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Abstract
In this paper, a Kaldor–Kalecki model of business cycle with two discrete time delays
is considered. Firstly, by analyzing the corresponding characteristic equations, the
local stability of the positive equilibrium is discussed. Choosing delay (or the
adjustment coefficient in the goods market α) as bifurcation parameter, the existence
of Hopf bifurcation is investigated in detail. Secondly, by combining the normal form
method with the center manifold theorem, we are able to determine the direction of
the bifurcation and the stability of the bifurcated periodic solutions. Finally, some
numerical simulations are carried out to illustrate the theoretical results.
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1 Introduction
Business cycle (or named economic cycle) is a hot topic in the study of the macroeconomic
theory. The definition of the business cycle refers to the overall economic performance in
the period of economic expansion appears alternated with economic contraction, a phe-
nomenon of the cycle, expressed as gross domestic product, changes in industrial pro-
duction, prices, employment and unemployment, and other economic variables. Thus,
the study of factors that cause fluctuations in the economic cycle and the duration of the
economic cycle have important theoretical and practical significance and will help us to
better understand the law of economic operation and to gain a reasonable understanding
of the leading role of investment in economic development.

As we all know, the model proposed by Kaldor (1940, [1]) is one of the first and best
known endogenous business cycle models. According to Kaldor’s idea, the main economic
proxy toward business fluctuations is a nonlinearity in the investment-saving mechanism.
This idea was formalized in a model and studied by means of the mathematical theory of
dynamical systems in Chang and Smyth (1971, [2]),

⎧
⎨

⎩

dY
dt = α[I(Y , K) – S(Y , K)],
dK
dt = I(Y , K) – δK .

On the other hand, in 1935 Kalecki released a business cycle model where he pointed
out the existence of a time lag between a decision of investment and its effect on the capital
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stock. He assumed that the saved part of profit is invested and the capital growth is due
to past investment decisions. There is a gestation period or a time lag, after which capital
equipment is available for production. The change in the capital stock is due to the past
investment orders (see [3])

dK
dt

= D(t) – U = I(t – T) – U ,

where D denotes the third investment stage, i.e., deliveries of finished capital goods; U is
the capital depreciation.

Based on Kaldor’s idea of introducing nonlinear functional forms and Kalecki’s idea of
introducing time lags, a Kaldor–Kalecki type model was proposed in [4]:

⎧
⎨

⎩

dY
dt = α[I(Y , K) – S(Y , K)],
dK
dt = I(Y (t – T), K) – δK .

(1.1)

Since delay could bring a switch in the stability of equilibrium and induce various oscil-
lations and periodic solutions, researches showed that a system with time delay exhibits
more complicated dynamics than that without time delay. In [5], Szydlowski et al. showed
that System (1.1) can undergo a Hopf bifurcation when the parameter τ spans the critical
values. Also Zhang and Wei [6] investigated local and global existence of Hopf bifurcation
for System (1.1).

Taking into account the impact of capital stock in the past also, in 2008, Kaddar proposed
a new Kaldor–Kalecki model of business cycle with time delay in the following form [7]:

⎧
⎨

⎩

dY (t)
dt = α[I(Y (t), K(t)) – S(Y (t), K(t))],

dK (t)
dt = I(Y (t – τ ), K(t – τ )) – δK(t).

(1.2)

Recently, model (1.2) has aroused enthusiasm among many scholars (see [7–11] and the
references cited therein). For instance, taking the delay τ as a bifurcation parameter, Kad-
dar [7, 8] showed that local and global Hopf bifurcations can occur as the delay crosses
some critical values. In [9, 10], Wu XP investigated the simple-zero, double-zero, and zero-
Hopf singularity of System (1.2), got bifurcation diagrams, and hence obtained double
limit cycle and homoclinic bifurcations. In [11], Wu XP studied triple zero singularity of
System (1.2) and for this singularity derived the normal form on the center manifold.

All results mentioned above pay attention to the study of Kaldor–Kalecki model with
discrete time delay. Considering the essential idea of endogenous business cycle theory, in
2016, Yu and Peng [12] introduced a distributed delay and modified the Kaldor–Kalecki
model in the following form:

⎧
⎨

⎩

dY (t)
dt = α[I(Y (t), K(t)) – S(Y (t), K(t))],

dK (t)
dt = I(Y (t – τ ),

∫ t
–∞ F(t – s)K(s) ds) – qK(t),

where F(s) is the weak kernel function. With the corresponding characteristic equation
analyzed, the local stability of the positive equilibrium was investigated. Furthermore, it
was found that there exists a Hopf bifurcation when the discrete time delay passes a se-
quence of critical values.
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On the other hand, it is well known that the investment delays caused by gross product
in the past and capital stock in the past are not always unified (see [13]). For a variety of
different models with two different delays, the dynamic behaviors of the system are fruitful
(see [14–18]). The idea of introducing two discrete delays into the capital stock accumu-
lation equation was introduced for the first time in 2009 by Zhou and Li [19]. To the best
of our knowledge, there is no mathematical investigation on the Kaldor–Kalecki model
with two different delays. Motivated by the aforementioned discussion, in this paper, we
consider the following system:

⎧
⎨

⎩

dY (t)
dt = α[I(Y (t), K(t)) – S(Y (t), K(t))],

dK (t)
dt = I(Y (t – τ1), K(t – τ2)) – δK(t),

(1.3)

where Y is the gross product, K is the capital stock, α is the adjustment coefficient in the
goods market, δ is the depreciation rate of capital stock, I(Y , K) is the investment function,
S(Y , K) is the saving function, τ1 ≥ 0 is the time delay for the investment due to the past
gross product, τ2 ≥ 0 is the time delay for capital stock in the past.

The remaining part is organized as follows: in the next section, employing the character-
istic equation, the stability of the positive equilibrium, and the occurrence of local Hopf
bifurcation are investigated. In Sect. 3, by using the normal form theory and the center
manifold theorem, we derive some formulas that can determine the direction of the Hopf
bifurcation and the stability of the bifurcated periodic solutions. In Sect. 4, some numer-
ical simulations are carried out to illustrate the main results.

2 Local stability and Hopf bifurcation
In this section, the stability and Hopf bifurcation of the positive equilibrium point will be
investigated.

As usual in a Keynesian framework, savings are assumed to be proportional to the cur-
rent level of income, S(Y , K) = γ Y , where the coefficient γ , 0 < γ < 1, represents the
propensity to save. While in many versions of the Kaldor model the saving function is
assumed to be nonlinear, we prefer a linear specification, both for its analytical simplicity
and for its sounder microfoundation. Moreover, in our case this assumption does not af-
fect the nonlinearity of the model, which is ensured by the nonlinearity of the investment
function.

As usual, the investment demand is assumed to be an increasing and sigmoid-shaped
function of income. For example, Bischi et al. consider the form proposed in [20]

I(Y , K) = σμ + γ

(
σμ

δ
– K + arctan(Y – μ)

)

,

where σμ

δ
is the “normal” level of capital stock.

In [21], using the French quarterly data for 1960–1974, Dana and Malgrange obtain the
following form:

I(Y , K) = KΦ

(
Y
K

)

= KΦ(x),
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where

Φ(x) = c +
d

1 + exp[–a(νx – 1)]

or equivalently

Φ(x) = c +
d
2

exp
a
2 (νx–1) cosh–1

[
a
2

(νx – 1)
]

.

As far as I(Y , K) is concerned, in [22], authors assume the following increasing S-shaped
function:

I(Y , K) =
1

1 + exp(–b(Y – c)) + d
– βK .

The function I(Y , K) takes a variety of ways, because of the limitation of length, no more
tautology here.

In order to provide some specific cases to analyze how delays influence the dynamics,
rather than paying attention to the concrete form of functions I and S, we assume two
specific functional forms for the investment function and the saving function (see [8, 12,
23]). The investment function is chosen to be additive in Y and K , and it takes the form

I(Y , K) = I(Y ) – βK ,

then (1.3) becomes
⎧
⎨

⎩

dY (t)
dt = α[I(Y (t)) – βK(t) – γ Y (t)],

dK (t)
dt = I(Y (t – τ1)) – βK(t – τ2) – δK(t).

