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Abstract

The purpose of this paper is to propose a semi-analytical technique convenient for
numerical approximation of solutions of the initial value problem for p-dimensional
delayed and neutral differential systems with constant, proportional and time varying
delays. The algorithm is based on combination of the method of steps and the
differential transformation. Convergence analysis of the presented method is given as
well. Applicability of the presented approach is demonstrated in two examples.

A system of pantograph type differential equations and a system of neutral functional
differential equations with three types of delays are considered. The accuracy of the
results is compared to those obtained by the Laplace decomposition algorithm, the
residual power series method and Matlab package DDENSD. A comparison of
computing time is presented, too, showing reliability and efficiency of the proposed
technique.
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1 Introduction

Systems of functional differential equations (FDEs), in particular delayed or neutral differ-
ential equations, are often used to model processes in the real world. To give some exam-
ples, we mention models in population dynamics [1], neuromechanics [2], machine tool
vibrations [3], etc. Further models and details can be found, for instance, in monographs
[4] and [5].

Semi-analytical methods expressing solutions to problems with delays in a series form
have been studied in the last two decades. Methods such as the variational iteration
method (VIM) [6], Adomian decomposition method (ADM) [7], homotopy perturbation
method (HPM) [8], homotopy analysis method (HAM) [9] and also methods based on
the Taylor theorem such as the differential transformation (DT) [10], Taylor collocation
method [11] and Taylor polynomial method [12] have been developed to approximate so-
lutions to different problems for FDEs. Other ways to use the series approach in solving
FDEs are, e.g., the method of polynomial quasisolutions [13, 14], finite difference methods
[15, 16], and the functional analytic technique (FAT) [17, 18].

The main aim of the work is to apply a combination of the method of steps and DT
as a convenient tool for finding an approximate solution to the initial value problem for
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functional differential systems used in dynamical models. Convergence analysis and er-
ror estimates of the method are investigated as well. We give some experimental results
in Sect. 4 to show that the algorithm produces reliable results with the same or better

efficiency than the reference methods.

2 Methods
The main idea of our approach is to combine the differential transformation and general
method of steps.

The differential transformation has been, and still is, an active research topic during the
last years. As examples of recently published results, we mention research papers [19-23].
These papers among other publications contain new algorithms and their applications to

solving different problems involving differential equations.

Definition 1 The differential transformation of a real function u(¢f) at a point £, € R is
Diu(t)}to] = {U(K)[t0]}32ys where the kth component U (k)[t] of the differential transfor-
mation of the function u(¢) at £j is defined as

dk
UWlt] = %[ dfﬁ”] , M)

assuming that the original function u(¢) is analytic.

Definition 2 The inverse differential transformation of {{/(k)[f0]}72, at £y is defined as
o0
u(t) = D {{UWE) )7, ) ito] = 3 U] — o) @)
k=0
In applications, the function u(¢) is usually expressed in the form of finite series
N
u(®) =y UK)[to](t — to). (3)
k=0

In Sect. 4, we use the following transformation formulas, which are derived from defini-
tions (1), (2) and proved in [24].

Lemma 1 Assume that W(k), U(k) and U;(k) are the kth components of the differential
transformations of functions w(t), u(t) and u;(t), i = 1,2, at ty € R, respectively, and let
q,q; € (0,1), j = 1,2. Moreover, assume that t, = 0. Denote Ny = N U {0}.

I ow) = d::it), then W(k) = %u(k +n).
k

If wt)=w(us(t), then W(k) = Uy (DUs(k - D).
=0

If w(t)=ulqt), then W(k)=q"U(K).

k
If w(t)=w(qpt)us(qat), then WK) = qiqs Uy (DUs(k - D).
=0
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d"u(gt) d"ul(t) (m)
_ _ =u" (qt), then W(k)=
d(gqt)™ dt™ t=qt 1

(k + m)!
k!

If w(t) g Uk + m).

If w()=t", then W(k)=3(k—n),where§(k —n) = S, (Kronecker delta).

