,R) : x(t + T) = x(t), t ∈ R}, then (CT ,‖ · ‖) is a Banach space. Define
operators A, B : CT → CT , by

(Ax)(t) = x(t) –
n∑

i=1

ci(t)x(t – δi), (Bx)(t) =
n∑

i=1

ci(t)x(t – δi).

Lemma 2.1 If
∑n

i=1 ‖ci‖ �= 1, then operator A has a continuous inverse A–1 on CT , satisfy-
ing

(1)

∣
∣
(
A–1x

)
(t)

∣
∣ ≤

⎧
⎪⎨

⎪⎩

‖x‖
1–

∑n
i=1 ‖ci‖ , for

∑n
i=1 ‖ci‖ < 1;

1
‖ck‖ ‖x‖

1– 1
‖ck‖ –

∑n
i=1,i�=k ‖ ci

ck
‖ , for

∑n
i=1 ‖ci‖ > 1;

(2)

∫ T

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤

⎧
⎪⎨

⎪⎩

1
1–

∑n
i=1 ‖ci‖

∫ T
0 |x(t)|dt, for

∑n
i=1 ‖ci‖ < 1;

1
‖ck‖

1– 1
‖ck‖ –

∑n
i=1,i�=k ‖ ci

ck
‖
∫ T

0 |x(t)|dt, for
∑n

i=1 ‖ci‖ > 1.

Proof Case 1:

n∑

i=1

‖ci‖ < 1.

(Bx)(t) =
n∑

i=1

ci(t)x(t – δi);

(
B2x

)
(t) =

n∑

l1=1

cl1 (t)
n∑

l2=1

cl2 (t – δl1 )x(t – δl1 – δl2 );

(
B3x

)
(t) =

n∑

l1=1

cl1 (t)
n∑

l2=1

cl2 (t – δl1 )
n∑

l3=1

cl2 (t – δl1 – δl2 )x(t – δl1 – δl2 – δl3 ).

Therefore, we have

(
Bjx

)
(t) =

n∑

l1=1

cl1 (t)
n∑

l2=1

cl2 (t –δl1 ) · · ·
n∑

lj=1

clj (t –δl1 –δl2 · · ·–δlj–1 )x(t –δl1 –δl2 – · · ·–δlj ),
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and

∞∑

j=0

(
Bjx

)
(t) = x(t) +

∞∑

j=1

n∑

l1=1

cl1 (t)
n∑

l2=1

cl2 (t – δl1 ) · · ·

×
n∑

lj=1

clj (t – δl1 – δl2 – · · · – δlj–1 )x(t – δl1 – δl2 – · · · – δlj ).

Since A = I – B and ‖B‖ < 1, we get that A has a continuous inverse A–1: CT → CT with

A–1 = (I – B)–1 = I +
∞∑

j=1

Bj =
∞∑

j=0

Bj,

where B0 = I . Then

∣
∣
(
A–1x

)
(t)

∣
∣ =

∣
∣
∣
∣
∣

∞∑

j=0

(
Bjx

)
(t)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
x(t) +

∞∑

j=1

(
Bjx

)
(t)

∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
x(t)

+
n∑

l1=1

cl1 (t) · · ·
n∑

lj=1

clj (t – δl1 – δl2 – · · · – δlj–1 )x(t – δl1 – δl2 – · · · – δlj )

∣
∣
∣
∣
∣

≤ ‖x‖
1 –

∑n
i=1 ‖ci‖ .

Moreover,

∫ T

0

∣
∣
(
A–1x

)
(t)

∣
∣dt

=
∫ T

0

∣
∣
∣
∣
∣

∞∑

j=0

(
Bjx

)
(t)

∣
∣
∣
∣
∣
dt

≤
∞∑

j=0

∫ T

0

∣
∣
(
Bjx

)
(t)

∣
∣dt

≤
∞∑

j=0

∫ T

0

∣
∣
∣
∣
∣

n∑

l1=1

cl1 (t)
n∑

l2=1

cl2 (t – δl1 ) · · ·

×
n∑

lj=1

clj (t – δl1 – δl2 – · · · – δlj–1 )x(t – δl1 – δl2 – · · · – δlj )

∣
∣
∣
∣
∣
dt

≤ 1
1 –

∑n
i=1 ‖ci‖

∫ T

0

∣
∣x(t)

∣
∣dt.

Case 2:
∑n

i=1 ‖ci‖ > 1.
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The operator (Ax)(t) = x(t) –
∑n

i=1 ci(t)x(t – δi) can be converted to

(Ax)(t) = x(t) – ck(t)x(t – δk) –
n∑

i=1,i�=k

ci(t)x(t – δi)

= –ck(t)

(

–
x(t)
ck(t)

+ x(t – δk) +
n∑

i=1,i�=k

ci(t)
ck(t)

x(t – δi)

)

= –ck(t)

(

x(t – δk) –
x(t)
ck(t)

+
n∑

i=1,i�=k

ci(t)
ck(t)

x(t – δi)

)

.

Let t1 = t – δk , it is clear that

(Ax)(t1 + δk) = –ck(t1 + δk)

(

x(t1) –
x(t1 + δk)
ck(t1 + δk)

+
n∑

i=1,i�=k

ci(t1 + δk)
ck(t1 + δk)

x(t1 + δk – δi)

)

.

Define

(Ex)(t) = –ck(t1 + δk)

(

x(t1) –
x(t1 + δk)
ck(t1 + δk)

+
n∑

i=1,i�=k

ci(t1 + δk)
ck(t1 + δk)

x(t1 + δk – δi)

)

,

ei =

⎧
⎨

⎩

1
ck (t1+δk ) , for i = k;

– ci(t1+δk )
ck (t1+δk ) , for i �= k.

εi =

⎧
⎨

⎩

–δk , for i = k;

δi – δk , for i �= k.

Therefore, (Ex)(t1 + δk) = x(t1 + δk) –
∑n

i=1 ei(t1 + δk)x(t1 – εi) and, from Case 1, we get

∣
∣
(
E–1x

)
(t)

∣
∣ ≤ ‖x‖

1 –
∑n

i=1 ‖ei‖ .

Moreover, since (A–1x)(t) = – 1
ck (t) (E–1x)(t), we have

∣
∣
(
A–1x

)
(t)

∣
∣ ≤

∣
∣
∣
∣–

1
ck(t)

(
E–1x

)
(t)

∣
∣
∣
∣

≤
1

‖ck‖‖x‖
1 – 1

‖ck‖ –
∑n

i=1,i�=k ‖ ci
ck

‖ .

Meanwhile, we obtain

∫ T

0

∣
∣
(
A–1x

)
(t)

∣
∣dt ≤

1
‖ck‖

1 – 1
‖ck‖ –

∑n
i=1,i�=k ‖ ci

ck
‖

∫ T

0

∣
∣x′(t)

∣
∣dt. �

3 Periodic solutions for equation (1.1)
In order to use an extension of Mawhin’s continuation theorem [10], we recall it firstly.