(2.1)

In the existing literature, Hopf bifurcation occurs due to the nonlinearity of the investment
function or time delay in output; however, almost no attention is given to two different
delays effect in the Kaldor–Kalecki model. Overall, the dynamical behaviors of (2.1) is one
of the special cases of System (1.3), the study in Hopf bifurcation of (2.1) is just a case
where the Kaldor–Kalecki model produces periodic solutions.

2.1 Existence and uniqueness of the positive equilibrium
It is easy to verify that System (2.1) has a unique positive equilibrium point E(Y ∗, K∗) if
the conditions of the following lemma hold.

Lemma 2.1 Suppose that
(A1) I(0) > 0;
(A2) I ′(Y ) < (1 + β

δ
)γ ;

(A3) there exists a constant L > 0 such that |I(Y )| ≤ L for all Y ∈ R.
Then there exists a unique equilibrium E(Y ∗, K∗) of System (2.1).

Proof (Y , K) is a steady state of System (2.1) if

dY
dt

=
dK
dt

= 0,
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that is,
⎧
⎨

⎩

I(Y ) – βK – γ Y = 0,

I(Y ) – (β + δ)K = 0.
(2.2)

From (2.2), we can obtain K = γ

δ
Y , substituting it into the first equation of (2.2) and the

following equation is yielded:

I(Y ) =
(

β
γ

δ
+ γ

)

Y . (2.3)

Let

u(Y ) .=
(

β
γ

δ
+ γ

)

Y ,

then the existence of positive steady state of (2.1) is transformed into whether I(Y ) and
u(Y ) intersect in the first quadrant.

As we all know, u(Y ) is a straight line passing through the origin with the slope of β
γ

δ
+

γ > 0, from (A1) and (A3), I(Y ) is a bounded function on its existence interval, then by
intermediate value theorem, the curve I(Y ) and the line u(Y ) must intersect in the first
quadrant.

Next we will prove that the intersection in the first quadrant is unique. Otherwise, let

(
Y1, u(Y1)

)
and

(
Y2, u(Y2)

)

be two adjacent intersections in the first quadrant, where Y1 < Y2, u(Y1) < u(Y2). From
(A1), we claim that the curve I(Y ) is below (or above) the line u(Y ) for Y ∈ [Y1, Y2]. By
Lagrange’s mean value theorem, there must be a point ξ ∈ (Y1, Y2) such that

I ′(ξ ) = β
γ

δ
+ γ ,

which is a contradiction with (A2). Therefore, the uniqueness is proved.
Let Y = Y ∗ be the unique solution of (2.3), then K = K∗ can be given by the formula

K = γ

δ
Y , one can claim that under hypotheses (A1)–(A3), System (2.1) has a unique equi-

librium E. This concludes the proof. �

2.2 Local stability and Hopf bifurcation
Let y = Y – Y ∗, k = K – K∗, then by linearizing System (2.1) around (0, 0) we have

⎧
⎨

⎩

dy(t)
dt = α(I ′(Y ∗) – γ )y(t) – αβk(t),

dk(t)
dt = I ′(Y ∗)y(t – τ1) – βk(t – τ2) – δk(t).

(2.4)

The associated characteristic equation of System (2.4) is

λ2 + (δ – a)λ + be–λτ1 + β(λ – a)e–λτ2 – δa = 0, (2.5)

where a = α(I ′(Y ∗) – γ ), b = αβI ′(Y ∗).
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Since the system contains two time delays, that is, τ1 and τ2, therefore the following six
cases are considered.

Case I τ1 = τ2 = 0.
When there is no time delay, System (2.1) becomes (1.1) and the characteristic equation

(2.5) reduces to

λ2 + eλ + f = 0, (2.6)

where e = δ + β – α(I ′(Y ∗) – γ ), f = α((β + δ)γ – δI ′(Y ∗)). Then we have

λ1,2 =
–e ± √

e2 – 4f
2

.

To establish our main results, it is necessary to make the following assumptions:
(H) I ′(Y ∗) > γ .
By (A2) of Lemma 2.1, it follows that f > 0. Then, if e > 0, i.e., α < δ+β

I′(Y∗)–γ

.= α∗, all the
roots of Eq. (2.6) have negative real parts; if e < 0, i.e., α > α∗, all the roots of Eq. (2.6)
have positive real parts; if e = 0, i.e., α = α∗, Eq. (2.6) has a pair of conjugate purely imagi-
nary roots ±i

√
f . According to the Hopf bifurcation theorem, it is necessary to verify the

transversality condition. Differentiating both sides of Eq. (2.6) with α, we have

dλ

dα
=

(I ′(Y ∗) – γ )λ – [(δ + β)γ – δI ′(Y ∗)]
2λ + [δ – α(I ′(Y ∗) – γ ) + β]

,

hence,

Re

(
dλ

dα

)∣
∣
∣
∣
α=α∗

= Re

{
(I ′(Y ∗) – γ )λ – [(δ + β)γ – δI ′(Y ∗)]

2λ + [δ – α(I ′(Y ∗) – γ ) + β]

}∣
∣
∣
∣
α=α∗

= Re

{
(I ′(Y ∗) – γ )i

√
f – [(δ + β)γ – δI ′(Y ∗)]

2i
√

f

}

=
1
2
(
I ′(Y ∗) – γ

)
> 0.

From what has been discussed above, taking the adjustment coefficient in the goods
market α as the bifurcation parameter, we have the following result.

Theorem 2.1 For System (2.1), τ1 = τ2 = 0, if the hypotheses (A1)–(A3) of Lemma 2.1 and
(H) are established, then there exists α∗ ∈ (0,∞) such that the unique positive equilibrium
E(Y ∗, K∗) of System (2.1) is locally asymptotically stable when 0 < α < α∗; E(Y ∗, K∗) is un-
stable when α > α∗; and when α = α∗, the associated characteristic equation has a pair of
purely imaginary roots ±i

√
f , System (2.1) undergoes a Hopf bifurcation at E(Y ∗, K∗).

Remark 2.1 From the economic point of view, when the speed of adjustment of the goods
market α is low enough, regardless of any economic system in the initial position, it will
eventually converge to a stable equilibrium point; in this equilibrium, the level of output
and capital stock is constant. The principle of economics is that when the aggregate de-
mand and aggregate supply gap appears, lower commodity market correction will lead to
a more moderate rate of change in output, thus reducing the economic volatility. When
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the adjustment speed of the commodity market gradually increases and exceeds a certain
critical value, the economic system also begins to change from stable to cyclical fluctua-
tions.

Remark 2.2 In [24], taking the savings rate γ as the bifurcation parameter, authors study
the stability and Hopf bifurcation of System (1.3) with τ1 = τ2 = 0. Comparing with The-
orem 2.1, we conclude that the Kaldor–Kalecki model may exhibit various nonlinear dy-
namic behaviors depending on the choice of parameters.

In order to investigate the distribution of roots of the transcendental equation (2.5), we
introduce the following results, the details can be found in [25]. Firstly, consider the second
degree transcendental polynomial equation

λ2 + pλ + r + (sλ + q)e–λτ = 0. (2.7)

Suppose the following assumptions hold:
(H1) p + s > 0;
(H2) q + r > 0;
(H3) either s2 – p2 + 2r < 0 and r2 – q2 > 0 or (s2 – p2 + 2r)2 < 4(r2 – q2);
(H4) either r2 – q2 < 0 or s2 – p2 + 2r > 0 and (s2 – p2 + 2r)2 = 4(r2 – q2);
(H5) r2 – q2 > 0, s2 – p2 + 2r > 0 and (s2 – p2 + 2r)2 > 4(r2 – q2);

then the result about the distribution of the roots of Eq. (2.7) can be obtained.

