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Abstract
In this study, we consider a predator–prey model with stage structure and
anti-predator behavior such that the adult prey can counterattack their predators. We
first investigate the existence and stability of the equilibria. Especially, we verify that
there can exist at most one positive equilibrium, which is always stable whenever it
exists, if the predator only feed on one age class. We then prove that the system can
undergo either a forward bifurcation or a backward bifurcation. Numerical analyses
show that anti-predator behavior is beneficial to the growth of prey population,
especially helps the equilibrium level of the prey population increase, by enhancing
the pressure on the predator. Moreover, anti-predator behavior makes the
coexistence of the predator and prey less likely by shrinking the coexistence region
with respect to the initial conditions or weakening the existence and stability of the
positive equilibrium.

Keywords: Predator–prey system; Anti-predator behavior; Stage structure; Backward
bifurcation

1 Introduction
Although biologists routinely label the animals as predator or prey, there are many ex-
amples of role reversals in predators and prey (anti-predator behaviors) [1–3]. That is,
juvenile prey that escape from predation and become adult can counterattack juvenile
predators, and adults just kill the juveniles but do not consume them, which can serve
to reduce future predation risk [4]. Therefore, it is very important to evaluate the cyclic
dominance for predator–prey interactions when anti-predator behaviors occur.

The dynamical relationship between predators and their preys has been considered in
depth in a mass of studies [5–10]. In these studies, both predators and preys are assumed
to be homogeneous. However, the anti-predator behavior of adult prey for juvenile preda-
tors indicates that we should take the age class structure of both predators and preys into
consideration. Actually, it has been recognized for a long time that the age class structure
of both predators and preys has a great influence on the dynamics of the interactions be-
tween these species [11, 12]. For example, Dörner et al. reported that Perca fluviatilis play
an essential role in structuring the fish community because it is important in controlling
the juvenile fish abundance [13].

Many studies investigated the dynamics of the predator–prey system with stage struc-
ture. In 1990, Aiello et al. studied a single specie model with stage structure [14]. Then the
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dynamics of the single population with stage structure, especially the bifurcation phe-
nomenon, has been discussed in depth in [15–17]. By dividing the prey into multure
and immature subpopulations, many researchers investigated the predator–prey system
through autonomous models [18, 19], periodical models [20–22], delay differential equa-
tions [23–25] and partial differential equations [26]. Many other researchers also consid-
ered how the stage structure for predator [27–31] or for both predator and prey [32–34]
affects the dynamics of the predator–prey system. Particularly, in 2000, Zhang et al. pro-
posed a basic predator–prey model with stage structure for the prey [35], where they as-
sume that the birth rate of the adult predator is proportional to its existing population.
In 2015, Falconi et al. considered the carrying capacity of the habitat for the juvenile class
[36]. Recently, Coast et al. introduced an exponential density dependence for the fecun-
dity of adult preys [37] with a particular focus on the impact of culling predators for the
prey. In this study, the authors have assumed the density of the predator population to be
a constant.

Although several publications modeled the anti-predator behavior, the authors just as-
sume that the prey is homogeneous to conduct the anti-predator behaviors [38, 39]. In
this paper, to better understand the impact of anti-predator behavior on the dynamics
of the predator–prey system, we proposed the following predator–prey model with stage
structure for prey:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = bx2 exp(–ax2) – β1x1x3 – γ x1 – mJ x1,

ẋ2 = γ x1 – β2x2x3 – mAx2,

ẋ3 = kβ1x1x3 + kβ2x2x3 – ηx2x3 – δx3.

(1)

Here, x1, x2 and x3 represent the density of the juvenile prey, the adult prey and the preda-
tor, respectively. η is the rate of anti-predator behavior of adult prey to the predator popu-
lation, the term be–ax2 is the exponential density dependence birth rate of the prey, mA and
mJ denote the death rate of the adult prey and the juvenile prey, respectively, γ represents
the maturation rate of the juvenile prey, δ is the natural death rate of the predator and k
is transformation rate from the prey to the predator, β1 and β2 are the predation rates of
the predator to the juvenile prey and adult prey, respectively.

The paper is organized as follows. In Sect. 2, we mainly discuss the existence and stabil-
ity of the equilibria, especially, discuss the existence and stability of the equilibria for two
subcases that the predator only feed on the juvenile prey or the adult prey. In Sect. 3, we
prove that the proposed model can undergo a forward bifurcation or a backward bifur-
cation, which are the common bifurcations in epidemic systems discussed in [40, 41]. In
Sect. 4, we provide some numerical simulations to show how the anti-predator behavior
affects the dynamics of the predator–prey system. In Sect. 5, we make the conclusion and
discussion of this study.