Let X and Z be Banach spaces with norms ‖ · ‖X and ‖ · ‖Z , respectively. A continuous
operator M : X ∩ dom M → Z is said to be quasilinear if

(1) Im M := M(X ∩ dom M) is a closed subset of Z;
(2) ker M := {x ∈ X ∩ dom M : Mx = 0} is a subspace of X with dim ker M < +∞.
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Let X1 = ker M and X2 be the complement space of X1 in X, then X = X1 ⊕ X2. Further-
more, Z1 is a subspace of Z and Z2 is the complement space of Z1 in Z, so Z = Z1 ⊕ Z2.
Suppose that P : X → X1 and Q : Z → Z1 are two projections and Ω ⊂ X is an open and
bounded set with the origin θ ∈ Ω .

Let Nλ : Ω̄ → Z, λ ∈ [0, 1] be a continuous operator. Denote N1 by N , and let
∑

λ = {x ∈
Ω̄ : Mx = Nλx}. Then Nλ is said to be M-compact in Ω̄ if

(3) there is a vector subspace Z1 of Z with dim Z1 = dim X1 and an operator R : Ω̄ × X2

being continuous and compact such that for λ ∈ [0, 1],

(I – Q)Nλ(Ω̄) ⊂ Im M ⊂ (I – Q)Z, (3.1)

QNλx = 0, λ ∈ (0, 1) ⇔ QNx = 0, (3.2)

R(·, 0) is the zero operator and R(·,λ)|∑
λ

= (I – P)|∑
λ
, (3.3)

and

M
[
P + R(·,λ)

]
= (I – Q)Nλ. (3.4)

Let J : Z1 → X1 be a homeomorphism with J(θ ) = θ .
Next, we investigate existence of periodic solutions for Eq. (1.1) by applying the exten-

sion of Mawhin’s continuation theorem.

Lemma 3.1 ([10]) Let X and Z be Banach spaces with norm ‖ · ‖X and ‖ · ‖Z , respectively,
and Ω ⊂ X be an open and bounded set with θ ∈ Ω . Suppose that M : X ∩ dom M → Z is
a quasilinear operator and

Nλ : Ω̄ → Z, λ ∈ (0, 1)

is an M-compact mapping. In addition, if
(a) Mx �= Nλx, λ ∈ (0, 1), x ∈ ∂Ω ,
(b) deg{JQN ,Ω ∩ ker M, 0} �= 0,

where N = N1, then the abstract equation Mx = Nx has at least one solution in Ω̄ .

Theorem 3.2 Assume
∑n

i=1 ‖ci‖ �= 1, Ω is an open bounded set in C1
T . Suppose the following

conditions hold:
(i) For each λ ∈ (0, 1), the equation

(
φp(Ax)′(t)

)′ = λf̃
(
t, x(t), x′(t)

)
(3.5)

has no solution on ∂Ω .
(ii) The equation

F(a) :=
1
T

∫ T

0
f̃ (t, a, 0) dt = 0

has no solution on ∂Ω ∩R.
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(iii) The Brouwer degree

deg{F ,Ω ∩R, 0} �= 0.

Then Eq. (1.1) has at least one T-periodic solution on Ω̄ .

Proof In order to use Lemma 3.1 we study the existence of periodic solutions to Eq. (1.1).
We set X := {x ∈ C[0, T] : x(0) = x(T)} and Z := C[0, T],

M : X ∩ dom M → Z, (Mx)(t) =
(
φp(Ax)′(t)

)′, (3.6)

where dom M := {u ∈ X : φp(Au)′ ∈ C1(R,R)}. Then ker M = R. In fact,

ker M =
{

x ∈ X :
(
φp(Ax)′(t)

)′ = 0
}

=
{

x ∈ X : φp(Ax)′ ≡ c
}

=
{

x ∈ X : (Ax)′ ≡ φq(c) := c1
}

=
{

x ∈ X : (Ax)(t) ≡ c1t + c2
}

,

where q > 1 is a constant with 1
p + 1

q = 1 and c, c1, c2 are constants in R. Since (Ax)(0) =
(Ax)(T), then we get ker M = {x ∈ X : (Ax)(t) ≡ c2}. In addition,

Im M =
{

y ∈ Z, for x(t) ∈ X ∩ dom M,
(
φp(Ax)′

)′ = y(t),

∫ T

0
y(t) dt =

∫ T

0
(φp

(
(Ax)′

)′ dt = 0
}

.

So M is quasilinear. Let

X1 = ker M, X2 =
{

x ∈ X : x(0) = x(T) = 0
}

,

Z1 = R, Z2 = Im M.

Clearly, dim X1 = dim Z1 = 1, and X = X1 ⊕ X2, P : X → X1, Q : Z → Z1, are defined by

Px = x(0), Qy =
1
T

∫ T

0
y(s) ds.

For ∀Ω̄ ⊂ X, define Nλ : Ω̄ → Z by

(Nλx)(t) = λf̃
(
t, x(t), x′(t)

)
.

We claim that (I – Q)Nλ(Ω̄) ⊂ Im M = (I – Q)Z holds. In fact, for x ∈ Ω̄ , we observe that

∫ T

0
(I – Q)Nλx(t) dt

=
∫ T

0
(I – Q)λf̃

(
t, x(t), x′(t)

)
dt
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=
∫ T

0
λf̃

(
t, x(t), x′(t)

)
dt –

∫ T

0

λ

T

∫ T

0
f̃
(
s, x(s), x′(s)

)
ds dt

= 0.

Therefore, we have (I – Q)Nλ(Ω̄) ⊂ Im M.
Moreover, for any x ∈ Z, it is obvious that

∫ T

0
(I – Q)x(t) dt =

∫ T

0

(

x(t) –
∫ T

0

1
T

∫ T

0
x(t) dt

)

dt = 0.

So, we have (I – Q)Z ⊂ Im M. On the other hand, x ∈ Im M and
∫ T

0 x(t) dt = 0, so we have
x(t) = x(t) –

∫ T
0 x(t) dt. Hence, we get x(t) ∈ (I – Q)Z. Therefore, Im M = (I – Q)Z.

From QNλx = 0, we get λ
T

∫ T
0 f̃ (t, x(t), x′(t)) dt = 0. Since λ ∈ (0, 1), we have 1

T
∫ T

0 f̃ (t, x(t),
x′(t)) dt = 0. Therefore, QNx = 0, and so Eq. (3.4) also holds.