Lemma 2.2 ([25]) For Eq. (2.7), we have
(i) if (H1)–(H3) hold, then all roots of Eq. (2.7) have negative real parts for all τ ≥ 0;

(ii) if (H1), (H2), and (H4) hold, then when τ ∈ [0, τ+
0 ) all roots of Eq. (2.7) have negative

real parts, when τ = τ+
0 , Eq. (2.7) has a pair of purely imaginary roots ±iω+, and

when τ > τ+
0 , Eq. (2.7) has at least one root with positive real part;

(iii) if (H1), (H2), and (H5) hold, then there is a positive integer k such that there are k
switches from stability to instability to stability; that is, when

τ ∈ [
0, τ+

0
]
,
(
τ–

0 , τ+
1
)
, . . . ,

(
τ–

k–1, τ+
k
)
,

all roots of Eq. (2.7) have negative real parts, when

τ ∈ [τ+
0 , τ–

0 ), [τ+
1 , τ–

1 ), . . . , [τ+
k–1, τ–

k–1) and τ > τ+
k ,

Eq. (2.7) has at least one root with positive real part.
Here

ω2
± =

1
2
(
s2 – p2 + 2r

) ± 1
2
[(

s2 – p2 + 2r
)2 – 4

(
r2 – q2)] 1

2

and

τ±
j =

1
ω±

arccos

{
q(ω2± – r) – psω2±

s2ω2± + q2

}

+
2jπ
ω±

, j = 0, 1, 2, . . . .
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Case II τ1 = 0, τ2 > 0.
For τ1 = 0, τ2 > 0, Eq. (2.5) becomes

λ2 + (δ – a)λ + β(λ – a)e–λτ2 + b – δa = 0. (2.8)

Compared with Eq. (2.7), we get

p = δ – a, r = b – δa, s = β , q = –aβ .

If δ > –β+
√

β2+4αβγ

2
.= δ∗, condition (H1)

p + s = δ + β – α
(
I ′(Y ∗) – γ

)
> δ + β –

αβ

δ
γ =

1
δ

(
δ2 + βδ – αβγ

)
> 0

is satisfied. Condition (H2) q + r = b – aβ – δa = α((β + δ)γ – δI ′(Y ∗)) > 0 can be yielded by
(A2) of Lemma 2.1.

Let λ = iω (ω > 0) be the root of (2.8), then

–ω2 + (δ – a)iω + β(iω – a)e–iωτ2 + b – δa = 0.

Separating the real and the imaginary parts, we have
⎧
⎨

⎩

–ω2 – aβ cosωτ2 + βω sinωτ2 + b – δa = 0,

(δ – a)ω + βω cosωτ2 + aβ sinωτ2 = 0,
(2.9)

which leads to the following equation:

ω4 +
(
a2 + δ2 – β2 – 2b

)
ω2 + (δa – b)2 – a2β2 = 0. (2.10)

For condition (H3),

r2 – q2 = (r + q)(r – q) =
[
α
(
(β + δ)γ – δI ′(Y ∗))][α

(
(δ – β)γ – (2β – δ)I ′(Y ∗))],

if γ < I ′(Y ∗) < (1 + β

δ
)γ , one has

(r – q) = α
(
(δ – β)γ – (2β – δ)I ′(Y ∗))

> 2αβγ – αδ

(

1 +
β

δ

)

γ + αδγ – αβγ

= 2αβγ – αδγ – αβγ + αδγ – αβγ

= 0,

combined with (H1), r2 – q2 > 0 can be established,

s2 – p2 + 2r = β2 – δ2 – α2(I ′(Y ∗) – γ
)2 + 2αβI ′(Y ∗)

< β2 – δ2 – α2γ 2 – α2γ 2 + 2α2γ 2
(

1 +
β

δ

)

+ 2αβγ

(

1 +
β

δ

)

= 2αβγ

(
αγ + β

δ
+ 1

)

+ β2 – δ2.
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Let

h(δ) = 2αβγ

(
αγ + β

δ
+ 1

)

+ β2 – δ2,

obviously,

h′(δ) = –2αβγ
αγ + β

δ2 – 2δ < 0.

By direct calculation, one can obtain limδ→+∞ h(δ) = –∞ and limδ→0+ h(δ) = +∞. From
the intermediate value theorem, there exists unique δ∗∗ > 0 such that h(δ∗∗) = 0, then the
first inequality of assumption (H3) s2 – p2 + 2r < 0 holds when δ ≥ δ∗∗.

On the other hand,

s2 – p2 + 2r = β2 – δ2 – α2(I ′(Y ∗) – γ
)2 + 2αβI ′(Y ∗)

> β2 – δ2 –
α2β2γ 2

δ2 + 2αβγ .

Let

g(δ) = –δ2 –
α2β2γ 2

δ2 + β2 + 2αβγ ,

then

g ′(δ) = –2δ +
2α2β2γ 2

δ3 .

By direct calculation, one can obtain limδ→+∞ h(δ) = –∞, limδ→0+ h(δ) = –∞, and
g ′(

√
αβγ ) = 0, then there exist two positive numbers δ∗

1 and δ∗∗
1 with δ∗

1 <
√

αβγ < δ∗∗
1

such that s2 – p2 + 2r > 0 when δ ∈ [δ∗
1 , δ∗∗

1 ].
Differentiating both sides of Eq. (2.8) with τ2

Re

(
dλ

dτ2

)–1∣∣
∣
∣
τ2=τ+

20

= Re

{
2λ + δ – a – βe–λτ2

λβ(λ – a)e–λτ2
–

τ2

λ

}∣
∣
∣
∣
τ2=τ+

20

= Re

{
–ω2

+ + a2 – b – 2iaω+

–ω2
+[ω2

+ – (a2 – 2aδ + b)] + iω+[(δ – 2a)ω2
+ + (ab – a2δ)]

}

=
ω2

+[ω4
+ + 2a2ω2

+ + a4 + 2abδ – b2 – 2a2b]
E2 + F2 ,

where

E = –ω4
+ +

(
a2 – 2aδ + b

)
ω2

+, F = ω+
[
δω2

+ + ab – a2δ
]
.

If b + 2a(b – δ) < 0, then

4a4 – 4
(
a4 + 2abδ – b2 – 2a2b

)
= 4b

[
b + 2a(b – δ)

]
< 0,
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one can obtain ω4
+ + 2a2ω2

+ + a4 + 2abδ – b2 – 2a2b > 0. Moreover, the transversality con-
dition Re( dλ

dτ2
)–1|τ2=τ+

20
> 0 can be established.

We summarize the above analysis in the following theorem for model (2.1).

Theorem 2.2 For System (2.1), τ1 = 0, τ2 > 0, assume that γ < I ′(Y ∗) < (1 + β

δ
)γ and (A1)–

(A3) of Lemma 2.1 are satisfied, then
(i) if δ > max{δ∗, δ∗∗}, then conditions (H1)–(H3) in Lemma 2.2 are satisfied.

Furthermore, the unique positive equilibrium E(Y ∗, K∗) of System (2.1) is locally
asymptotically stable for all τ2 > 0;

(ii) if δ∗ < δ∗
1 , δ ∈ (δ∗

1 , δ∗∗
1 ) or δ∗

1 < δ∗ < δ∗∗
1 , δ ∈ (δ∗, δ∗∗

1 ) and (s2 – p2 + 2r)2 = 4(r2 – q2)
hold, then (H1), (H2), and (H4) in Lemma 2.2 are satisfied. E(Y ∗, K∗) is locally
asymptotically stable when τ2 ∈ [0, τ+

20); E(Y ∗, K∗) is unstable, when τ > τ+
20; Eq. (2.8)

has a pair of purely imaginary roots ±iω+, when τ = τ+
20. Furthermore, if

b + 2a(b – δ) < 0, then the transversality condition is established, System (2.1)
undergoes a Hopf bifurcation at E(Y ∗, K∗), where ω+ and τ+

20 can be calculated by the
formula in Lemma 2.2.