2 The existence and stability for the equilibria
In this section, we analyze the dynamics of system (1) by investigating the existence and
the stability of the equilibria. It is easy to see that system (1) always has a trivial equilib-
rium E0(0, 0, 0). Meanwhile, if R0 > 1 holds true, then system (1) has a predator-extinction
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equilibrium Ê(x̂1, x̂2, 0), where

x̂1 = –
mA

aγ
ln

(
1

R0

)

, x̂2 = –
1
a

ln

(
1

R0

)

, R0 =
bγ

mA(γ + mJ )
.

The Jacobian matrix of system (1) gives

J =

⎛

⎜
⎝

–β1x3 – γ – mJ b(1 – ax2) exp(–ax2) –β1x1

γ –β2x3 – mA –β2x2

kβ1x3 kβ2x3 – ηx3 kβ1x1 + kβ2x2 – ηx2 – δ

⎞

⎟
⎠ .

Thus, the Jacobian matrix at the trivial equilibrium E0 is

J|E0 =

⎛

⎜
⎝

–γ – mJ b 0
γ –mA 0
0 0 –δ

⎞

⎟
⎠ .

That is, the characteristic equation of system (1) at the trivial equilibrium E0 is

(λ + δ)
[
λ2 + (γ + mA + mJ )λ + mA(γ + mJ ) – bγ

]
= 0. (2)

It follows from Eq. (2) that if 0 < R0 < 1, the equilibrium E0 is locally asymptotically stable;
if R0 > 1, then the equilibrium E0 is unstable.

Similarly, we can calculate the Jacobian matrix of system (1) at the predator-extinction
equilibrium as

J|Ê =

⎛

⎜
⎝

–γ – mJ
b

R0
[1 + ln( 1

R0
)] β1mA

aγ
ln( 1

R0
)

γ –mA
β2
a ln( 1

R0
)

0 0 – ln( 1
R0

)(k β1mA
aγ

+ k β2
a – η

a ) – δ

⎞

⎟
⎠ .

Thus, the characteristic equation of system (1) at Ê is ΦΨ = 0, where

Φ = λ + ln

(
1

R0

)(

k
β1mA

aγ
+ k

β2

a
–

η

a

)

+ δ,

Ψ = λ2 + (γ + mA + mJ )λ + mA(mJ + γ ) –
γ b
R0

[

1 + ln

(
1

R0

)]

.
(3)

It is easy to verify that if R0 > 1,

mA(mJ + γ ) –
γ b
R0

[

1 + ln

(
1

R0

)]

> 0,

so the equilibrium Ê has two eigenvalues with negative real parts, which are the two roots
of the following equation:

λ2 + (γ + mA + mJ )λ + mA(mJ + γ ) –
γ b
R0

[

1 + ln

(
1

R0

)]

= 0.
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The other eigenvalue of Ê gives

λ1 = – ln

(
1

R0

)(

k
β1mA

aγ
+ k

β2

a
–

η

a

)

– δ.

Obviously, if the inequality

k
β1mA

aγ
+ k

β2

a
–

η

a
< 0

(

i.e., η >
kβ1mA + kβ2γ

γ

.= η∗
)

holds true, then we have λ1 < 0, thus the equilibrium Ê is locally asymptotically stable.
Denote

R∗ = exp
aδγ

kβ1mA + kβ2γ – ηγ
.

Further, if η < η∗ holds true, then λ1 < 0 and λ1 > 0 for R0 < R∗ and R0 > R∗, respectively,
which means that if η < η∗, then the equilibrium Ê is locally asymptotically stable and
unstable provided that 1 < R0 < R∗ and R0 > R∗, respectively. Thus, we have derived the
following result.

Theorem 2.1 System (1) always has a trivial equilibrium E0, and it is locally asymptot-
ically stable when R0 < 1. Meanwhile, if the inequality R0 > 1 holds true, there exists a
predator-extinction equilibrium Ê. Furthermore, if η > η∗ (or η < η∗ and 1 < R0 < R∗), then
the predator-extinction equilibrium Ê is locally asymptotically stable.

