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Abstract
In this paper, we consider a special, but important class of one-dimensional coupled
map lattices, namely, in which the local dynamics including logistic map as a
prototype possesses a snap-back repeller. For smaller coupling strengths, the
existence of Li–Yorke scrambled set is proved.
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1 Introduction
In spatially extended systems, spatiotemporal chaos, as a complex dynamical phe-
nomenon, appears in a broad area of natural phenomena [1–10]. As a simple model for
spatiotemporal chaos, one-dimensional map lattices (OML) have been proposed. These
models contain coupled map lattices (CML), globally coupled map (GML) and open flow
systems, etc. In this paper, we focus on the temporal chaos of a general form of OML:

Xn+1 = H(μ, e, Xn), (1.1)

where

H(μ, e, X) = F(μ, X) + eG(μ, X), F(μ, X)=
(
f
(
μ, x(1)

)
, . . . , f

(
μ, x(L)

))

and X = (x(1), . . . , x(L)) ∈ RL, L ≥ 2, n ∈ Z+ is the discrete time and i (1 ≤ i ≤ L, L =
systemsize) discrete space. The parameter e and G(μ, X) : R × RL → RL, a Cr-map with
r ≥ 1, represent the strength of the coupling and the spatial interactions, respectively.
Function f : R × R → R is some Cr-map, with r ≥ 1, satisfying

(H) For each parameter μ ∈ [μ∗,μ∗] (0 ≺ μ∗ ≺ μ∗), there exist r(μ) � 0, x(μ), x(μ) and
integer m(μ) ≥ 2 such that

(i) f (μ, x(μ)) = x(μ), | ∂f
∂x (μ, x)| � 1 with |x – x(μ)| ≤ r(μ);

(ii) 0 ≺ |x(μ) – x(μ)| ≺ r(μ), f m(μ)(μ, x(μ)) = x(μ) and ∂f m(μ)

∂x (μ, x(μ)) 	= 0.
By [11], (H) is satisfied for f (μ, x) = μx(1 – x), as a prototype for (1.1). The result below

for f : [μ∗,μ∗] × Ω → R, where Ω is an interval in R, is valid and it is only for notational
purposes that the domain of definition of f is taken to be R×R. We note that (1.1) contains
the following models:
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(I) If gi(μ, X) = 1
2 [f (μ, x(i – 1)) – 2f (μ, x(i)) + f (μ, x(i + 1))], 1 ≤ i ≤ L, then (1.1)

becomes the most popular and well-studied model of CMLs:

xn+1(i) = f
(
μ, xn(i)

)
+

1
2
[
f
(
μ, xn(i – 1)

)
– 2f

(
μ, xn(i)

)
+ f

(
μ, xn(i + 1)

)]
,

which was originally introduced to model turbulent behavior as a synthesis of
Landau’s picture on turbulence [3] and Rössler’s Hyperchaos [4].

(II) If gi(μ, X) = 1
L
∑L

j=1 f (μ, x(j)) – f (μ, x(i)), 1 ≤ i ≤ L, then (1.1) becomes a simple
example of GLM, as a mean-field theory type extension of CML [5]:

xn+1(1 – e) = (1 – e)f
(
μ, xn(i)

)
+

e
L

L∑

j=1

f
(
μ, xn(j)

)
.

(III) If gi(μ, X) = f (μ, x(i – 1)) – f (μ, x(i)), 1 ≤ i ≤ L, then (1.1) becomes an open flow
system (see also [6] for some other open flow models).