Remark 2.3 From Theorem 2.2, we find that conditions for generating oscillation are far
more stringent than stable. From the viewpoint of economics, if the time delay for invest-
ment τ1 is ignored and the depreciation rate of capital stock δ is high enough, no matter
what the value of τ2 > 0, the gross product and the capital stock will eventually converge
to a stable equilibrium point. On the other hand, if δ is small enough, with finite time τ+

20,
when the time delay for capital stock in the past τ2 < τ+

20, the economic system is stable,
when τ2 > τ+

20, the economic operation can appear unstable fluctuation.

Case III τ1 > 0, τ2 = 0.
In this case, the characteristic equation (2.5) becomes

λ2 + (δ – a – β)λ + be–λτ1 – a(δ + β) = 0. (2.11)

Notice that

p = δ – a – β , r = –a(δ + β), s = 0, q = b.

p + s = δ – α
(
I ′(Y ∗) – γ

)
– β > δ – β –

αβ

δ
γ =

1
δ

(
δ2 – βδ – αβγ

)
,

if δ > β+
√

β2+4αβγ

2
.= δ∗

2 , then (H1) p + s > 0 is satisfied. Condition (H2) q + r > 0 is satisfied
from (A2).

By straightforward computation, if γ < I ′(Y ∗) < (1 + β

δ
)γ , then

s2 – p2 = 2r = –
(
δ – α

(
I ′(Y ∗) – γ

)
– β

)2 – 2α(δ + β)
(
I ′(Y ∗) – γ

)
< 0,

and

r2 – q2 = α2[(I ′(Y ∗) – γ
)2(δ + β)2 – β2I ′(Y ∗)2]

= α2[(I ′(Y ∗) – γ
)
(δ + β) – βI ′(Y ∗)][(I ′(Y ∗) – γ

)
(δ + β) + βI ′(Y ∗)].
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Obviously, (I ′(Y ∗) – γ )(δ + β) + βI ′(Y ∗) > 0,

(
I ′(Y ∗) – γ

)
(δ + β) – βI ′(Y ∗) = δI ′(Y ∗) – γ (δ + β)

< δ

(

1 +
β

δ

)

γ – γ (δ + β) = 0,

hence, r2 – q2 < 0, (H4) is satisfied.
Let λ = iω (ω > 0) be the root of (2.11), then

–ω2 + (δ – a – β)iω + be–iωτ1 – a(δ + β) = 0.

Separating the real and the imaginary parts, we have

⎧
⎨

⎩

–ω2 + b cosωτ1 – a(δ + β) = 0,

(δ – a – β)ω – b sinωτ1 = 0,
(2.12)

which leads to the following equation:

ω4 +
(
a2 + δ2 + β2 – 4aβ – 2δβ

)
ω2 + a2(δ + β)2 – b2 = 0. (2.13)

From (H4) r2 – q2 < 0, i.e., a2(δ +β)2 – b2 < 0, we can prove Eq. (2.13) has a unique solution

ω0 =
(

1
2
{

–
(
a2 + δ2 + β2 – 4aβ – 2δβ

)

+
√

(
a2 + δ2 + β2 – 4aβ – 2δβ

)2 – 4
[
a2(δ + β)2 – b2

]}
)1/2

.

Denote

τ
(k)
1 =

1
ω0

arcsin
δ – a – β

b
ω0 +

2kπ

ω0
, k = 0, 1, 2, . . . ,

then ±iω0 is a pair of purely imaginary roots of (2.11) with τ1 = τ
(k)
1 , k = 0, 1, 2, . . . .

We will prove that the transversality condition is satisfied. Differentiating both sides of
Eq. (2.11) with τ1

Re

(
dλ

dτ1

)–1∣∣
∣
∣
τ1=τ

(k)
1

= Re

{
2λ + δ – a – β

bλe–λτ1
–

τ1

λ

}∣
∣
∣
∣
τ1=τ

(k)
1

= Re

{
2iω0 + δ – a – β

iω0(ω2
0 – (δ – a – β)iω0 + a(δ + β))

}

=
ω2

0[(δ – a – β)2 + 2ω2
0 + 2a(δ + β)]

(δ – a – β)2ω4
0 + [ω3

0 + a(δ + β)ω0]2 > 0.

We conclude the discussions above as follows.

Theorem 2.3 For System (2.1), τ1 > 0, τ2 = 0, if γ < I ′(Y ∗) < (1 + β

δ
)γ and (A1)–(A3) of

Lemma 2.1 are satisfied, then
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(i) when 0 < δ < δ∗
2 , the unique positive equilibrium E(Y ∗, K∗) of System (2.1) is unstable

for all τ1 > 0;
(ii) when δ > δ∗

2 , the unique positive equilibrium E(Y ∗, K∗) of System (2.1) is locally
asymptotically stable when τ1 ∈ [0, τ (0)

1 ); when τ1 > τ
(0)
1 , E(Y ∗, K∗) is unstable; when

τ = τ
(k)
1 , k = 0, 1, 2, . . . , the characteristic equation (2.11) has a pair of purely

imaginary roots ±iω0, System (2.1) undergoes a Hopf bifurcation at E(Y ∗, K∗).

Remark 2.4 In [5], different from the method in this paper, model (2.1) for τ1 > 0, τ2 = 0
is formulated in terms of a second-order nonlinear delay differential equation, the Hopf
bifurcation theorem is obtained by computing the normal form on the center manifold,
which requires tedious calculation.

Remark 2.5 The theorem of stability and Hopf bifurcation of System (2.1) for τ1 > 0, τ2 = 0
in the present paper is obtained by the existence and uniqueness of the equilibrium point.
However, in Ref. [6] the existence of equilibrium point is only a hypothesis, thus the con-
clusion we obtained is more clear.

Case IV τ1 = τ2 > 0.
For τ1 = τ2 > 0, System (2.1) becomes (1.3) and the characteristic equation (2.5) becomes

λ2 + (δ – a)λ + (βλ + b – aβ)e–λτ1 – δa = 0. (2.14)

Compared with Eq. (2.7), we get

p = δ – a, r = –δa, s = β , q = αβγ .

If δ > δ∗ (see Case II), condition (H1)

p + s = δ + β – α
(
I ′(Y ∗) – γ

)
> 0

is satisfied. Condition (H2) q + r = α(βγ – δ(I ′(Y ∗) – γ )) > 0 can be yielded by (A2) of
Lemma 2.1.

Let λ = iω (ω > 0) be the root of (2.14), then

–ω2 + (δ – a)iω + (βiω + b – aβ)e–iωτ1 + b – δa = 0.

Separating the real and the imaginary parts, we have
⎧
⎨

⎩

–ω2 + (b – aβ) cosωτ1 + βω sinωτ1 – δa = 0,

(δ – a)ω + βω cosωτ1 – (b – aβ) sinωτ1 = 0,
(2.15)

which leads to the following equation:

ω4 +
(
a2 + δ2 – β2)ω2 + δ2a2 – (b – aβ)2 = 0. (2.16)

Compared with (H3)–(H5), we have

r2 – q2 = δ2a2 – α2β2γ 2 = α2[δ
(
I ′(Y ∗) – γ

)
– βγ

][
δ
(
I ′(Y ∗) – γ

)
+ βγ

]
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and

s2 – p2 + 2r = β2 – (δ – a)2 – 2aδ = β2 – δ2 – α2(I ′(Y ∗) – γ
)2.

If r2 – q2 < 0, Eq. (2.16) has a unique positive root

ω+ =

√

–(a2 + δ2 – β2) +
√

(a2 + δ2 – β2)2 – 4(a2δ2 – (b – αβ)2)
2

,

then there exists a sequence of positive numbers {τ+
1j}∞j=0 such that Eq. (2.16) has a pair of

purely imaginary roots ±iω+.
If r2 – q2 > 0, s2 – p2 + 2r > 0 and (s2 – p2 + 2r)2 > 4(r2 – q2), Eq. (2.16) has two positive

roots

ω± =

√

–(a2 + δ2 – β2) ± √
(a2 + δ2 – β2)2 – 4(a2δ2 – (b – αβ)2)

2
,

then there exist two sequences of positive numbers {τ+
1j}∞j=0 and {τ–

1j}∞j=0 such that Eq. (2.16)
has two pairs of purely imaginary roots ±iω±.