Next, we mainly consider the existence and the stability of the positive equilibrium of
system (1). We first consider two special cases that the predator only feed on the juvenile
prey or the adult prey. If we assume that the predator only feeds on the adult prey, i.e.
β1 = 0, then system (1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = bx2 exp(–ax2) – γ x1 – mJ x1,

ẋ2 = γ x1 – β2x2x3 – mAx2,

ẋ3 = kβ2x2x3 – ηx2x3 – δx3.

(4)

The positive equilibrium of system (4) E∗
1(x∗

11, x∗
12, x∗

13) gives

x∗
11 =

δb exp[– aδ
kβ2–η

]
(kβ2 – η)(γ + mJ )

, x∗
12 =

δ

kβ2 – η
,

x∗
13 =

γ b exp[– aδ
kβ2–η

] – mA(γ + mJ )
β2(γ + mJ )

.

Therefore, if η < kβ2 and R0 > exp( aδ
kβ2–η

) hold true, then system (4) has a unique positive
equilibrium E∗

1(x∗
11, x∗

12, x∗
13). By easy calculation we can obtain the characteristic equation

of system (4) at the positive equilibrium E∗
1 ,

λ3 + A1λ
2 + B1λ + C1 = 0, (5)
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where

A1 = γ + mJ + mA + β2x∗
13, C1 = β2(kβ2 – η)(γ + mJ )x∗

12x∗
13,

B1 = β2(kβ2 – η)x∗
12x∗

13 + (γ + mJ )
(
β2x∗

13 + mA
)

– γ b(1 – ax2) exp
(
–ax∗

12
)
.

According to the Hurwitz criterion, to make the positive equilibrium stable, we just need
A1 > 0, C1 > 0 and A1B1 – C1 > 0. It is easy to see that A1 > 0 and C1 > 0 always hold true,
so we just need to verify A1B1 – C1 > 0, and we note that

A1B1 – C1 =
(
γ + mJ + β2x∗

13 + mA
)((

ax∗
12 – 1

)
bγ exp

(
–ax∗

12
)

+ (γ + mJ )
(
β2x∗

13

+ mA
))

+ δβ2x∗
13

(
β2x∗

13 + mA
)

= β2x∗
13

(
β2x∗

13 + mA
)
(γ + mJ + δ) + (γ + mJ + mA)(γ + mJ )

× (
β2x∗

13 + mA
)

+ bγ
(
ax∗

12 – 1
)(

γ + mJ + β2x∗
13 + mA

)
exp

(
–ax∗

12
)

= β2x∗
13

(
β2x∗

13 + mA
)
(γ + mJ + δ) + (γ + mJ + mA)(γ + mJ )

× (
β2x∗

13 + mA
)

+
(
ax∗

12 – 1
)(

γ + mJ + β2x∗
13 + mA

)

× (
β2x∗

13(γ + mJ ) + mA(γ + mJ )
)

= ax∗
12

(
γ + mJ + β2x∗

13 + mA
)(

β2x∗
13(γ + mJ ) + mA(γ + mJ )

)

+ β2δx∗
13

(
β2x∗

13 + mA
)
. (6)

Obviously, the inequality A1B1 – C1 > 0 is always true since x∗
13 > 0 and x∗

12 > 0. That is,
the positive equilibrium E∗

1 is always locally asymptotically stable whenever it exists. Note
that, when β1 = 0, we have R∗

1 = exp(aδ/(kβ2 – η)) and η∗
1 = kβ2.

Analogously, assume that the predator just feed on the juvenile prey, system (1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1 = bx2 exp(–ax2) – β1x1x3 – γ x1 – mJ x1,

ẋ2 = γ x1 – mAx2,

ẋ3 = kβ1x1x3 – ηx2x3 – δx3,

(7)

and the positive equilibrium of system (7) E∗
2(x∗

21, x∗
22, x∗

23) gives

x∗
21 =

δmA

kβ1mA – ηγ
, x∗

22 =
γ δ

kβ1mA – ηγ
,

x∗
23 =

bγ

β1mA
exp

(

–
aγ δ

kβ1mA – ηγ

)

–
γ + mJ

β1
.

If the inequalities

η <
kβ1mA

γ
and R0 > exp

(
aγ δ

mAkβ1 – ηγ

)

hold true, then there is a unique positive equilibrium E∗
2 for system (7). Through a similar

process, we can prove that the positive equilibrium E∗
2 is always locally stable whenever it
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exists. As β2 = 0,

R∗
2 = exp

(
aγ δ

mAkβ1 – ηγ

)

and η∗
2 =

kβ1mA

γ
.