)\.k
If wt)=¢e", then W(k)= R
k!
(-5 L ifk=2nneN,,

If w(t)=cost, then W(k):=C(k)=
0 ifk=2n+1,neN,.

kg,
-7 ifk=2n+1LneN,
If w(t)=sint, then W(k):=S(k)= g n+1,meNy
0 ifk =2n,n € No.

Remark 1 Transformation formulas for shifted arguments w(£) = u(¢ — a) are often proved
and applied in papers. However, using these formulas when solving initial value problems
for delayed differential equations is not convenient since the uniqueness of solutions is
violated. The reason is that the values of the initial vector function for ¢ < 0 are not taken

into account.

One of the drawbacks of the common approach to the differential transformation is
that there is no use of direct transformation formulas for equations with nonlinear terms
containing unknown function u(¢), for instance, f(x) = €°*** or f(u) = V1 +ut,

Fortunately, the corresponding transformations can be calculated using the Adomian
polynomials A,,, in which each solution u; is replaced by the corresponding components
U;(k) of the differential transformation {I;(k)}22,, see [25]. Suppose that F(k) is the kth
component of the differential transformation of a nonlinear term f(u), then

F(k) =Y Ay (U(0), U(Q1),..., U(n))8(k — n) = A (U(0), U(1),..., U(K))

n=0

1 d~ > ;
:Eﬁf lZL[(l)t , k>0. (4)
=0 t=0

Recently, it turned out that there is another way to work with nonlinearities in DT [26].

The second method, namely the method of steps, enables us to replace the terms in-
volving constant or time-dependent delays by the initial vector function and its deriva-
tives. Then the original initial value problem for a system of delayed or neutral differential
equations is simplified to the initial problem for a system of ordinary differential equa-
tions. Details on the method of steps can be found, e.g., in monographs [4, 5, 27].

3 Results
The subject of our interest is a system of p functional differential equations of nth order
with multiple delays «;(¢),...,q,(t) in the following form:

u () = £(t,u(®), W' (@), ..., u" @), w (1 (8), wa (e2(2)), ..., w, (2 (8))), (5)

where u®(2) = @ (¢),...,ul’ ()7, u®(2) = @ @), ..., uP )7, k=0,1,...,n—1and f =
(fl,...,];,)T are p-dimensional vector functions, w;(o;(¢)) = (u(oy(2)), o' (i(2)),...,
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u”)(a;(t))) are (m; - p)-dimensional vector functions, m; < n, i = 1,2,...,r, r € N and
fi: [0,00) x R x R“P are continuous real functions for j = 1,2,...,p, where o = Zle m;.

We consider three types of delays «;:

1. «;(t) = q;t, where g; € (0,1) (proportional delay).

2. a,(t) =t — t;, where 1; > 0 is a real constant (constant delay).

3. o;(t) =t — ;(¢), where 7;(£) > 70 > O for £ > 0 is a real function (time-dependent or

time-varying delay).

Let £* = minj<;<,{inf;50(e;(¢))} <0, m = max{my, my,...,m,} < n. In the case m = n, sys-
tem (5) is a neutral system, otherwise it is a delayed differential system.

If £* < 0, an initial vector function @(¢) = (¢1(¢), ..., ¢,())" must be assigned to system
(5) on the interval [¢*,0]. Moreover, we assume that ¢;(¢) € C*([t*,0],R) forj=1,...,p.

We look for a solution of system (5) with the following initial conditions:

u0=vo, WO=vi, ..., w"VO)=v,, (6)
and the initial vector function @(¢) on interval [£¥,0] satisfying
®0)=u(©0), ..., @"P0)=u""(0). 7)

We solve initial value problem (5), (6) and (7) subject to the following hypotheses:
(H1) The functions f;,j =1,...,p are analytic in [0, T*] x R x R®?.
(H2) The initial value problem (5), (6) and (7) has a unique solution on some interval
[0, T%].