We will list the transversality condition and the proof can be found in [26],

sign

{
d(Reλ)

dτ1

}

τ1=τ–
1j

< 0 and sign

{
d(Reλ)

dτ1

}

τ1=τ+
1j

> 0.

By similar discussion to [26, 27], we arrive at the following theorem.

Theorem 2.4 For System (2.1), τ1 = τ2 > 0,
• assume δ∗ < δ < β , then we have

(i) if I ′(Y ∗) < min{γ (1 – β

δ
),γ –

√
β2–δ2

α
}, then conditions (H1)–(H3) hold, the

unique positive equilibrium E(Y ∗, K∗) of System (2.1) is locally asymptotically
stable for all τ1 ≥ 0;

(ii) if |I ′(Y ∗) – γ | < β

δ
γ , then conditions (H1), (H2), and (H4) hold, E(Y ∗, K∗) is

locally asymptotically stable for τ1 ∈ [0, τ+
10). System (2.1) undergoes a Hopf

bifurcation at E(Y ∗, K∗) when τ1 = τ+
1j, j = 0, 1, 2, . . . .

(iii) if (s2 – p2 + 2r)2 > 4(r2 – q2) and βγ

δ
< |I ′(Y ∗) – γ | <

√
β2–δ2

α
, then conditions

(H1), (H2), and (H5) hold. System (2.1) undergoes k (a finite number) switches
from stability to instability to stability when the parameters are such that

τ–
10 < τ+

10 < τ–
11 < · · · < τ–

1,k–1 < τ+
1,k–1 < τ–

1k < τ–
1,k+1 < τ+

1k · · · ,

and eventually it becomes unstable.
• assume δ > max{β , δ∗}, then we have

(i) if I ′(Y ∗) < γ (1 – β

δ
), then conditions (H1)–(H3) hold, the unique positive

equilibrium E(Y ∗, K∗) of System (2.1) is locally asymptotically stable for all
τ1 ≥ 0;
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(ii) if |I ′(Y ∗) – γ | < β

δ
γ , then conditions (H1), (H2), and (H4) hold, E(Y ∗, K∗) is

locally asymptotically stable for τ1 ∈ [0, τ+
10). System (2.1) undergoes a Hopf

bifurcation at E(Y ∗, K∗) when τ1 = τ+
1j, j = 0, 1, 2, . . . .

Case V τ1 = 2τ2 > 0.
For τ1 = 2τ2 > 0, the characteristic equation (2.5) becomes

λ2 + (δ – a)λ + be–2λτ2 + β(λ – a)e–λτ2 – δa = 0. (2.17)

We will employ the method proposed in [28, 29] to analyze the distribution of charac-
teristic roots of (2.17). Obviously, ±iω (ω > 0) is a pair of roots of (2.17) if and only if ω

satisfies

–ω2 + (δ – a)iω + be–2iωτ2 + β(iω – a)e–iωτ2 – δa = 0. (2.18)

If ωτ2
2 
= π

2 + jπ , j ∈ Z, then let θ = tan ωτ2
2 , we have e–iωτ2 = 1–iθ

1+iθ . Separating the real and the
imaginary parts, we find that θ satisfies

⎧
⎨

⎩

(ω2 – b + aδ – aβ)θ2 + 2ω(a – δ)θ = ω2 – b + aδ + aβ ,

ω(a – δ + β)θ2 – 2(ω2 + b + aδ)θ = ω(a – δ – β).
(2.19)

Denote

M =

[
ω2 – b + aδ – aβ 2ω(a – δ) ω2 – b + aδ + aβ

ω(a – δ + β) –2(ω2 + b + aδ) ω(a – δ – β)

]

,

M1 =

[
ω2 – b + aδ – aβ 2ω(a – δ)

ω(a – δ + β) –2(ω2 + b + aδ)

]

,

M2 =

[
ω2 – b + aδ – aβ ω2 – b + aδ + aβ

ω(a – δ + β) ω(a – δ – β)

]

,

M3 =

[
ω2 – b + aδ + aβ 2ω(a – δ)

ω(a – δ – β) –2(ω2 + b + aδ)

]

.

We define

D(ω) = det(M1), E(ω) = det(M2) and F(ω) = det(M3).

According to Cramer’s rule, if D(ω) 
= 0, one can solve from Eq. (2.19) that

θ2 =
E(ω)
D(ω)

and θ =
F(ω)
D(ω)

,

where ω satisfies

D(ω)E(ω) = F2(ω). (2.20)
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If D(ω) = 0, in order to make sure the solvability of (2.19) for θ , we have

E(ω) = F(ω) = 0,

and hence ω satisfies (2.20) in this case as well. Simplifying (2.20), we conclude that ω

satisfies a polynomial equation with degree 8:

ω8 + s1ω
6 + s2ω

4 + s3ω
2 + s4 = 0, (2.21)

where

s1 = 2δ2 + 2a2 – β2,

s2 = δ4 + 4a2δ2 – 2b2 – 2a2β2 + a4 + 2bβ2,

s3 = 2a2δ4 + 2
(
a4 – a2β2 – b2)δ2 – 2abβ2δ + a4β2 + 2a2β2b – 2a2b2 – b2β2,

s4 = (b + aδ)2[(b – aδ + aβ)(b – aδ – aβ)
]
,

and ω2 is a positive root of

z4 + s1z3 + s2z2 + s3z + s4 = 0. (2.22)

From (A2) of Lemma 2.1, b – aδ – aβ = α(βγ + δγ – δI ′(Y ∗)) > 0; on the other hand,

b – aδ + aβ = αI ′(Y ∗)(2β – δ) + αγ (δ – β). (2.23)

Analyzing (2.23), we have the following results:
• if β – δ > 0, then b – aδ + aβ < 0 when I ′(Y ∗) < γ (1 – β

2β–δ
);

• if β – δ < 0 and 2β – δ > 0, then b – aδ + aβ > 0 all the time;
• if 2β – δ < 0, then b – aδ + aβ < 0 when I ′(Y ∗) > γ (1 + β

δ–2β
).

If ωτ2
2 = π

2 + jπ , j ∈ Z, from (2.18) we obtain

–ω2 + (δ – a)iω + b – β(iω – a) – δa = 0.

Separating the real and the imaginary parts, we have

δ – β = α
(
I ′(Y ∗) – γ

)
and ω2 = b – aδ + aβ .

From the above analysis we have the following lemma.

Lemma 2.3 Either β – δ > 0 and I ′(Y ∗) < γ (1 – β

2β–δ
) or 2β – δ < 0 and I ′(Y ∗) > γ (1 + β

δ–2β
)

are satisfied, Eq. (2.22) has a positive root ω2∗ (ω∗ > 0). Furthermore, if D(ω∗) 
= 0, then
Eq. (2.19) has a unique real root θ∗ = F(ω∗)

D(ω∗) . Hence Eq. (2.17) has a pair of purely imaginary
roots ±iω∗, when

τ2 = τ2j =
2 arctan θ∗ + 2jπ

ω∗
, j ∈ Z.



Jianzhi and Hongyan Advances in Difference Equations        (2019) 2019:107 Page 16 of 27

Remark 2.6 The conditions in Lemma 2.3 guarantee that b – aδ + aβ < 0. However, ωτ2
2 =

π
2 + jπ , j ∈ Z is a root of (2.18) if and only if ω2 = b – aδ + aβ > 0, this is a contradiction, in
other words, ωτ2 = π + 2jπ , j ∈ Z is not a root of (2.18).