Therefore, the dynamics of system (4) and system (7) is concluded as follows.

Theorem 2.2 There is always a trivial equilibrium E0 of system (4) (or system (7)) which
is locally asymptotically stable if R0 < 1. Meanwhile, if the inequality R0 > 1 holds true,
system (4) (or system (7)) has a predator-extinction equilibrium Ê, which is locally stable if
any one of the following conditions holds true:

(a) 1 < R0 < R∗
1 and η < η∗

1;

(b) 1 < R0 < R∗
2 and η < η∗

2;

(c) η > η∗
1;

(d) η > η∗
2.

Furthermore, if R0 > R∗
1 and η < η∗

1 (or R0 > R∗
2 and η < η∗

2), then there is a unique positive
equilibrium E∗

1 for system (4) (or E∗
2 for system (7)) which is locally asymptotically stable.

Different from subsystem (4) and subsystem (7), the existence of the positive equilib-
rium for system (1) becomes very complex. Similarly the positive equilibrium of system
(1) E∗(x∗

1, x∗
2, x∗

3) satisfies

bx∗
2e–ax∗

2 – β1x∗
1x∗

3 – γ x∗
1 – mJ x∗

1 = 0, (8)

γ x∗
1 – β2x∗

2x∗
3 – mAx∗

2 = 0, (9)

kβ1x∗
1 + kβ2x∗

2 – ηx∗
2 – δ = 0. (10)

From Eq. (9) and Eq. (10), we can easily get

x∗
1 =

δ + ηx∗
2 – kβ2x∗

2
kβ1

, and x∗
3 =

γ (δ + ηx∗
2 – kβ2x∗

2)
kβ1β2x∗

2
–

mA

β2
.

Let x∗
1 > 0, we see that if η < kβ2 and η > kβ2,

x∗
2 < –

δ

η – kβ2
and x∗

2 > –
δ

η – kβ2
,

respectively. Similarly, to guarantee the positivity of x∗
3, we should have

x∗
2 <

γ δ

kβ2γ + kβ1mA – γ η
and x∗

2 >
γ δ

kβ2γ + kβ1mA – γ η

provided that η < η∗ and η > η∗, respectively. Since all the parameters are positive,

δ

kβ2 – η
>

γ δ

kβ2γ + kβ1mA – ηγ
> 0
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provided that η < kβ2. As a conclusion, to guarantee the positivity of both x∗
1 and x∗

3, we
consider two cases, one case is that if η < η∗ holds true, we need

0 < x∗
2 <

γ δ

kβ2γ + kβ1mA – ηγ
.

The other case is that if η > η∗ holds true, we need x∗
2 > 0. Then substituting x∗

1 and x∗
3 into

Eq. (8), we have the following equation for x∗
2:

Ax∗
2

2 exp
(
–ax∗

2
)

+ Bx∗
2 + Cx∗

2
2 + D = 0, (11)

where

A = k2bβ1β2, B = δ(kβ1mA – kβ2mJ – 2ηγ + kβ2γ ),

C = (η – kβ2)(kβ1mA – kβ2mJ – ηγ ), D = –γ δ2.

As we can see, Eq. (11) is a transcendental equation with high nonlinearity, thus it is
difficult to calculate the roots of Eq. (11). Let

F(x) = Ax2 exp(–ax) + Bx + Cx2 + D. (12)

The changing curve of the function F(x) with different values of η are plotted in Fig. 1. It
is easy to verify that system (1) may have one positive equilibrium (shown in Fig. 1(A)) or
two positive equilibria (shown in Fig. 1(B)) or no positive equilibrium (shown in Fig. 1(C)),

Figure 1 The curve of the function F(x) with η = 0.01 in (A), η = 0.04 in (B) and η = 0.18 in (C). The other
parameter values are b = 50, δ = 2, a = 0.22, β1 = 0.2, β2 = 0.1, k = 0.4, γ = 0.45,mA = 0.45,mJ = 0.8. Note that
here η∗ = 0.12
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respectively. This implies that system (1) may undergo the equilibrium bifurcation. There-
fore, in the next section, we mainly prove that system (1) can undergo the backward bifur-
cation or the forward bifurcation.