The importance of the models mentioned above is not restricted to dynamical systems.
They are relevant to biological information processing [7], ecological models, evolution-
ary models [8], economics (e.g., stock market) and neural network [8]. The spatiotemporal
chaos of these models has been studied extensively. Of particular interest is the existence
of universality classes, like pattern selection, frozen random patterns, spatiotemporal in-
termittency and traveling waves. However, so far the results on temporal chaos are only
numerical and by far incomplete (see [12]). The problem on the existence of Li–Yorke
scrambled set (see ([11, 13]) of (1.1) is completely open from the point of analytic studies.
The purpose of the present paper is to prove the following result:

Theorem 1.1 If (H) is satisfied, then there exists an e∗ � 0 such that for any (μ, e) ∈
[μ∗,μ∗] × [–e∗, e∗], problem (1.1) is chaotic. That is, there exist:

(i) A positive integer N(μ, e) such that for each integer p ≥ N(μ, e), H(μ, e, ·) has a
point of period p;

(ii) A scrambled set of H , i.e., an uncountable set S(μ, e) containing no periodic points of
H(μ, e, ·) such that
(a) H(μ, e, ·)[S(μ, e)] ⊂ [S(μ, e)],
(b) For every X, Y ∈ S(μ, e) with X 	= Y , lim supk→∞‖Hk(μ, e, X) – Hk(μ, e, Y )‖ � 0,
(c) For every X ∈ S(μ, e) and any periodic point Y of H(μ, e, ·), we have

lim sup
k→∞

∥
∥Hk(μ, e, X) – Hk(μ, e, Y )

∥
∥ � 0;

(iii) An uncountable subset S0(μ, e) of S(μ, e) such that for every X, Y ∈ S0(μ, e), we have

lim inf
k→∞

∥
∥Hk(μ, e, X) – Hk(μ, e, Y )

∥
∥ = 0,

where ‖X‖ denotes the sup-norm of X in RL : ‖X‖ = max1≤j≤L|x(j)|.

Our approach to the existence problem here is based on the well-known result of [11],
Rouché Theorem and Implicit Function Theorem, etc. After introducing some basic defi-
nitions and theorems in Sect. 2, we will prove Theorem 1.1 in Sect. 3. Finally, some exam-
ples will be introduced to elucidate our result.
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2 Some definitions and theorems
Let Br(X) denote the closed ball in RL of radius r centered at the point X and let B0

r (X) be
its interior. The following definition and theorems can be found in [11].

Definition 2.1 Let Φ : RL → RL be differentiable on Br(Z). The point Z ∈ RL is an expand-
ing fixed point of Φ in Br(Z), if Φ(Z) = Z and all eigenvalues of DΦ(Z) exceed 1 in norm
for all X ∈ Br(Z); Z is said to be a snap-back repeller of Φ if it is an expanding fixed point of
Φ in Br(Z) and there exists a point Z0 ∈ B0

r (Z) with Z0 	= Z, ΦM(Z0) = Z, det DΦM(Z0) 	= 0
for some positive integer.

Theorem 2.1 ([11, Theorem 3.1]) If Φ possesses a snap-back repeller, then system Xk+1 =
Φ(Xk) is chaotic by means of Theorem 1.1.

The following Rouché Theorem on the continuity of the eigenvalues of a Jacobian matrix
of parameters will be needed throughout the paper. For a proof, we refer to ([6], p. 248).

Theorem 2.2 (Rouché Theorem) Let A be an open set in C, the set of complex numbers, E
a metric space, ϕ a continuous complex valued function in A × E, such that, for each α ∈ E,
z → φ(z,α) is analytic in A. Let B be an open set of A, whose closure B in C is compact and
contained in A, and let α0 ∈ E be such that no zero of φ(z,α0) is on the boundary of B. Then
there exists a neighborhood W of α0 in E such that:

(i) For any α ∈ W , φ(z,α) has no zeros on the boundary of B;
(ii) For any α ∈ W , the sum of the orders of the zeros of φ(z,α) belonging to B is

independent of α.

The following Implicit Function Theorem is from [10, p. 3, Theorem 0.3].

Theorem 2.3 (Implicit Function Theorem) Let U ⊂ Rm × Rn be an open set and ψ :
U → Rn a Cr map, for r ≥ 1. Let u0 = (x0, y0) ∈ U and c = ψ(u0). Suppose that the par-
tial derivative with respect to the second variable, D2ψ(u0): Rn → Rn, is an isomorphism.
Then there exist open sets V ⊂ Rm containing x0 and W ⊂ U containing u0 such that, for
each x ∈ V , there exists a unique ξ (x) ∈ Rn with (x, ξ (x)) ∈ W and its derivative is given by
dξ (x) = [D2ψ(x, ξ (x))]–1 ◦ D1ψ(x, ξ (x)).