To make sure the Hopf bifurcation occurs, the transversality condition should be
checked. Differentiating both sides of Eq. (2.17) with τ2, one reaches

[
2λ + (δ – a) – 2τ2be–2λτ2 + βe–λτ2 – τ2β(λ – a)e–λτ2

] dλ

dτ2
= 2λbe–2λτ2 + λβ(λ – a)e–λτ2 ,

then

Re

(
dλ

dτ2

)–1∣∣
∣
∣
τ2=τ2j

= Re

{
(2λ + δ – a)eλτ2 – 2τ2be–λτ2 + β(1 – λτ2 + aτ2)

2λbe–λτ2 + λβ(λ – a)

}

τ2=τ2j

= Re

{
(2iω∗ + δ – a)(cos ξ + i sin ξ ) – 2bτ2j(cos ξ – i sin ξ ) + β – iβω∗τ2j + aβτ2j

2iω∗b(cos ξ – i sin ξ ) + iω∗β(iω∗ – a)

}

=
(
ω∗

[
4b(δ – a) sin ξ cos ξ – βω(a + δ) cos ξ + β

(
2ω2

∗ + 2b – aδ + a2) sin ξ

+ 4bω
(
cos2 ξ sin2 ξ – ωβ2)])/

(
A2 + B2), (2.24)

where

ξ = ω∗τ2j, A2 = ω2
∗(2b sinω∗τ2j – βω∗)2, and B2 = ω2

∗(2b cosω∗τ2j – aβ)2.

Obviously, it is difficult to distinguish the sign of (2.24), we will demonstrate it by calcu-
lating examples in Sect. 4.

One has the following theorem by the Hopf bifurcation.

Theorem 2.5 For System (2.1), τ1 = 2τ2 > 0, if δ∗ < δ < β , I ′(Y ∗) < (1 – β

2β–δ
)γ , (A1)–(A3)

of Lemma 2.1 and the transversality condition (2.24) are satisfied, then the unique positive
equilibrium E(Y ∗, K∗) of System (2.1) is locally asymptotically stable when τ2 ∈ [0, τ20);
when τ2 > τ20, E(Y ∗, K∗) is unstable; when τ = τ2j, j ∈ Z, the characteristic equation (2.17)
has a pair of purely imaginary roots ±iω∗, System (2.1) undergoes a Hopf bifurcation at
E(Y ∗, K∗).

Case VI τ1 
= τ2.
For τ1 > 0, τ2 > 0, and τ1 
= τ2, the characteristic equation is in the form of (2.5)

λ2 + (δ – a)λ + be–λτ1 + β(λ – a)e–λτ2 – δa = 0. (2.5)

Let λ = iω (ω > 0) be the root of (2.5), then

–ω2 + (δ – a)iω + be–iωτ1 + β(iω – a)e–iωτ2 – δa = 0.
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Separating the real and the imaginary parts, we have

⎧
⎨

⎩

–ω2 + b cosωτ1 – aβ cosωτ2 + βω sinωτ2 – δa = 0,

(δ – a)ω – b sinωτ1 + βω cosωτ2 + aβ sinωτ2 = 0.
(2.25)

Eliminating sinωτ2 and cosωτ2, we obtain the following transcendental equation:

ω4 +
(
a2 + δ2 – β2)ω2 + a2(δ2 – β2) + b2

– 2b
(
aδ + ω2) cosωτ1 – 2(a – δ)bω sinωτ1 = 0. (2.26)

Let

h(ω) = ω4 +
(
a2 + δ2 – β2)ω2 + a2(δ2 – β2) + b2

– 2b
(
aδ + ω2) cosωτ1 – 2(a – δ)bω sinωτ1,

since h(ω) → +∞ when ω → +∞, Eq. (2.26) has at most finite positive roots. If there
exists a positive root, without loss of generality, we suppose that (2.26) has N1 (0 < N1 < ∞,
N1 ∈ Z) positive roots as ω1,ω2, . . . ,ωN1 .

Denote

τ
(j)
2i =

1
ωi

arccos

[

–
δ

β
+

bωi sinωiτ1 + ab cosωiτ1

β(a2 + β2)

]

+
2kπ

ωi
, j = 0, 1, . . . , i = 1, 2, . . . , N1,

then ±iωi, i = 1, 2, . . . , N1, is a pair of purely imaginary roots of Eq. (2.5) with τ2 = τ
(j)
2i ,

j = 0, 1, . . . , i = 1, 2, . . . , N1.
In this case, τ2 is regarded as the varying parameter, the necessary condition is that the

critical eigenvalue passes through the imaginary axis having the nonzero velocity. Differ-
entiating λ with respect to τ2 in (2.5), one reaches

Re

(
dλ

dτ2

)–1∣∣
∣
∣
τ2=τ

(j)
2i

= Re

{
2λ + δ – a – τ1be–λτ1 + βe–λτ2 – βτ2(λ – a)e–λτ2

βλ(λ – a)e–λτ2

}

τ2=τ
(j)
2i

= Re

{

–
τ

(j)
2i
λ

+
1

λ(λ – a)
+

2λ + δ – a – τ1be–λτ1

–βλ(λ – a)(λ2 + (δ – a)λ + be–λτ1 – δa)

}

= –
1

a2 + ω2
i

+
(δ – a – τ1b cosωiτ1)P – (2ω + τ1b sinωiτ1)Q

P2 + Q2 , (2.27)

where

P = –βω4
i – aβ(a – 2δ)ω2

i + βbω2
i cosωiτ1 + αβb sinωiτ1,

Q = β(δ – 2a)ω3
i – a2βδωi + aββbωi cosωiτ1 – bβω2

i sinωiτ1.

We conclude the discussions above as follows.
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Theorem 2.6 For System (2.1), τ1 > 0, τ2 > 0, τ1 
= τ2, let δ > δ∗, I ′(Y ∗) < (1 + β

δ
)γ and (2.27)

is not equal to zero, then
(i) if h(ω) = 0 exhibits no positive root, the unique positive equilibrium E(Y ∗, K∗) of

System (2.1) is locally asymptotically stable for all τ2 > 0;
(ii) if h(ω) = 0 has N1 positive roots, then there exists a positive number

τ ∗
20 = min{τ (0)

2i , i = 1, 2, . . . , N1} such that E(Y ∗, K∗) is locally asymptotically stable for
τ2 ∈ [0, τ ∗

20) and unstable for τ2 > τ ∗
20. Furthermore, System (2.1) undergoes a Hopf

bifurcation at E(Y ∗, K∗) when τ2 = τ ∗
20.

Remark 2.7 Since the set {(τ1, τ2)|τ1 = 2τ2} belongs to {(τ1, τ2)|τ1 
= τ2, τ1 > 0, τ2 > 0}, it can
be seen from the above discussion that Case V just is a special case of Case VI.

On the other hand, one can take b = αβI(Y ∗) as the bifurcation parameter also. From
(2.25), the following equation is established:

tanωτ1 =
(δ – a)ω + βω cosωτ2 + aβ sinωτ2

ω2 + aβ cosωτ2 – βω sinωτ2 + δa
. (2.28)

Let

m(ω) =
(δ – a)ω + βω cosωτ2 + aβ sinωτ2

ω2 + aβ cosωτ2 – βω sinωτ2 + δa
,

then

lim
ω→+∞ m(ω) = 0.

Obviously, there are an infinite number of intersecting points for the two curves tanωτ1

and m(ω), i.e., Eq. (2.28) has a sequence of roots {ωj}j≥1.
Define

bj =
ω2

j + aδ + aβ cosωjτ2 – βωj sinωjτ2

cosωjτ1
, j = 1, 2, . . . ,

then we claim that the characteristic equation (2.5) has purely imaginary roots if and only
if b = bj and the purely imaginary roots are ±iωj.

Differentiating λ with respect to b in (2.5), we have

[
2λ + δ – a – τ1be–λτ1 + βe–λτ2 – βτ2(λ – a)e–λτ2

]dλ

db
= –e–λτ1 , (2.29)

hence,

dλ

db
=

–e–λτ1

2λ + δ – a – τ1be–λτ1 + βe–λτ2 – βτ2(λ – a)e–λτ2
.