Let J : Z1 → X1, J(x) = x, then J(0) = 0. Define R : Ω̄ × [0, 1] → X2,

R(x,λ)(t) = A–1
∫ t

0
φ–1

p

(

a +
∫ s

0
λf̃

(
u, x(u), x′(u)

)
du

–
λs
T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du

)

ds, (3.7)

where a ∈ R is a constant such that

R(x,λ)(T) = A–1
∫ T

0
φ–1

p

(

a +
∫ s

0
λf̃

(
u, x(u), x′(u)

)
du –

λs
T

∫ T

0
f̃
(
u, x(t), x′(u)

)
du

)

ds

= 0. (3.8)

From Lemma 2.3 of [15], we know that a is uniquely defined by

a = ã(x,λ),

where ã(x,λ) is continuous on Ω̄ ×[0, 1] and maps bounded sets of Ω̄ ×[0, 1] into bounded
sets of R.

From Eq. (3.4), one can find that

R : Ω̄ × [0, 1] → X2.

Now, for any x ∈ ∑
λ = {x ∈ Ω̄ : Mx = Nλx} = {x ∈ Ω̄ : (φp(Ax)′(t))′ = λf̃ (t, x(t), x′(t))}, we

have
∫ T

0 f̃ (t, x(t), x′(t)) dt = 0, which, together with Eq. (3.7), gives

R(x,λ)(t) = A–1
∫ t

0
φ–1

p (a +
∫ s

0
λf̃

(
u, x(u), x′(u) du

)
ds

= A–1
∫ t

0
φ–1

p

(

a +
∫ s

0

(
φp(Ax)′(u)

)′ du
)

ds

= A–1
∫ t

0
φ–1

p
(
a + φp(Ax)′(s) – φp(Ax)′(0)

)
ds.
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Taking a = φp(Ax)′(0), we then have

R(x,λ)(T) = A–1
∫ T

0

(
φ–1

p
(
φp(Ax)′(s)

))
ds

= A–1
∫ T

0
(Ax)′(t) ds

= A–1((Ax)(T) – (Ax)(0)
)

= x(T) – x(0)

= 0,

where a is unique, and we see that

a = ã(x,λ) = φp(Ax)′(0), ∀λ ∈ [0, 1].

Thus, we derive

R(x,λ)(t)|x∈∑
λ

= A–1
∫ t

0

(

φ–1
p

(

φp(Ax)′(0) +
∫ s

0
λf̃

(
t, u, x(u), x′(u)

)
du

))

ds

= A–1
∫ t

0

(
φ–1

p
(
φp(Ax)′(s)

))
ds

= A–1
∫ t

0
(Ax)′(s) ds

= x(t) – x(0)

= (I – P)x(t),

which yields the second part of Eq. (3.3). Meanwhile, if λ = 0, then

∑

λ

= {x ∈ Ω̄ : Mx = Nλx} = {x ∈ Ω̄ : (φp(Ax)′(t))′ = λf̃ (t, x(t), x′(t))} = c3,

where c3 ∈R is a constant, so by the continuity of ã(x,λ) with respect to (x,λ), a = ã(x, 0) =
φp(Ac)′(0) = 0. Hence,

R(x, 0)(t) = A–1
∫ t

0
φ–1

p (0) ds = 0, ∀x ∈ Ω̄ ,

which yields the first part of Eq. (3.3). Furthermore, we consider

M(P + R) = (I – Q)Nλ,

and, in fact,

d
dt

φp
(
A(P + R)

)′ = (I – Q)Nλ. (3.9)
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Integrating both sides of (3.9) over [0, s], we have

∫ s

0

d
dt

φp
(
A(P + R)

)′ ds =
∫ s

0
(I – Q)Nλ ds.

Therefore, we arrive at

φp
(
A(P + R)

)′(s) – a = λ

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

∫ s

0

λ

T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du dt

= λ

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λs
T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du,

where a := φp(A(P + R))′(0). Then, we get

(
A(P + R)

)′(s)

= φ–1
p

(

a + λ

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λs
T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du

)

. (3.10)

Integrating both sides of (3.10) over [0, t], we derive

∫ t

0

(
A(P + R)

)′(s) ds

=
∫ t

0
φ–1

p

(

a + λ

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λs
T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du

)

ds,

i.e.,

(P + R)(t) – (P + R)(0)

= A–1
(∫ t

0

(

φ–1
p

((

a + λ

∫ s

0
f̃
(
u, x(u), x′(u)

)
du

–
λs
T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du

)))

ds
)

.

Since R(x,λ)(0) = 0, P(t) = P(0), we obtain

R(x,λ)(t)

= A–1
(∫ t

0
φ–1

p

(

a + λ

∫ s

0
f̃
(
u, x(u), x′(u)

)
du –

λs
T

∫ T

0
f̃
(
u, x(u), x′(u)

)
du

)

dt
)

.

Hence, we have that Nλ is M-compact on Ω̄ . Obviously, the equation

(
φp(Ax)′(t)

)′ = λf̃
(
t, x(t), x′(t)

)

can be converted to

Mx = Nλx, λ ∈ (0, 1),
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where M and Nλ are defined by Eqs. (3.6) and (3.7), respectively. As proved above,

Nλ : Ω̄ → Z, λ ∈ (0, 1),

is an M-compact mapping. From assumption (i), one finds

Mx �= Nλx, λ ∈ (0, 1), x ∈ ∂Ω ,

and assumptions (ii) and (iii) imply that deg{JQN ,Ω ∩ ker M, θ} is valid and

deg{JQN ,Ω ∩ ker M, θ} �= 0.

So by applications of Lemma 3.1, we see that Eq. (1.1) has a T-periodic solution. �

4 Application of Theorem 3.2: p-Laplacian equation
As an application, we consider the following p-Laplacian neutral Liénard equation:

(

φp

(

x(t) –
n∑

i=1

ci(t)x(t – δi)

)′)′
+ f

(
x(t)

)
x′(t) + g

(
t, x(t)

)
= e(t), (4.1)

where φp : R →R is given by φp(s) = |s|p–2s, here p > 1 is a constant, g is a continuous func-
tion defined on R

2 and periodic in t with g(t, ·) = g(t + T , ·), f ∈ C(R,R), e is a continuous
periodic function defined on R with period T and

∫ T
0 e(t) dt = 0. Next, by applications of

Theorem 3.2, we will investigate the existence of periodic solution for Eq. (4.1) in the case
that

∑n
i=1 ‖ci‖ �= 1.

Define

σ :=

⎧
⎪⎨

⎪⎩

1
1–

∑n
i=1 ‖ci‖ , for

∑n
i=1 ‖ci‖ < 1;

1
‖ck‖

1– 1
‖ck‖ –‖ ci

ck
‖ , for

∑n
i=1 ‖ci‖ > 1.

Theorem 4.1 Suppose
∑n

i=1 ‖ci‖ �= 1 holds. Assume the following conditions hold:
(H1) There exists a constant D > 0 such that

xg(t, x) > 0, ∀(t, x) ∈ [0, T] ×R, with |x| > D.

(H2) There exist positive constants m, ñ such that

∣
∣f (x)

∣
∣ ≤ m|x|p–2 + ñ, x ∈R.

(H3) There exist positive constants a, b, B such that

∣
∣g(t, x)

∣
∣ ≤ a|x|p–1 + b, for |x| > B and t ∈ [0, T].