Remark 2 Hypothesis (H2) is valid, for example, if the delay functions «; are Lipschitz
continuous on [0, 7%], the functions ¢;, ¢]7, s ¢}") are Lipschitz continuous on [t*,0], and
the functions f; are continuous with respect to ¢ on [0, 7] and Lipschitz continuous with
respect to the rest of the variables on R”” x R“”. More details and other types of sufficient
conditions for existence of a unique solution can be found in [5, Sects. 3.2 and 3.3], or [27,
Sect. 2.2].

We start with the method of steps. We substitute the initial vector function @ (¢) and its
derivatives in all places where the unknown functions with constant or time-dependent
delays and derivatives of those functions take place. This turns the delayed system (5) into a
system of ordinary differential equations or differential equations with proportional delays
in the case when system (5) contains proportional delays.

For example, if a1 (¢) = £ — 71, o (t) = t — T2, 3(£) = g3t and o(t) = t — 74(2), applying the
method of steps changes (5) into the system

u(n)(t) = f(tr ll(t), e u(n_l)(t)r gDl(t - Tl)! ¢2(t - IZ)! us(%t); ¢4(t - t4(t)))1 (8)
where

Oi(t-1,)= (Pt -1), ' (t-T),..., 2"t~ 1)), =12,
u3(g3t) = (u(gst), w'(gst),...,u"(gst)),
4t - @) = (P(t-wu®), ' (t-1u®),..., 2" (t - u@)),
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and m; < n for [ = 1,2,3,4. Then we transform the initial conditions (6). Definition (1)
gives

1w
U(k) = X u’(0).

!

After applying the differential transformation, the initial value problem for a system of
FDEs is reduced to a system of recurrence algebraic relations

U(k + n) = F(k,Uk),U(k +1),..., U(k + n - 1)). 9)

Solving this recurrence and then using the inverse transformation (2), we get an approxi-

mate solution of system (5) in the series form

N
u(t) = Y Uk,
k=0

If t* < 0, we denote £, = inf{t : o;(t) > 0} and ¢, = min;<;<,{ty, : ty; # 0}. Then the approxi-
mate solution u(t) is valid on the intersection of its convergence interval and the interval
[0, T*] N [0, £,], whereas u(f) = @ (¢) on the interval [£*,0]. If t* = 0, the approximate solu-
tion u(t) is valid on the intersection of its convergence interval with [0, T*].

Now we formulate and prove two theorems on convergence and an error estimate of the
approximate solution to the studied problem obtained using the differential transforma-
tion.

Theorem 1 Let hypotheses (H1) and (H2) be valid and denote Fi(t) = U(k)t*. If there exist
a constant 8,0 < § < 1, and ko € N such that ||Fi.1(2)|| < 8||Ex(2)|| for all k > ko, then the
series y_poo Fi(t) converges to a unique solution on the interval ] = [0,y], y < T*.

Proof Denote C"(J) the Banach space of vector-valued functions h(¢) = (i (¢), ha (), ...,
hp(t))T with continuous derivatives up to order # and norm

,,,,,,,,,,

Now it is sufficient to prove that sequence {S;} is a Cauchy sequence in the Banach space
C"(J). Due to

1801 = Stll = [Era(@)]| < 8| Eu@)|| <--- < 87" B (0)

’

for every ,m e N, [ > m > ny, we get

-1

Z(Sj+1 -S)

j=m

IS: = Smll =

-1 -1
<D IS =Sl <D 5T Eyy ()]
j=m j=m
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o (1 848 et 5 En )]

1_51—m
T 13

8" 0| F o (8- (10)
Since 0 < § < 1, it follows that
1 lim ||S; -S| =0.

Therefore, {S;} is a Cauchy sequence in the Banach space C"(J) and the proof is com-
plete. g

Theorem 2 Suppose that the assumptions of Theorem 1 are valid. Then for the truncated
series Y r. o Fi(t) the following error estimate holds:

m
1 Wl()! ;
=Y ()| < —=5m ot —_u Mo |,
)= 3 RO = 50 man max [ Uity

for any my > 0, m > my.