3 Bifurcation analysis
From the last section, we find that if η < η∗, there can be λ1 = 0, which means that the
predator-extinction equilibrium has a single zero eigenvalue. Thus, system (1) may un-
dergo a bifurcation at R0 = R∗. Since R0 is inconvenient to use directly as a bifurcation
parameter, here we take the parameter δ as a bifurcation parameter. There exists a δ∗ such
that R0 = R∗ if we fix other parameters. Definitely, we have R0 > R∗ if δ < δ∗ and R0 < R∗ if
δ > δ∗. Then the Jacobian matrix at (Ê, δ∗) is

J|(Ê,δ∗) =

⎛

⎜
⎜
⎝

–γ – mJ
b

R0
(1 + ln( 1

R0
)) β1mA

aγ
ln( 1

R0
)

γ –mA
β2
a ln( 1

R0
)

0 0 0

⎞

⎟
⎟
⎠ .

It is easy to see that V = (v1, v2, v3) = (0, 0, 1) is a left eigenvector of the matrix J|(Ê,δ∗). Let
W = (w1, w2, w3) with w3 = 1 be a right eigenvector of the matrix J|(Ê,δ∗). Then,

⎧
⎨

⎩

–(γ + mJ )w1 + b
R0

(1 + ln( 1
R0

))w2 + β1mA
aγ

ln( 1
R0

) = 0,

γ w1 – mAw2 + β2
a ln( 1

R0
) = 0.

(13)

Solving the above equation we obtain

w1 = –
β1mA

aγ (γ + mJ )
–

β2

aγ

(

1+ ln

(
1

R0

))

, w2 = –
1

amA(γ + mJ )
(
β1mA +β2(γ +mJ )

)
.

Definitely, we have VW = 1. Furthermore,

∂2f3

∂x1∂x3

∣
∣
∣
∣
(Ê,δ∗)

= kβ1,
∂2f3

∂x2∂x3

∣
∣
∣
∣
(Ê,δ∗)

= kβ2 – η,

∂2f3

∂x3∂x1

∣
∣
∣
∣
(Ê,δ∗)

= kβ1,
∂2f3

∂x3∂x2

∣
∣
∣
∣
(Ê,δ∗)

= kβ2 – η.

Thus,

Λ =
1
2

(

w1w3
∂2f3

∂x1∂x3
+ w2w3

∂2f3

∂x2∂x3
+ w3w1

∂2f3

∂x3∂x1
+ w3w2

∂2f3

∂x3∂x2

)∣
∣
∣
∣
(Ê,δ∗)

= kβ1w1 + (kβ2 – η)w2.

Furthermore,

κ = v3w3
∂2f3

∂x3∂δ
= –1 �= 0.

Thus, according to Theorem 4 in [42], we have the following conclusion.
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Theorem 3.1 If Λ < 0, then there is a stable positive equilibrium near Ê for δ∗ – ε1 < δ < δ∗

and system (1) undergoes a forward bifurcation at δ = δ∗. If Λ > 0, then there is an un-
stable positive equilibrium near Ê for δ∗ < δ < δ∗ + ε2 and system (1) undergo a backward
bifurcation at δ = δ∗.

Remark 3.2 If β1 = 0 (or β2 = 0) holds true, then

Λ = –
β2(kβ2 – η)

amA
< 0

(

or Λ = –
β1

aγ (γ + mJ )
(kβ1mA – ηγ ) < 0

)

for η < η∗
1 (or η < η∗

2). Therefore, the two systems (4) and (7) undergo a forward bifurcation
at δ = δ∗.

Remark 3.3 Noting that the trivial equilibrium E0 also has s single zero eigenvalue at
R0 = 1. Taking b as a bifurcation parameter, there is a b∗ such that R0 > 1 for b > b∗ and
R0 < 1 for b < b∗. Then, we can calculate that

W1 = (1,γ /mA, 0), V1 =
(

m2
A

m2
A + bγ

,
bmA

m2
A + bγ

, 0
)

are a right eigenvalue and a left eigenvalue of the matrix J|(E0,b∗), respectively, which satisfy
V1W1 = 1. And we have

Λ = –
abγ 2

m2
A + γ b

< 0, and κ =
γ mA

m2
A + γ b

�= 0.

Therefore, system (1) undergoes a forward bifurcation at R0 = 1.