Then Eq. (4.1) has at least one T-periodic solution, if

σT
1
q

(
m

∑n
i=1 ‖ci‖

2p–1 +
aT(1 +

∑n
i=1 ‖ci‖)

2p

) 1
p

+
σT

∑n
i=1 ‖c′

i‖
2

< 1.
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Proof Consider the homotopic equation

(

φp

(

x(t) –
n∑

i=1

ci(t)x(t – δi)

)′)′
+ λf

(
x(t)

)
x′(t) + λg

(
t, x(t)

)
= λe(t). (4.2)

Firstly, we claim that the set of all T-periodic solutions of Eq. (4.2) is bounded. Let x(t) ∈
CT be an arbitrary T-periodic solution of Eq. (4.2). Integrating both sides of (4.2) over
[0, T], we have

∫ T

0
g
(
t, x(t)

)
dt = 0. (4.3)

From the mean-value theorem for integrals, there is a constant ξ ∈ [0, T] such that

g
(
ξ , x(ξ )

)
= 0.

In view of condition (H1), we obtain

∣
∣x(ξ )

∣
∣ ≤ D.

Then, we have

‖x‖ = max
t∈[0,T]

∣
∣x(t)

∣
∣ = max

t∈[ξ ,ξ+T]

∣
∣x(t)

∣
∣

=
1
2

max
t∈[ξ ,ξ+T]

(∣
∣x(t)

∣
∣ +

∣
∣x(t – T)

∣
∣
)

=
1
2

max
t∈[ξ ,ξ+T]

(∣
∣
∣
∣x(ξ ) +

∫ T

ξ

x′(s) ds
∣
∣
∣
∣ +

∣
∣
∣
∣x(ξ ) –

∫ ξ

t–T
x′(s) ds

∣
∣
∣
∣

)

≤ D +
1
2

(∫ t

ξ

∣
∣x′(s)

∣
∣ds +

∫ ξ

t–T

∣
∣x′(s)

∣
∣ds

)

≤ D +
1
2

∫ T

0

∣
∣x′(s)

∣
∣ds. (4.4)

Multiplying both sides of Eq. (4.2) by (Ax)(t) and integrating over the interval [0, T], we
get

∫ T

0

(
φp(Ax)′(t)

)′(Ax)(t) dt + λ

∫ T

0
f
(
x(t)

)
x′(t)(Ax)(t) dt + λ

∫ T

0
g
(
t, x(t)

)
(Ax)(t) dt

= λ

∫ T

0
e(t)(Ax)(t) dt. (4.5)

Substituting
∫ T

0 (φp(Ax)′(t))′(Ax)(t) dt = –
∫ T

0 |(Ax)′(t)|p dt,
∫ T

0 f (x(t))x′(t)x(t) dt = 0 into
Eq. (4.5), we see that

–
∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt = λ

∫ T

0
f
(
x(t)

)
x′(t)

( n∑

i=1

ci(t)x(t – δi)

)

dt



Bi et al. Advances in Difference Equations        (2019) 2019:106 Page 13 of 24

– λ

∫ T

0
g
(
t, x(t)

)
(Ax)(t) dt

+ λ

∫ T

0
e(t)(Ax)(t) dt.

Thus, we have

∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt

≤
∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣

∣
∣
∣
∣
∣

n∑

i=1

ci(t)x(t – δi)

∣
∣
∣
∣
∣
dt

+
∫ T

0

∣
∣g

(
t, x(t)

)∣
∣

∣
∣
∣
∣
∣
x(t) –

n∑

i=1

ci(t)x(t – δi)

∣
∣
∣
∣
∣
dt

+
∫ T

0

∣
∣e(t)

∣
∣

∣
∣
∣
∣
∣
x(t) –

n∑

i=1

ci(t)x(t – δi)

∣
∣
∣
∣
∣
dt

≤
n∑

i=1

‖ci‖‖x‖
∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣dt +

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ T

0

∣
∣g

(
t, x(t)

)∣
∣dt

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ T

0

∣
∣e(t)

∣
∣dt.

Define

E1 :=
{

t ∈ [0, T]|∣∣x(t)
∣
∣ ≤ B

}
, E2 :=

{
t ∈ [0, T]|∣∣x(t)

∣
∣ > B

}
.

Using conditions (H2) and (H3), we arrive at

∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt

≤
n∑

i=1

‖ci‖‖x‖
∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣dt +

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫

E1+E2

∣
∣g

(
t, x(t)

)∣
∣dt

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ T

0

∣
∣e(t)

∣
∣dt

≤
n∑

i=1

‖ci‖‖x‖(m‖x‖p–2 + ñ
)
∫ T

0

∣
∣x′(t)

∣
∣dt +

(

1 +
n∑

i=1

‖ci‖
)

T‖gB‖‖x‖

+

(

1 +
n∑

i=1

‖ci‖
)

bT‖x‖ + aT

(

1 +
n∑

i=1

‖ci‖
)

‖x‖p + ‖e‖T

(

1 +
n∑

i=1

‖ci‖
)

‖x‖

≤ m
n∑

i=1

‖ci‖‖x‖p–1
∫ T

0

∣
∣x′(t)

∣
∣dt + ñ

n∑

i=1

‖ci‖‖x‖
∫ T

0

∣
∣x′(t)

∣
∣dt

+ aT

(

1 +
n∑

i=1

‖ci‖
)

‖x‖p + N1‖x‖, (4.6)
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where ‖e‖ := maxt∈[0,T] |e(t)|, ‖gB‖ := max|x(t)|≤B |g(t, x(t))| and N1 := (1+
∑n

i=1 ‖ci‖)T(‖gB‖+
b + ‖e‖). Substituting Eq. (4.4) into Eq. (4.6), we get

∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt ≤ m

n∑

i=1

‖ci‖
(

D +
1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)p–1 ∫ T

0

∣
∣x′(t)

∣
∣dt

+ aT

(

1 +
n∑

i=1

‖ci‖
)(

D +
1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)p

+ ñ
n∑

i=1

‖ci‖
(

D +
1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)∫ T

0

∣
∣x′(t)

∣
∣dt

+ N1

(

D +
1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)

. (4.7)

Next, we introduce a classical inequality: there exists a κ(p) > 0, which is depends on p
only, such that

(1 + x)p ≤ 1 + (1 + p)x, for x ∈ [
0,κ(p)

]
. (4.8)

Then, we consider the following two cases:
Case 1: If D

1
2

∫ T
0 |x′(t)|dt

> κ(p), we deduce

∫ T

0

∣
∣x′(t)

∣
∣dt <

2D
κ(p)

.