Substituting bj into the above equation, we obtain

Re

(
dλ

db

)∣
∣
∣
∣
b=bj

= Re

{
–e–λτ1

2λ + δ – a – τ1be–λτ1 + βe–λτ2 – βτ2(λ – a)e–λτ2

}

b=bj

=
–M cosωτ1 + N sinωτ1

M2 + N2 , (2.30)
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where

M = δ – a – τ1bj cosωτ1 + β(1 + aτ2) cosωτ2 – βτ2ω sinωτ2,

N = 2ω + τ1bj sinωτ1 – β(1 + aτ2) sinωτ2 – βτ2ω cosωτ2.

When b = 0, τ2 = 0, Eq. (2.5) becomes

λ2 + (δ – a + β)λ – a(δ + β) = 0. (2.31)

Obviously, if I ′(Y ∗) < γ and δ > δ∗, all the roots of Eq. (2.31) have negative real parts. Let
λ = iω (ω > 0) be the root of (2.5) with b = 0, τ2 > 0, then

–ω2 + (δ – a)iω + β(iω – a)(cosωτ2 – i sinωτ2) – δα = 0,

separating the real and the imaginary parts, we have

⎧
⎨

⎩

–ω2 + βω sinωτ2 – aβ cosωτ2 – δa = 0,

(δ – a)ω + βω cosωτ2 + aβ sinωτ2 = 0,
(2.32)

which leads to the following equation:

ω4 +
(
a2 + δ2 – β2)ω2 + a2(δ2 – β2) = 0. (2.33)

As is known to all, if δ > β , Eq. (2.33) has no real roots, i.e., all the roots of Eq. (2.5) have
negative real parts when b = 0, τ2 > 0.

Now we can state the following result.

Theorem 2.7 For System (2.1), τ1 > 0, τ2 > 0, τ1 
= τ2, b is regarded as the bifurcation pa-
rameter, if δ > max{δ∗,β}, I ′(Y ∗) < γ , and the transversality condition (2.30) is satisfied,
then

(i) the unique positive equilibrium E(Y ∗, K∗) of System (2.1) is locally asymptotically
stable if and only if b ∈ (b–

0 , b+
0 ). If b ∈ (–∞, b–

0 ) or b ∈ (b+
0 , +∞), E(Y ∗, K∗) is

unstable;
(ii) Eq. (2.1) undergoes Hopf bifurcations at the equilibrium E(Y ∗, K∗) when b = bj,

j = 1, 2, . . . ,
where

b+
0 = min{bj : bj > 0}, b–

0 = max{bj : bj < 0}.

3 Direction and stability of the Hopf bifurcation
In this section, by using the algorithm developed in Hassard et al. [30], we will study the di-
rection of the Hopf bifurcation and the stability of the bifurcated periodic solutions when
τ1 
= τ2 (Case VI). For the other five cases, most of the derivations are nearly the same steps,
hence we omit them.

Without loss of generality, assume τ1 < τ2. We fix τ1 in an appropriate interval such
that h(ω) at least one positive root. Let τ2 = τ ∗

20 + μ, then μ = 0 is the Hopf bifurcation
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value for System (2.1) in terms of the new bifurcation parameter μ. Let y(t) = Y (t) – Y ∗,
k(t) = K(t) – K∗, and normalize the delay with the scaling t �→ (t/τ2), then System (2.1) can
be rewritten as a functional differential equation in the phase space C = C([–1, 0], R2)

u̇(t) = Lμ(ut) + F(ut), (3.1)

where Lμ : C → R2 and F : C → R2. Lμ and F are given by

Lμϕ = τ2B1ϕ(0) + τ2B2ϕ(–τ1/τ2) + τ2B3ϕ(–1), (3.2)

where ϕ(t) = (ϕ1(t),ϕ2(t))T ,

B1 =

(
α(I ′(Y ∗) – γ ) –αβ

0 –δ

)

, B2 =

(
0 0

I ′(Y ∗) 0

)

, B3 =

(
0 0
0 –β

)

,

F(ϕ) =

[(
αI′′(Y∗)

2
0

)

ϕ2(0) +

(
0

I′′(Y∗)
2

)

ϕ2(–τ1/τ2) + o(3)

]

.

By using the Riesz representation theorem, there exists a matrix whose components are
bounded variation functions η(·,μ) : [–1, 0] → R22 , θ ∈ [–1, 0] such that

Lμφ =
∫ 0

–1
dη(θ ,μ)φ(θ ) for φ ∈ C. (3.3)

Here we can choose

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

B1, θ = 0,

0, θ ∈ [–τ1/τ2, 0),

–B3, θ ∈ (–1, –τ1/τ2),

–B2 – B3, θ = –1.

For ϕ ∈ C1([–1, 0], R2), define

A(μ)ϕ =

⎧
⎨

⎩

dϕ(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(μ, ξ )ϕ(ξ ), θ = 0.

Furthermore, define the operator R as

R(ϕ) =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

F(ϕ), θ = 0.

Then Eq. (3.2) is equivalent to

u̇t = A(μ)ut + Rut ,

where ut(θ ) = u(t + θ ) for θ ∈ [–1, 0].
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For ψ ∈ C1([0, 1], (R2)∗), define

A∗ψ(s) =

⎧
⎨

⎩

– dψ(s)
ds , s ∈ (0, 1],

∫ 0
–1 ψ(–ξ ) dηT (ξ , 0), s = 0,

and a bilinear inner product

〈
ψ(s),ϕ(θ )

〉
= ψ(0)ϕ(0) –

∫ 0

–1

∫ θ

ξ=0
ψ(ξ – θ ) dη(θ )ϕ(ξ ) dξ ,

where η(θ ) = η(θ , 0), then A = A(0) and A∗ are adjoint operators. Let q(θ ) and q∗(θ ) be
eigenvectors of A and A∗ corresponding to iω1τ20 and –iω1τ20, respectively. By direct com-
putation, we obtain that

q(θ ) = (1,ρ)T eiω1τ20θ and q∗(s) =
1
D̄

(σ , 1)eiω1τ20s,

where

ρ =
α(I ′(Y ∗) – γ ) – iω1

αβ
, σ = –

I ′(Y ∗)e–iω1τ1

iω1 + βe–iω1τ20
,

D̄ =
(
ρ + σ̄ + τ1e–iω1τ1βρ – τ20e–iω1τ20 I ′(Y ∗))–1.

Based on algorithms given in [30], the coefficients for determining the important quanti-
ties are obtained:

g20 = I ′′(Y ∗)(ασ̄ + ρ2e–2iω1τ1
)
,

g11 = I ′′(Y ∗)(ασ̄ + ρρ̄),

g02 = I ′′(Y ∗)(ασ̄ + ρ̄2e2iω1τ1
)
,

g21 = I ′′(Y ∗)[2ασ̄W (1)
11 (0) + ρ̄eiωτ1 W (2)

20 (–τ1) + 2ρe–iωτ1 W (2)
11 (–τ1)

]

+ I ′′′(Y ∗)(ασ̄ + ρ2ρ̄e–iωτ1
)
,

where

W20(θ ) = –
g20q(0)
iω1τ20

eiω1τ20θ –
g02q(0)
3iω1τ20

e–iω1τ20θ + E1e2iω1τ20θ ,

W11(θ ) =
g11q(0)
iω1τ20

eiω1τ20θ –
g11q(0)
iω1τ20

e–iω1τ20θ + E2,

and

E1 =
(
E(1)

1 , E(2)
1

)T , E2 =
(
E(1)

2 , E(2)
2

)T ,

where

E(1)
1 =

1
D1

∣
∣
∣
∣
∣

αI ′(Y ∗) αβ

2ρ2e–2iω1τ20 βe–2iω1τ20

∣
∣
∣
∣
∣
,
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E(2)
1 =

1
D1

∣
∣
∣
∣
∣

2iω1τ20 – α(I ′(Y ∗) – γ ) αI ′′(Y ∗)
–I ′(Y ∗)e–2iω1τ1 2ρ2e–2iω1τ20

∣
∣
∣
∣
∣
,

E(1)
2 =

1
D2

∣
∣
∣
∣
∣

αI ′′(Y ∗) αβ

2ρρ̄ β

∣
∣
∣
∣
∣
,

E(2)
2 =

1
D2

∣
∣
∣
∣
∣

–α(I ′(Y ∗) – γ ) αI ′′(Y ∗)
–I ′(Y ∗) 2ρρ̄

∣
∣
∣
∣
∣
,

D1 =

∣
∣
∣
∣
∣

2iω1τ20 – α(I ′(Y ∗) – γ ) αβ

–I ′(Y ∗)e–2iω1τ1 βe–2iω1τ20

∣
∣
∣
∣
∣
,

D2 =

∣
∣
∣
∣
∣

–α(I ′(Y ∗) – γ ) αβ

–I ′(Y ∗) β

∣
∣
∣
∣
∣
.