Proof Without loss of generality, we can choose my > n, where # is the order of system
(5). From inequality (10) we have

1— I-m L
1S1=Sll = — 58" [Eu (8]
1-68m ! ‘
— 8m—mg+1 u mo—j , 11
1-5 max max |\~ Uitmoly ()

for [ > m > my. From 0 < § < 1 it follows (1 — 8 < 1. Hence inequality (11) can be re-
duced to

1
1S; = Syll < ——8™""*1 max max
1-6 i=1,..,p j=0,....n

! ,
””70~‘ui(m0)ymof,
(mo —j)!

Here we use the fact that for / — 0o, S; — u(¢), and so the proof is complete. O

Remark 3 Recentresults on error estimates and convergence of Taylor series can be found,

e.g., in [28].

4 Applications and discussion

As the first application, we have chosen the initial value problem, which has been solved in
[29] using the Laplace decomposition method (LDM) and in [30] using the residual power
series method (RPSM).

Example 1 We are looking for a solution of a 3-dimensional system of pantograph equa-

tions

u(t) = 2u2(%> +u3(t) - tcos(%),
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uh(t) = 1 - tsin(t) — 2u’ (%),
us(t) = us(t) — ua (£) — tcos(t),

subject to the initial conditions

u1(0) = -1, 1u>(0) =0, u3(0) = 0.

(12)

(13)

Since system (12) contains proportional delays only, we do not have to use the method of

steps. Applying DT formulas in Lemma 1 to (12), we get a system of recurrence relations

1

(k+1)ULh(k+1) = Z%UZ(k) + Uz (k) — FC(k -1),

k
(k+ 1)Uk +1) = 8(k) - S(k—1) -2 ) 2—1kLI3(l)Ll3(k -,

1=0
(k + 1)Us(k + 1) = Up(k) = Ur (k) — C(k - 1).

(14)

From the initial conditions we have U;(0) = -1, U,(0) = 0, U3(0) = 0. Solving system (14),

we get

(k=0) U(1)=2U5(0) + U3(0) =0,
U(1) = 8(0) - 2(U3(0))* = 1,
U3(1) = Uy(0) = UL (0) = 1,

(k=1) U (2)= %(2%U2(1) + Us(1) - C(0)> = %,

Uy(2) - %(a(n ~2 (UsOUs(1) + u3<1)u3<0))> _o,

U2) = 5 (U1 ~ U (1) - C(0)) =0,

For k > 2, we find

Application of the inverse differential transformation (2) gives a solution to (12), (13) in

1
UI(S) = O; Ul(4') = _I) Ul(5) = O)
U,(3) = ! U,(4) = = !
2( )—_Er 2( )—0’ u2(5)— Ir
Us(3) = L Us(4) = Us(5) = L
3()——5, 3(4) =0, 3()—5,
the form
1, 4 Y i
f=-1+-t2——t =-) (- ,
() =14 56— >
N N kt2k+1
f=t——t3+—t =) (- ,
ua() u kX:O:( T
3 1 5 N ‘ t2k+1
He=t——+—10—.2) (-
) =t=gt+ 5 kX:o:( T

Page 7 of 13
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Table 1 Error analysis of uj on [0, 1]

t Exact solution DT Abs. errors Abs. errors Abs. errors
—cost u DT LDM RPSM

0.2 —-0.9800665 -0.9800666 1.0E-7 8.904E-5 1.0E-7

04 -0.9210609 -0.9210666 5.7E-6 1.511E-3 5.7E-6

0.6 -0.8253335 -0.8254000 6.65E-5 8.051E-3 6.65E-5

08 -0.6967067 -0.6970666 3.599E-4 2.665E-2 3.599E-4

1.0 —-0.5403023 -0.5416666 1.3642E-3 6.766E-2 1.3642E-3

Table 2 Error analysis of uy on [0, 1]