From Eq. (4.4), it is clear that

‖x‖ ≤ D +
1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

≤ D +
1
2

2D
κ(p)

= D +
D

κ(p)
:= M11. (4.9)

Case 2: If D
1
2

∫ T
0 |x′(t)|dt

< κ(p), then

∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt

≤ aT

(

1 +
n∑

i=1

‖ci‖
)(

1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)p

+ m
n∑

i=1

‖ci‖
(

1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)p–1 ∫ T

0

∣
∣x′(t)

∣
∣dt

+ aT

(

1 +
n∑

i=1

‖ci‖
)

(1 + p)D
(

1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)p–1

+ mpD
n∑

i=1

‖ci‖
(

1
2

∫ T

0

∣
∣x′(t)

∣
∣dt

)p–2 ∫ T

0

∣
∣x′(t)

∣
∣dt
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+
ñ

∑n
i=1 ‖ci‖
2

(∫ T

0

∣
∣x′(t)

∣
∣dt

)2

+

(

ñ
n∑

i=1

‖ci‖ +
N1

2

)∫ T

0

∣
∣x′(t)

∣
∣dt + N1D

=
(

aT(1 +
∑n

i=1 ‖ci‖)
2p +

m
∑n

i=1 ‖ci‖
2p–1

)(∫ T

0

∣
∣x′(t)

∣
∣dt

)p

+
(

aT(1 + p)D(1 +
∑n

i=1 ‖ci‖)
2p–1 +

mpD
∑n

i=1 ‖ci‖
2p–2

)(∫ T

0

∣
∣x′(t)

∣
∣dt

)p–1

+
ñ

∑n
i=1 ‖ci‖
2

(∫ T

0

∣
∣x′(t)

∣
∣dt

)2

+

(

ñ
n∑

i=1

‖ci‖ +
N1

2

)∫ T

0

∣
∣x′(t)

∣
∣dt + N1D. (4.10)

Since (Ax)(t) = x(t) –
∑n

i=1 x(t – δi), we have

(Ax)′(t) =

(

x(t) –
n∑

i=1

ci(t)x(t – δi)

)′

= x′(t) –
n∑

i=1

c′
i(t)x(t – δi) –

n∑

i=1

ci(t)x′(t – δi)

=
(
Ax′)(t) –

n∑

i=1

c′
i(t)x(t – δi)

and

(
Ax′)(t) = (Ax)′(t) +

n∑

i=1

c′
i(t)x(t – δi).

By applying Lemma 2.1 and Hölder inequality, we get

∫ T

0

∣
∣x′(t)

∣
∣dt =

∫ T

0

∣
∣
(
A–1Ax′)(t)

∣
∣dt

≤ σ

∫ T

0

∣
∣
(
Ax′)(t)

∣
∣dt

= σ

∫ T

0

∣
∣
∣
∣
∣
(Ax)′(t) +

n∑

i=1

c′
i(t)x(t – δi)

∣
∣
∣
∣
∣
dt

≤ σ

∫ T

0

∣
∣(Ax)′(t)

∣
∣dt + σ

∫ T

0

∣
∣
∣
∣
∣

n∑

i=1

c′
i(t)x(t – δi)

∣
∣
∣
∣
∣
dt

≤ σT
1
q

(∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt

) 1
p

+ σT
n∑

i=1

∥
∥c′

i
∥
∥‖x‖, (4.11)

where ‖c′
i‖ := maxt∈[0,T] |c′

i(t)|, for i = 1, 2, . . . , n. Substituting Eq. (4.10) into Eq. (4.11), since
(ã + b̃)k ≤ ãk + b̃k , 0 < k ≤ 1, we have

∫ T

0

∣
∣x′(t)

∣
∣dt

≤ σT
1
q

(
aT(1 +

∑n
i=1 ‖ci‖)

2p +
m

∑n
i=1 ‖ci‖

2p–1

) 1
p
∫ T

0

∣
∣x′(t)

∣
∣dt
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+ σT
1
q

(
aT(1 +

∑n
i=1 ‖ci‖)(1 + p)D
2p–1 +

m
∑n

i=1 ‖ci‖pD
2p–2

) 1
p
(∫ T

0

∣
∣x′(t)

∣
∣dt

) p
p–1

+ σT
1
q

(
ñ

∑n
i=1 ‖ci‖
2

) 1
p
(∫ T

0

∣
∣x′(t)

∣
∣dt

) 2
p

+ σT
1
q

(

ñ
n∑

i=1

‖ci‖D +
N1

2

) 1
p (∫ T

0

∣
∣x′(t)

∣
∣dt

) 1
p

+ σT
1
q (N1D)

1
p +

σT
∑n

i=1 ‖c′
i‖

2

∫ T

0

∣
∣x′(t)

∣
∣dt + σT

n∑

i=1

∥
∥c′

i
∥
∥D. (4.12)

Since σT
1
q ( m

∑n
i=1 ‖ci‖

2p–1 + aT(1+
∑n

i=1 ‖ci‖)
2p )

1
p + σT

∑n
i=1 ‖c′i‖
2 < 1, it is easily see that there exists a

constant M′
1 > 0 (independent of λ) such that

∫ T

0

∣
∣x′(t)

∣
∣dt ≤ M′

1. (4.13)

From Eq. (4.4), we obtain

‖x‖ ≤ D +
1
2

∫ T

0

∣
∣x′(s)

∣
∣ds ≤ D +

1
2

M′
1 := M12. (4.14)

Let M1 =
√

M2
11 + M2

12 + 1. As (Ax)(0) = (Ax)(T), there exists a point t0 ∈ (0, T) such that
(Ax)′(t0) = 0. Moreover, since φp(0) = 0, due to Eq. (4.14), it is obvious that

∣
∣φp(Ax)′(t)

∣
∣ =

∣
∣
∣
∣

∫ t

t0

(
φp(Ax)′(s)

)′ ds
∣
∣
∣
∣

≤ λ

∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣dt + λ

∫ T

0

∣
∣g

(
t, x(t)

)∣
∣dt + λ

∫ T

0

∣
∣e(t)

∣
∣dt

≤ ‖fM1‖
∫ T

0

∣
∣x′(t)

∣
∣dt + T‖gM1‖ + T‖e‖

≤ ‖fM1‖M′
1 + T‖gM1‖ + T‖e‖ := M′

2,

where ‖fM1‖ := max|x(t)|≤M1 |f (x(t))| and ‖gM1‖ := max|x(t)|≤M1 |g(t, x(t))|. Next we claim that
there exists a positive constant M∗

2 > M′
2 + 1, such that, for all t ∈R,

∥
∥(Ax)′

∥
∥ ≤ M∗

2. (4.15)

In fact, if (Ax)′ is not bounded, there exists a positive constant M′′
2 such that ‖(Ax)′‖ > M′′

2

for some (Ax)′ ∈ R. Therefore, we have ‖φp(Ax)′‖ = ‖(Ax)′p–1‖ ≥ M′′
2 , which is a contra-
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diction. Hence, Eq. (4.15) holds. From Lemma 2.1 and Eq. (4.15), we have

∥
∥x′∥∥ =

∥
∥A–1Ax′∥∥

=
∥
∥A–1(Ax′)(t)