4 Numerical simulations
In this section, we mainly analysis the dynamics of system (1) through numerical sim-
ulations by using Xpp-Auto. In the last section, we proved that system (1) can undergo
the backward bifurcation and the forward bifurcation if we choose δ as a bifurcation pa-
rameter. In Figs. 2(A) and (B), we set b = 50 and b = 10, respectively, and fix all the other
parameter values as

η = 0.01, a = 0.22, β1 = 0.2, β2 = 0.1, k = 0.4, γ = 0.45,

mA = 0.45, mJ = 0.8.

Let R0 = R∗, we can easily calculate δ∗ = 1.844 for Fig. 2(A) and δ∗ = 1.039 for Fig. 2(B).
Then, we have Λ = 0.107 > 0 in Fig. 2(A) and Λ = –0.023 < 0 in Fig. 2(B). Therefore,
Figs. 2(A) and (B) show that system (1) undergoes a backward bifurcation and a forward
bifurcation, respectively.

Next, we mainly investigate how the anti-predator behavior affects the dynamics of sys-
tem (1). In Figs. 3(A)–(C), we plot the bifurcation diagram of the equilibria with respect
to η. It follows from Figs. 3(A)–(C) that when η is relatively small (i.e. below the back-
ward bifurcation point), a stable positive equilibrium exists, particularly, as the parame-
ter η increases, the levels of both the juvenile prey and the adult prey increase while the
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Figure 2 One parameter bifurcation diagram of δ . ‘SN’ is the saddle-node bifurcation. The dash curve
represents unstable equilibrium while the solid curve represent stable equilibrium. Here we set b = 50 for (A)
and b = 10 for (B). The other parameter values are: η = 0.01, a = 0.22, β1 = 0.2, β2 = 0.1, k = 0.4, γ = 0.45,
mA = 0.45,mJ = 0.8

population of the predator at the steady state decreases. As η continuously increases, the
positive equilibrium becomes bistable with the predator-extinction equilibrium and the
population of the predator at the steady state further decreases. Furthermore, when η ex-
ceeds the saddle-node bifurcation point, the stable positive equilibrium disappears and
the predator will finally die out due to the high pressure of anti-predator behaviors.

Because R0 is independent on the parameters δ and η, they cannot change the stabil-
ity of the trivial equilibrium. Thus, we then let b be a bifurcation parameter and fix δ = 2
and η = 0.01, Figs. 3(D)–(F) show that system (1) first undergoes a forward bifurcation
at b = 1.25 with the trivial equilibrium losing its stability and a stable predator-extinction
equilibrium emerging. When b continues increases to 43.56, a saddle-node bifurcation oc-
curs and then there exist an unstable positive equilibrium and a stable positive equilibrium
(which is bistable with the predator-extinction equilibrium). Then, system (1) undergoes a
backward bifurcation (transcritical bifurcation) at b = 68.2, here, the predator-extinction
equilibrium loses its stability while the unstable positive equilibrium disappears. As we
can see from Figs. 3(D)–(F), increasing b can increase the population of the prey. How-
ever, different from the anti-predator behavior, increase the birth rate of the prey can also
increase the population of the predator.

Then, we plot the two parameter bifurcation diagram of η with respect to b in Fig. 4. In
region ω1, there is only a trivial equilibrium which is stable. In region ω2, a stable predator-
extinction equilibrium appears while the trivial equilibrium loss its’ stability. If the pa-
rameters cross the SN curve from region ω2 to region ω3, system (1) undergoes a saddle-
node bifurcation, and there are two positive equilibria, one of which is bistable with the
predator-extinction equilibrium. If the parameters further cross the BB curve from region
ω3 to region ω4, then system (1) undergoes a backward bifurcation. As we can see from
Fig. 4, when the birth rate of the prey is small (i.e. 0 < b < 38), the anti-predator behavior
cannot affect the dynamics of system, while the predator will always die out. However,
when the birth rate b is high, the predator and the prey can always coexist if the degree of
the anti-predator behavior is relatively low (corresponding to the region ω4), and if the de-
gree of the anti-predator behavior becomes high, the positive equilibrium bistable with the
predator-extinction equilibrium, that is, depending on the initial conditions, the predator
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Figure 3 (A)–(C) One parameter bifurcation diagram with respect to η, here b = 90; (D)–(F) One parameter
bifurcation diagram with respect to b, here η = 0.01. ‘SN’ represents saddle-node bifurcation, ‘BB’ means
backward bifurcation and ‘FB’ is for forward bifurcation. Also, the dash curve is unstable equilibrium and the
solid curve is the stable equilibrium. Here, δ = 2 and the other parameter values are the same as those in Fig. 2

can coexist with the prey or die out. If the degree of the anti-predator behavior is higher,
then the predator will always die out as well.