t Exact solution DT Abs. errors Abs. errors Abs. errors
tcost uy DT LDM RPSM

0.2 0.1960133 0.1960133 0.0 5.496E-6 0.0

04 0.3684243 0.3684266 23E-6 1.808E-4 23E-6

0.6 0.4952013 0.4952400 3.87E-5 1.408E-3 3.87E-5

0.8 0.5573653 0.5576533 2.89E-4 6.069E-3 2.89E-4

1.0 0.5403023 0.5416666 1.3643E-3 1.890E-2 1.3643E-3

Table 3 Error analysis of u3 on [0, 1]

t Exact solution DT Abs. errors Abs. errors Abs. errors
sint us DT LDM RPSM

0.2 0.1986693 0.1986693 0.0 6.4558E-5 0.0

04 0.3894183 0.3894186 3.0E-7 9.9595E-4 3.0E-7

06 0.5646424 0.5646480 5.60E-6 48397E-3 5.60E-6

038 0.7173561 0.7173973 4.12E-5 1.4613E-2 4.12E-5

1.0 0.8414709 0.8416666 1.957E-3 3.3917E-2 1.957E-3

When N — oo, the series converge to the Taylor expansions of the closed-form solutions

u1(t) = —cost, us(t) = tcost, u3(t) = sint.

Comparison of absolute errors of the presented DT technique with LDM and RPSM for
N =2 is done in Tables 1, 2 and 3. We see that DT and RPSM produce the same results,
which are close to the values of the closed form solutions, whereas LDM shows significant
deviations. We obtain similar results when comparing computing times, see Tables 4, 5
and 6.

Remark 4 In [29], the authors used LDM and obtained only approximate solutions of the
initial value problem (12), (13). Applying RPSM, the authors were able to find closed-form
solutions in [30]. However, the calculations are too complicated, and the residual functions
(RPSM) and initial guesses (LDM) contain analytical forms of functions sin and cos, which

means that these methods are not convenient for use in a purely numerical software.

As the second application, we have chosen a system with all three types of delays consid-

ered to show reliability and efficiency of the proposed approach in solving difficult tasks.
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Table 4 Comparison of computing time for u

t DT LDM RPSM

0.2 6.3E-5 8.7E-4 6.3E-5
04 6.5E-5 6.7E-4 6.5E-5
0.6 6.5E-5 6.9E-4 6.5E-5
0.8 6.4E-5 7.2E-4 6.4E-5
1.0 6.6E-5 8.8E-4 6.6E-5

Table 5 Comparison of computing time for u;

t DT LDM RPSM
0.2 6.6E-5 6.7E-4 6.6E-5
04 6.4E-5 6.7E-4 6.4E-5
0.6 6.7E-5 6.7E-4 6.7E-5
08 6.5E-5 8.5E-4 6.5E-5
1.0 6.5E-5 8.3E-4 6.5E-5

Table 6 Comparison of computing time for u3

t DT LDM RPSM

0.2 6.6E-5 7.7E-4 6.6E-5
04 6.7E-5 6.6E-4 6.7E-5
0.6 6.6E-5 6.7E-4 6.6E-5
08 6.6E-5 8.3E-4 6.6E-5
1.0 6.7E-5 8.5E-4 6.7E-5

Example 2 Let us solve a nonlinear system of neutral delayed differential equations

t 1
ul" =u'(t - 2)uy <§) +Ju? + u (t— 2 e_t>,

(15)
" 1 " t / t
uy =iy | 5 +uy(t— 1wy 3
with initial functions
¢1(t) = etx
(16)
P(0) =1
for t € [-2,0], and initial conditions
u1(0) =1, ui(0)=1, u{(0)=1,
(17)
u>(0) = 0, uy(0) =0, uy(0) = 2.
Following the method of steps, we get
" (t-2) ¢ 3/ 2 -t
uy =e" m 3 +4+y Uy +2t—¢e,
(18)

" 1 mf b t
Uy ZEMZ E +2(t—1)l¢1 g .