∥
∥

≤ σ

∥
∥
∥
∥
∥

(Ax)′(t) +
n∑

i=1

c′
i(t)x(t – δi)

∥
∥
∥
∥
∥

≤ σ
∥
∥(Ax)′

∥
∥ + σ

( n∑

i=1

∥
∥c′

i
∥
∥‖x‖

)

≤ σM∗
2 + σ

n∑

i=1

∥
∥c′

i
∥
∥M1 := M2. (4.16)

Setting M =
√

M2
1 + M2

2 + 1, we get

Ω =
{

x ∈ C1
T (R,R)|‖x‖ ≤ M + 1,

∥
∥x′∥∥ ≤ M + 1

}
,

and we know that Eq. (4.1) has no solution on ∂Ω as λ ∈ (0, 1). When x(t) ∈ ∂Ω ∩ R,
x(t) = M + 1 or x(t) = –M – 1, and from Eq. (4.4) we know that M + 1 > D. Thus, from
condition (H1), we see that

1
T

∫ T

0
g(t, M + 1) dt > 0,

1
T

∫ T

0
g(t, –M – 1) dt < 0,

since
∫ T

0 e(t) dt = 0. So condition (ii) of Theorem 3.2 is also satisfied. Set

H(x,μ) = μx + (1 – μ)
1
T

∫ T

0
g(t, x) dt, x ∈ ∂Ω ∩R,μ ∈ [0, 1].

Obviously, from condition (H1), we can get xH(x,μ) > 0 and thus H(x,μ) is a homotopic
transformation, as well as

deg{F ,Ω ∩R, 0} = deg

{
1
T

∫ T

0
g(t, x) dt,Ω ∩R, 0

}

= deg{x,Ω ∩R, 0} �= 0.

So condition (iii) of Theorem 3.2 is satisfied. In view of Theorem 3.2, there exists at least
one T-periodic solution. �

5 Application of Theorem 3.2: p-Laplacian equation with singularity
In this section, we consider Eq. (4.1) with a singularity. Here g(t, x(t)) = g0(x) + g1(t, x(t)),
g0 ∈ C((0,∞); R) and g1 is an L2-Carathéodory function, and g0 has a singularity at x = 0,
i.e.,

∫ 1

0
g0(x) dx = –∞. (5.1)
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Next, we consider the existence of periodic solutions for Eq. (4.1) with singularity by ap-
plying Theorem 3.2.

Theorem 5.1 Suppose
∑n

i=1 ‖ci‖ �= 1 and condition (H2) hold. Assume that the following
conditions hold:

(H4) There exist positive constants 0 < D1 < D2 such that x is a positive continu-
ous T-periodic function satisfying

∫ T
0 g(t, x(t)) dt < 0, for some x ∈ (0, D1) and

∫ T
0 g(t, x(t)) dt > 0, for some x ∈ (D2,∞).

(H5) There exist positive constants α and β such that

g(t, x) ≤ αxp–1 + β , for t ∈ [0, T], and x > 0. (5.2)

Then Eq. (4.1) has at least one T-periodic solution if

σT
1
q

(
m

∑n
i=1 ‖ci‖

2p–1 +
αT(1 +

∑n
i=1 ‖ci‖)

2p–1

) 1
p

+
σT

∑n
i=1 ‖c′

i‖
2

< 1.

Proof Consider the homotopic equation

(
φp(Ax)′(t)

)′ + λf
(
x(t)

)
x′(t) + λg

(
t, x(t)

)
= λe(t). (5.3)

We follow the same strategy and notation as in the proof of Theorem 4.1. From condition
(H4), we know that there exists a constant D2 > 0 such that

∣
∣x(t)

∣
∣ ≤ D2 +

1
2

∫ T

0

∣
∣x′(t)

∣
∣dt. (5.4)

From Eq. (4.5), we have

∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt ≤

n∑

i=1

‖ci‖‖x‖
∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣dt

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ T

0

∣
∣g

(
t, x(t)

)∣
∣dt

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖
∫ T

0

∣
∣e(t)

∣
∣dt.

From Eq. (4.3) and condition (H5), we get

∫ T

0

∣
∣g

(
t, x(t)

)∣
∣dt =

∫

g(t,x(t))≥0
g+(

t, x(t)
)

dt –
∫

g(t,x(t))<0
g–(

t, x(t)
)

dt

= 2
∫

g(t,x(t))≥0
g+(

t, x(t)
)

dt

≤ 2
∫ T

0

(
αxp–1 + β

)
dt

≤ 2αT‖x‖p–1 + 2βT , (5.5)
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where g+ := max{g(t, x), 0}. Using condition (H2) and Eq. (5.5), we derive

∫ T

0

∣
∣(Ax)′(t)

∣
∣p dt ≤ m

n∑

i=1

‖ci‖‖x‖p–1
∫ T

0

∣
∣x′(t)

∣
∣dt + ñ

n∑

i=1

‖ci‖‖x‖
∫ T

0

∣
∣x′(t)

∣
∣dt

+ 2αT

(

1 +
n∑

i=1

‖ci‖
)

‖x‖p + 2β

(

1 +
n∑

i=1

‖ci‖
)

‖x‖T

+

(

1 +
n∑

i=1

‖ci‖
)

‖x‖‖e‖T . (5.6)

Following the same strategy and notation as in the proof of Theorem 4.1, we can obtain,
since σT

1
q ( m

∑n
i=1 ‖ci‖

2p–1 + αT(1+
∑n

i=1 ‖ci‖)
2p–1 )

1
p + σT

∑n
i=1 ‖c′i‖
2 < 1, that there exists a constant M′

3 > 0
(independent of λ) such that

∫ T

0

∣
∣x′(t)

∣
∣dt ≤ M′

3. (5.7)

From Eq. (5.7), we get

‖x‖ ≤ D2 +
1
2

∫ T

0

∣
∣x′(s)

∣
∣ds ≤ D2 +

1
2

M′
3 := M3. (5.8)

From Eqs. (4.15), (4.16) and (5.8), we get that there exists a constant M∗
3 , such that, for all

t ∈R,

∥
∥x′∥∥ ≤ M∗

3. (5.9)

On the other hand, multiplying both sides of (5.3) by x′(t), we get

(
φp(Ax)′(t)

)
x′(t) + λf (x(t)x′(t)x′(t) + λ

(
g1

(
t, x(t)

)
+ g0

(
x(t)

))
x′(t) = λe(t)x′(t), (5.10)

since g(t, x(t)) = g0(x) + g1(t, x(t)). Letting τ ∈ [0, T], for any τ ≤ t ≤ T , we integrate
Eq. (5.10) on [τ , t] and get

λ

∫ t

τ

g0(x) dt =
∫ t

τ

(
φp(Ax)′(t)

)′x′(t) dt – λ

∫ t

τ

f
(
x(t)

)
x′(t)x′(t) dt

– λ

∫ t

τ

g1
(
t, x(t)

)
x′(t) dt + λ

∫ t

τ

e(t)x′(t) dt.