Therefore, g21 can be determined. Furthermore, we can compute the following values:

C1(0) =
i

2ω1

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re{c1(0)}
Re{λ′(0)} ,

β2 = 2 Re
(
C1(0)

)
,

T2 = –
Im{C1(0)} + μ2 Im{λ′(τ20)}

ω1τ20
.

Theorem 3.1 The following assertions hold.
(i) μ2 determines the direction of the Hopf bifurcation: if μ2 > 0 (< 0), then the Hopf

bifurcation is supercritical(subcritical) and the bifurcating periodic solutions exist
for τ2 > τ20 (< τ20);

(ii) β2 determines the stability of the bifurcating periodic solutions: the bifurcating
periodic solutions are orbitally stable (unstable) if β2 < 0 (> 0);

(iii) T2 determines the period of the bifurcating periodic solutions: the period increases
(decreases) if T2 > 0 (< 0).

4 Numerical examples
In this section, we shall give some numerical examples to illustrate the conditions required
in our theorems. The investment function I(Y ) is taken from the published literature (see
[7]):

I(Y ) =
eY

1 + eY .

Obviously, I(0) = 1
2 > 0 and |I(Y )| = | eY

1+eY | < 1. It is easy to check that the condition I ′(Y ) <
(1 + β

δ
)γ in the following four examples, then (A1)–(A3) of Lemma 2.1 are all satisfied,

System (2.1) has a unique positive equilibrium.
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4.1 τ1 = τ2 = 0
In this case, we choose β = 0.2, γ = 0.2, δ = 0.05, then System (2.1) becomes

⎧
⎨

⎩

dY (t)
dt = α[ eY

1+eY – 0.2K(t) – 0.2Y (t)],
dK (t)

dt = eY

1+eY – 0.25K(t).
(4.1)

Since I ′(Y ∗) = e0.659

(1+e0.659)2 = 0.2247 > 0.2 = γ , then condition (H) is satisfied. Furthermore,
we can obtain α∗ = 10.1215 and

√
f = 0.6267.

From Theorem 2.1, we know that the positive equilibrium E is asymptotically stable
when the speed of adjustment of the goods market α = 8.1 < α∗ (see Fig. 1(a)), when α

passes through the critical value α∗, the positive equilibrium E loses its stability and a
Hopf bifurcation occurs. Let α = 12.4 > α∗, the periodic oscillations bifurcating from E
are depicted in Fig. 1(b).

4.2 τ1 = 0, τ2 > 0
In this case, we choose α = 3, β = 0.2, γ = 0.2. Some calculations indicate that δ∗ = 0.2606
and δ∗∗ = 0.7533. If we take δ = 0.8 > max{0.2606, 0.7533}, then by (i) of Theorem 2.2, the
positive equilibrium is locally asymptotically stable for all τ2 > 0 (see Fig. 2). Moreover,

Figure 1 (a) α = 8.1, the positive equilibrium is asymptotically stable. (b) α = 12.4, a periodic solution appears
near the positive equilibrium

Figure 2 (a) τ2 = 2.9, the positive equilibrium is asymptotically stable. (b) τ2 = 21.7, the positive equilibrium is
asymptotically stable also
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let δ∗
1 = 0.2312 and δ∗∗

1 = 0.4921, then one can take δ∗
1 < δ = 0.24 < δ∗∗

1 . From (ii) of Theo-
rem 2.2, we have the positive equilibrium is asymptotically stable when τ2 < τ+

20 = 3.0719,
unstable when τ2 > τ+

20, and System (2.1) undergoes a Hopf bifurcation when τ2 = τ+
20 (see

Fig. 3).

Remark 4.1 The numerical simulations of Case III τ1 > 0, τ2 = 0 and Case IV τ1 = τ2 > 0
can be found in [5, 6] and [7, 10]. In the present paper, we omit them.

4.3 τ1 = 2τ2 > 0
Consider System (2.1) and choose the following parameters:

α = 0.3, β = 0.5, δ = 0.16, γ = 0.7.

We can obtain the positive equilibrium is E(0.1921, 0.8372). Furthermore, we have δ∗ =
–0.5+

√
0.25+4×0.3×0.7×0.5

2 = 0.1593 < δ < β , and I ′(0.1921) = e0.1921

(1+e0.1921)2 = 0.2478 < 0.2834 =
(1 – β

2β–δ
)γ , τ20 = 4.2371, and Re( dλ

dτ2
)–1|τ2=τ20 > 0. Then, by Theorem 2.5, the positive equi-

librium is asymptotically stable when τ2 < τ20, unstable when τ2 > τ20, and System (2.1)
undergoes a Hopf bifurcation when τ2 = τ20 (see Fig. 4).

Figure 3 (a) τ2 = 1.89, the positive equilibrium is asymptotically stable. (b) τ2 = 4.27, a periodic solution
appears near the positive equilibrium

Figure 4 (a) τ2 = 3.5 and τ1 = 2τ2 = 7.0, the positive equilibrium is asymptotically stable. (b) τ2 = 5.3 and
τ1 = 2τ2 = 10.6, a periodic solution appears near the positive equilibrium
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4.4 τ1 �= τ2 > 0
In this case, we choose τ1 and τ2 as the varying parameters for the fixed parameters

α = 2, β = 0.3, δ = 0.25, γ = 0.2.

By numerical calculation, we have δ∗ = 0.2275 < δ and I ′(2.0024) = 0.1048 < (1 + β

δ
)γ =

0.44. If we take τ1 = 0.3, equation h(ω) = 0 has no positive real root(see Fig. 5(a)). From (i)
of Theorem 2.6, System (2.1) is locally asymptotically stable for all τ2 > 0 (see Fig. 6). If we
take τ1 = 0.6, equation h(ω) = 0 has two positive real roots; if we take τ1 = 14.3, equation
h(ω) = 0 has four positive real roots (see Fig. 5(b)). Taking τ1 = 1.9, we have

τ ∗
20 = 4.7162, Re

(
dλ

dτ2

)–1∣∣
∣
∣
τ2=τ∗

20

> 0,

μ2 = 0.6448, β2 = –8.4263, T2 = 13.4972.

Hence, from (ii) of Theorem 2.6 and Theorem 3.1, we conclude that when τ2 < τ ∗
20 the

positive equilibrium is asymptotically stable, the bifurcation occurs when τ2 increases to
pass τ ∗

20, the bifurcated periodic solution is orbitally asymptotically stable, and the period
increases as well as τ2 increases. These are illustrated in Fig. 7.

Figure 5 (a) When τ1 = 0.3, equation h(ω) = 0 has no positive real root. (b) When τ1 = 14.6, equation h(ω) = 0
has four positive real roots

Figure 6 (a) τ1 = 0.3 and τ2 = 4.0, the positive equilibrium is asymptotically stable. (b) τ1 = 0.3 and τ2 = 12.6,
the positive equilibrium is asymptotically stable also
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Figure 7 (a) τ1 = 1.9 and τ2 = 3.6, the positive equilibrium is asymptotically stable. (b) τ1 = 1.9 and τ2 = 5.02,
a periodic solution appears near the positive equilibrium
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