System (18) cannot be solved by the classical DT approach because of the nonlinear term
fu) = \3/u_%, hence we apply modified Adomian formula for differential transformation

Page 9 of 13
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components to the nonlinear term f(u). Applying DT to (18), we get the system

k-1
(k + 1)(k +2)(k + 3)Uy (K + 3) = -Zzll() Uy (k= 1) + Fy (k)

k
+28(k) — (_kl,) , (19)

k-1
(k+1)(k+2)(k+3)(1 21 >U2k+3 2251— (—) U (k1)

2

3 Uy (k), (20)

where F; (k) is the kth component of the transformed function f(u) = \3/17% Applying for-

mula (4) and the transformed initial conditions

Uh(0) =1, (1) =1, Uh(2) =

l\Jl’—‘

U,(0) =0, (1) =0, U(2) =1,

we obtain
Fi(0) = Ju2(0) - 1,
A)=2 j% -2
L L 2

Solving the system of recurrence relations (19)—(20), we get

k=0: U(3)= é(e-2 U1 (0) + F1(0) +1) = 2+6efz,
U,(3) = %( 2U4(0)) = -
k=1: Uy4)= Z—j(éu ) + LIl(O)) +—F1)+1)= 46;2;5,
Uy(4) = 11—8<2u1(o) - %Ul(l)) = 22—7
1

Page 10 0f 13
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Table 7 Comparison of values of solution components obtained by DT and Matlab

t Method

DT Matlab

Uy u U u2
0.00 1.0000 0.0000 1.0000 0.0000
0.05 1.0513 0.0024 1.0513 0.0024
0.10 1.1051 0.0093 1.1050 0.0093
0.15 1.1618 0.0203 1.1614 0.0203
0.20 1.2209 0.0348 1.2204 0.0348
0.25 1.2832 0.0524 1.2822 0.0524
0.30 1.3481 0.0726 1.3469 0.0726
035 14160 0.0951 1.4146 0.0951

Table 8 Comparison of computing time

t Method

DT Matlab

uq Uy uq uz
0.05 79E-5 6.5E-5 6.2E-2 6.2E-2
0.10 6.9E-5 7.0E-5 8.1E-2 6.2E-2
0.15 7.1E-5 6.8E-5 6.2E-2 6.2E-2
0.20 7.0E-5 6.9E-5 6.3E-2 6.2E-2
0.25 7.0E-5 7.0E-5 6.2E-2 6.2E-2
0.30 6.3E-5 6.9E-5 6.3E-2 6.3E-2
0.35 6.9E-5 6.8E-5 6.2E-2 6.3E-2

Applying the inverse differential transformation, we obtain an approximate solution to the
initial value problem (15)—(17):

2+e2 5, 4de?+5, 16e2-5 ;
t°+ t+ A
6 72 1080

1
ur(t)=1+t+ §t2+

uy(t) =t - S N
3 27 189
As we do not know the exact solution of the given problem, we are limited to compar-
ing approximate solutions. Comparison of values obtained by the proposed approach and
values obtained by Matlab package DDENSD in Table 7 shows good correspondence be-
tween the results. Comparing computing times in Table 8, we can see that the presented
method produces reliable results much faster than Matlab package DDENSD.

Remark 5 System (15) contains all three types of delay which were considered in this pa-
per. Moreover, it contains a term which is nonlinear (nonpolynomial) in the dependent
variable ;. In this sense, the present paper contains more complicated systems in appli-
cations than papers about other semi-analytical methods like VIM [6], ADM [7] or HPM
[8].

5 Conclusions

The approach presented in this paper is an effective semi-analytical technique, convenient
for numerical approximation of a unique solution to the initial value problem for systems
of functional differential equations, in particular delayed and neutral differential equa-

tions. Considering systems of equations with three types of delays brings a generalization
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with respect to the problem studied in [20]. The comparison of results was done against
the Laplace decomposition method, residual power series method and Matlab package
DDENSD. The need of computational work is reduced compared to the other methods.
The differential transformation algorithm gives an approximate solution which is in good
concordance with reference results produced by Matlab. Under certain circumstances, it
is possible to identify the unique solution to the initial value problem in closed form. Fur-
ther steps can be done in the development of the presented technique for systems with
distributed and state dependent delays.
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