Furthermore,

λ

∣
∣
∣
∣

∫ x(t)

x(τ )
g0(u) du

∣
∣
∣
∣ ≤

∫ t

τ

∣
∣
(
φp(Ax)′(t)

)′∣∣∣∣x′(t)
∣
∣dt + λ

∫ t

τ

∣
∣f (x(t)

∣
∣
∣
∣x′(t)

∣
∣
∣
∣x′(t)

∣
∣dt

+ λ

∫ t

τ

∣
∣g1

(
t, x(t)

)∣
∣
∣
∣x′(t)

∣
∣dt + λ

∫ t

τ

∣
∣e(t)

∣
∣
∣
∣x′(t)

∣
∣dt.
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From Eq. (5.3), we have

∫ t

τ

∣
∣
(
φp(Ax)′(t)

)′∣∣∣∣x′(t)
∣
∣dt

=
∥
∥x′∥∥

∫ t

τ

∣
∣
(
φp(Ax)′(t)

)′∣∣dt

≤ ∥
∥x′∥∥

(

λ

∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣dt + λ

∫ T

0

∣
∣g

(
t, x(t)

)∣
∣dt + λ

∫ T

0

∣
∣e(t)

∣
∣dt

)

≤ λM∗
3

(

‖fM3‖
∫ T

0

∣
∣x′(t)

∣
∣dt + 2αT‖x‖p–1 + 2βT + T‖e‖

)

≤ λM∗
3
(‖fM3‖M′

3 + 2αT(M3)p–1 + 2βT + T‖e‖),

where ‖fM3‖ := max|x(t)|≤M3 |f (x(t))|. From Eqs. (5.7) and (5.8), we obtain

λ

∫ t

τ

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣
∣
∣x′(t)

∣
∣dt ≤ λ

∫ T

0

∣
∣f

(
x(t)

)∣
∣
∣
∣x′(t)

∣
∣
∣
∣x′(t)

∣
∣dt

≤ λ‖fM3‖
(∫ T

0

∣
∣x′(t)

∣
∣2 dt

)

≤ λ‖fM3‖
(
M∗

3
)2T ,

λ

∫ t

τ

∣
∣g1(t, x)

∣
∣
∣
∣x′(t)

∣
∣dt ≤ λ

∫ T

0

∣
∣g1(t, x)

∣
∣
∣
∣x′(t)

∣
∣dt

≤ λ‖g1M3‖M′
3,

where ‖g1M3‖ := max|x(t)|≤M3 |g1(t, x)|,

λ

∫ t

τ

∣
∣e(t)

∣
∣
∣
∣x′(t)

∣
∣dt ≤ λ

∫ T

0

∣
∣e(t)

∣
∣
∣
∣x′(t)

∣
∣dt

≤ λ‖e‖M′
3.

From these inequalities, we get

∣
∣
∣
∣

∫ x(t)

x(τ )
g0(u) du

∣
∣
∣
∣ ≤ M∗

3
(‖fM3‖M′

3 + 2αT(M3)p–1 + 2βT + T‖e‖)

+ ‖fM3‖
(
M∗

3
)2T + ‖g1M3‖M′

3 + ‖e‖M′
3.

In view of Eq. (5.1), we know that there exists a constant M4 > 0 such that

x(t) ≥ M4, ∀t ∈ [τ , T]. (5.11)

The case t ∈ [0, τ ] can be treated similarly.
From Eqs. (5.8), (5.9) and (5.11), we have

Ω =
{

x ∈ C1
T (R,R)|E1 ≤ x ≤ E2,

∥
∥x′∥∥ ≤ M∗

3,∀t ∈ [0, T]
}

,

where 0 < E1 < min(M4, D1), E2 > max(M3, D2). This proves the claim, and the rest of the
proof is identical to that of Theorem 4.1. �
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6 Examples
Example 6.1 Consider the p-Laplacian Liénard equation in the case

∑n
i=1 ‖ci‖ < 1:

(

φp

(

x(t) –
(

1
40

sin(4t)x(t – δ1) +
1

60
cos

(

4t –
π

3

)

x(t – δ2)
))′)′

+
(

1
20

x
)

x′(t) +
1

40
(
2 + sin(4t)

)
x2 = sin(4t),

(6.1)

where p = 3, δ1, δ2 are constants and 0 < δ1, δ2 < T .
Comparing Eq. (6.1) with Eq. (4.1), it is easy to see that c1(t) = 1

40 sin(4t), c2(t) =
1

60 cos(4t – π
3 ), f (x) = 1

20 x, g(t, x) = 1
40 (2 + sin 4t)x2, e(t) = sin(4t), T = π

2 . It is easy to
see that there exists a constant D = 1 such that condition (H1) holds. Obviously, we
get |f (x)| = | 1

20 x| ≤ 1
20 |x| + 3, here m = 1

20 , ñ = 3, and condition (H2) holds. Consider
|g(t, x)| = | 1

40 (2 + sin(4t))x2| ≤ 3
40 |x|2 + 1, here a = 3

40 , b = 1. So, condition (H3) is satis-
fied. Moreover, ‖ci‖ = 1

40 , ‖c2‖ = 1
60 . So, we have

∑2
i=1 ‖ci‖ = ‖c1‖ + ‖c2‖ = 1

24 < 1. Also
σ = 1

1–‖c1‖–‖c2‖ = 24
23 , ‖c′

1‖ = 1
10 and ‖c′

2‖ = 1
15 . Next, we consider the condition

σT
1
q

(
m

∑n
i=1 ‖ci‖

2p–1 +
aT(1 +

∑n
i=1 ‖ci‖)

2p

) 1
p

+
σT

∑n
i=1 ‖c′

i‖
2

=
24
23

×
(

π

2

) 2
3 ×

( 1
20 × 1

24
22 +

3
40 × π

2 × 25
24

23

) 1
3

+
24
23 × π

2 × 1
6

2

≈ 0.4909 < 1.

Therefore, by Theorem 4.1, we know that Eq. (6.1) has at least one positive π
2 -periodic

solution.