It follows from Figs. 3(A)–(C) that if η ∈ (0.0171, 0.1095), the positive equilibrium and
the predator-extinction equilibrium are bistable. Thus, in Fig. 5(A)–(B), we plot the basin
of attraction of system (1) with respect to x1 and x3. When the initial values of x1 and x3 are
located at the red region, the solution trajectories tend to the predator-extinction equilib-
rium, while they go to the positive equilibrium when the initial values of x1 and x3 located
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Figure 4 Two parameter bifurcation diagram of b and η. ‘SN’ represents saddle-node bifurcation, ‘BB’ means
backward bifurcation and ‘FB’ is for forward bifurcation. The other parameter values are the same as those in
Fig. 3

Figure 5 The basin of attraction domain of system (1) when η = 0.09 in (A) and η = 0.1 in (B), and we fix the
initial value of x2 as 5. (C) and (D) Solutions of system (1) with the initial condition being (6, 5, 10). Here, b = 90
and the other parameter values are the same as those in Fig. 3

at the green region. As we can see, if we fix the initial condition of x3 between 6.5 and 7 in
Fig. 5(A), then there is a critical value of x1 determining the stability of the positive equilib-
rium. This means that if the predator is an endangered species, we can make it persistent
by introducing more juvenile preys. Combining Figs. 5(A) and (B), we find that increasing
η will enlarge the stable region of the predator-extinction equilibrium, which means the
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possibility of the coexistence of the predator and prey will decrease. Correspondingly, in
Figs. 5(C)–(D), with different values of η, we plot the solution trajectories of system (1). It
is easy to see that the higher degree of the anti-predator behavior, the more numerous the
population of the prey at the steady state is and the less the population of the predator at
the steady state is.

5 Conclusion and discussion
This paper proposed a predator–prey model with stage structure for prey such that the
adult prey can counterattack their predators. Firstly, the existence and the stability of the
equilibria was discussed through exploring the characteristic equations. It found that there
is always a trivial equilibrium which is stable when R0 < 1 and becomes unstable if R0 > 1.
Correspondingly, there emerges a predator-extinction equilibrium when R0 > 1. Mean-
while, it is verified that system (1) undergoes a forward bifurcation at R0 = 1. If η < η∗

holds true, the predator-extinction equilibrium has single zero eigenvalue while the other
two eigenvalues have negative real parts at R0 = R∗. Based on this condition, system (1) may
undergo either a forward bifurcation or a backward bifurcation by choosing the death rate
of the predator as a bifurcation parameter. Furthermore, we also discussed the existence
and stability of the equilibria for two special cases. The results show that if the predator
only feeds on one age class, the backward bifurcation could not happen, and the system
can have at most one positive equilibrium, which is stable whenever it exists.

Numerical analysis shows that the predator can coexist with the prey in the term of a sta-
ble positive equilibrium if the rate of anti-predator behavior is relatively small, as shown in
Figs. 3(A)–(C). As expected, the anti-predator behavior is beneficial to the growth of both
the juvenile and the adult prey population through inhibiting the growth of the predator
population. Also, the anti-predator behavior can weaken the stability of the positive equi-
librium, while it enhances the stability of the predator-extinction equilibrium in terms
of increasing the attraction area. These results are in agreement with the main results
obtained in [38]. Correspondingly, when η exceeds the backward bifurcation point, the
positive equilibrium is bistable with the predator-extinction equilibrium. We then showed
that anti-predator behavior can make the coexistence of the prey and predator less likely by
shrinking the stable region of the positive equilibrium when it is bistable with the predator-
extinction equilibrium. Moreover, if the prey can further improve their anti-predator be-
havior, the predator population would become extinct with the stable positive equilibrium
disappearing. It should be noticed that the impact of the anti-predator behavior also de-
pends on the characters of the predator–prey system. For example, if the birth rate of the
adult prey is not enough to support the coexistence of the prey and the predator, then the
anti-predator behavior would not affect their dynamics.

Our model uses the simple bilinear terms to represent the anti-predator behavior and
the functional response of the predation. The dynamics of the predator–prey system can
be very complex if we take the other Holling type functional response into consideration.
Our model should also incorporate the seasonal factor and the delay effect between the
reproduction and the predation of the predator when analyzing the impact of the anti-
predator behavior. Addressing these issues needs more future work.
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