Example 6.2 Consider the p-Laplacian Liénard equation in the case
∑n

i=1 ‖ci‖ > 1:

(

φp

(

x(t) –
((

1
8

cos(8t) +
15
8

)

x(t – δ3) +
1

64
sin

(

8t –
π

6

)

x(t – δ4)
))′)′

+
(

1
24

x2 + 1
)

x′(t) +
1

16
(2 + sin 8t)x3 = cos

(

8t –
π

4

)

, (6.2)

where p = 5, δ3, δ4 are constants and 0 < δ3, δ4 < T .
Comparing Eq. (6.2) with Eq. (4.1), it is easy to see that c1(t) = 1

8 cos(8t) + 15
8 , c2(t) =

1
64 sin(8t – π

6 ), f (x) = 1
24 x2 + 1, g(t, x) = 1

16 (2 + sin 8t)x3, e(t) = cos(8t – π
4 ). T = π

4 . It is easy to
see that there exists a constant D = 1 such that (H1) holds. Obviously, we get |f (x)| = | 1

24 x2 +
1| ≤ 1

24 |x|2 + 2, here m = 1
24 , ñ = 2, and condition (H2) holds. Consider |g(t, x)| = | 1

16 (2 +
sin 8t)x3| ≤ 3

16 |x|3 +1, here a = 3
16 , b = 1. So, condition (H3) is satisfied. Furthermore, ‖c1‖ =

1
8 + 15

8 = 2, ‖c2‖ = 1
64 , so we have

∑2
i=1 ‖ci‖ = ‖c1‖ + ‖c2‖ = 129

64 > 1, σ =
1

‖ck‖
1– 1

‖ck‖ –
∑n

i=1,i�=k ‖ ci
ck

‖ =



Bi et al. Advances in Difference Equations        (2019) 2019:106 Page 22 of 24

1
2

1– 1
2 –

1
2
1

64

= 64
63 , ‖c′

1‖ = 1 and ‖c′
2‖ = 1

8 . Next, we consider the condition

σT
1
q

(
m

∑n
i=1 ‖ci‖

2p–1 +
aT(1 +

∑n
i=1 ‖ci‖)

2p

) 1
p

+
σT

∑n
i=1 ‖c′

i‖
2

=
64
63

×
(

π

4

) 4
5 ×

( 1
24 × 129

64
24 +

3
16 × π

4 × 193
64

25

) 1
5

+
64
63 × π

4 × (1 + 1
8 )

2

≈ 0.8283 < 1.

Therefore, by Theorem 4.1, we know that Eq. (6.2) has at least one positive π
4 -periodic

solution.

Example 6.3 Consider the following p-Laplacian Liénard equation with singularity
(

φp

(

x(t) –
((

1
16

cos

(

8t –
π

16

))

x(t – δ1) +
1

24
sin(8t)x(t – δ2)

+
1

48
cos

(

8t +
π

6

)

x(t – δ3)
))′)′

+
(

1
10

x3
)

x′(t) +
1

32

(
1
2

+ 2 sin 8t
)

x4 –
1

xμ

= cos

(

8t +
π

4

)

, (6.3)

where p = 5, μ ≥ 1, δ1, δ2 and δ3 are constants and 0 < δ1, δ2, δ3 < T .
Comparing Eq. (6.3) with Eq. (4.1), it is easy to see that c1(t) = 1

16 cos(8t – π
16 )), c2(t) =

1
24 sin(8t), c3(t) = 1

48 cos(8t + π
6 ), f (x) = 1

10 x3, g(t, x) = 1
32 ( 1

2 + 2 sin(8t))x4 – 1
xμ , e(t) = cos(8t +

π
4 ). T = π

4 . It is obvious that (H2), (H4) and (H5) hold. ‖c1‖ = 1
16 , ‖c2‖ = 1

24 and ‖c3‖ = 1
48 , so

we have
∑3

i=1 ‖ci‖ = 1
8 < 1, σ = 1

1–
∑3

i=1 ‖ci‖ = 1
1– 1

16 – 1
24 – 1

48
= 8

7 . Furthermore, ‖c′
1‖ = 1

2 , ‖c′
2‖ = 1

4

and ‖c′
3‖ = 1

6 . Next, we consider the condition

σT
1
q

(
m

∑n
i=1 ‖ci‖

2p–1 +
αT(1 +

∑n
i=1 ‖ci‖)

2p–1

) 1
p

+
σT

∑n
i=1 ‖c′

i‖
2

=
8
7

×
(

π

4

) 4
5 ×

( 1
10 × 1

8
24 +

5
64 × π

4 × 9
8

24

) 1
4

+
8
7 × π

4 × 11
12

2

≈ 0.7391 < 1.

Therefore, by Theorem 5.1, we know that Eq. (6.3) has at least one positive π
4 -periodic

solution.

Example 6.4 Consider the following p-Laplacian Liénard equation with singularity
(

φp

(

x(t) –
((

1
6

cos

(

6t +
π

5

)

+
11
6

)

x(t – δ1) +
1

36
cos

(

6t +
π

3

)

x(t – δ2)

–
1

24
cos

(

6t +
π

6

)

x(t – δ3)
))′)′

+
(

1
149

x4 + 2
)

x′(t) +
1

256
(
1 + sin(6t)

)
x3 –

1
xμ

= cos

(

6t +
π

4

)

, (6.4)

where p = 3, μ ≥ 1, δ1, δ2, and δ3 are constants and 0 < δ1, δ2, δ3 < T .
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Comparing Eq. (6.4) with Eq. (4.1), it is easy to see that c1(t) = 1
6 cos(6t + π

5 ) + 11
6 , c2(t) =

1
36 cos(6t + π

3 ), c3(t) = – 1
24 cos(6t + π

6 ). f (x) = 1
149 x4 + 2, g(t, x) = 1

256 (1 + sin(6t))x5 – 1
xμ , e(t) =

sin(6t – π
4 ), T = π

3 . It is obvious that (H2), (H4) and (H5) hold. Furthermore, ‖c1‖ = 1
6 +

11
6 = 2, ‖c2‖ = 1

36 and ‖c3‖ = 1
24 , so we have

∑3
i=1 ‖ci‖ = 149

72 > 1, σ =
1

‖ck‖
1– 1

‖ck‖ –
∑n

i=1,i�=k ‖ ci
ck

‖ =
1
2

1– 1
2 –

1
2
1

36
–

1
2
1

24

= 576
571 , ‖c′

1‖ = 1, ‖c′
2‖ = 1

6 and ‖c′
3‖ = 1

4 . Next, we consider the condition

σT
1
q

(
m

∑n
i=1 ‖ci‖

2p–1 +
αT(1 +

∑n
i=1 ‖ci‖)

2p–1

) 1
p

+
σT

∑n
i=1 ‖c′

i‖
2

=
576
571

×
(

π

3

) 2
3 ×

( 1
149 × 149

72
22 +

1
128 × π

3 × 221
72

22

) 1
3

+
576
571 × π

3 × (1 + 7
6 + 1

4 )
2

≈ 0.9705 < 1.

Therefore, by Theorem 5.1, we know that Eq. (6.4) has at least one positive π
3 -periodic

solution.

7 Conclusions
In this paper, we first investigated some properties of the neutral operator with multiple
delays and variable coefficients (Ax)(t) := x(t) –

∑n
i=1 ci(t)x(t – δi). Afterwards, by using an

extension of Mawhin’s continuation theorem due to Ge and Ren, properties of the neutral
operator A, we studied the existence of a periodic solution for equation (1.1). At last, by ap-
plying Theorem 3.2, we discussed the existence of a periodic solution for two p-Laplacian
neutral differential equations. In comparison to [5] and [19], we avoided translating the
equation into a two-dimensional system.
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