3 Proof of Theorem 1.1
Lemma 3.1 If (H) is satisfied, then for any fixed μ0 ∈ [μ∗,μ∗], there exist δ′(μ0) � 0 and
continuous r0(μ, e), X0(μ, e) with r0(μ0, 0) = r(μ0), X0(μ0, 0) = (x(μ0), . . . , x(μ0)) ∈ RL de-
fined on [Bδ′(μ0)(μ0) × Bδ′(μ0)(0)] ∩ [[μ∗,μ∗] × R] such that H(μ, e, X0(μ, e)) = X0(μ, e) and
all eigenvalues of D2H(μ, e, X) exceed 1 in norm for all X ∈ Br0(μ,e)(X0(μ, e)).

Proof Let x0 = x(μ0), X0 = (x0, . . . , x0) ∈ RL, r0 = r(μ0). For any x ∈ Br0 (x0), (H) gives us
| ∂f
∂x | � 1. Now, for any fixed X = (x(1), . . . , x(L)) ∈ Br0 (X0), we have

D2H(μ0, 0, X) = D2F(μ0, X)
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=

∣∣
∣∣
∣∣
∣∣∣
∣

∂f
∂x (μ0, x(1)) 0 . . . 0

0 ∂f
∂x (μ0, x(2)) . . . 0

...
...

. . .
...

0 0 . . . ∂f
∂x (μ0, x(L))

∣∣
∣∣
∣∣
∣∣∣
∣

,

thus all eigenvalues of D2H(μ0, 0, X) exceed 1 in norm.
Let c1 = 1

2 [1 + min1≤j≤L| ∂f
∂x (μ0, x(j))|], c2 = 1

2 [1 + max1≤j≤L| ∂f
∂x (μ0, x(j))|], then 1 ≺ c1 ≺ c2.

Let E = R × R × RL, α = (μ0, 0, X), A = C, B = {λ ∈ C : c1 ≺ |λ| ≺ c2}. Define continuous
complex-valued function on E × C by

φ(μ, e, Y ,λ) = det
[
λIL – D2H(μ, e, Y )

]
.

With (μ, e, Y ,λ) ∈ [μ∗,μ∗] × Br0 (X) × C, where IL : RL → RL is defined by IL(Y ) = Y , it is
clear that no zero of φ(μ0, 0, X,λ) belonging to B. By Theorem 2.3 (Rouché Theorem),
there exist rX � 0, δX � 0 so that for any Y ∈ BrX(X) ∩ Br0 (X), μ ∈ BδX(μ0) ∩ [μ∗,μ∗]
and |e| ≤ δX , all eigenvalues of D2H(μ, e, Y ) belong B, i.e., exceed 1 in norm. But Br0 ⊂
UX∈Br0 (X0)BrX(X), there exist X1, . . . , Xq ∈ Br0 (X), r1, . . . , rq and δ1, . . . , δq such that

Br0 (X0) ⊃
q⋃

j=1

Brj(XJ )

and for Y ∈ Brj(Xj) ∩ Br0 (X0), μ ∈ Bδj(μ0) ∩ [μ∗,μ∗] and |e| ≤ δj, all eigenvalues of
D2H(μ, e, Y ) exceed 1 in norm. Letting δ1 = min1≤j≤qδj, for any X ∈ Br0 (X0), μ ∈ Bδ1 (μ0)
and |e| ≤ δ1, all eigenvalues of D2H(μ, e, X) exceed 1 in norm.

On the other hand, from the fact that f (μ0, x0) = x0 we have that H(μ0, 0, X0) = X0. Let-
ting ψ(μ, e, X) = H(μ, e, H) – X, we obtain ψ(μ0, 0, X) = 0 and

det D2ψ(μ0, 0, X0) = det
[
D2F(μ0, X0) – IL

]
=

[
∂f
∂x

(μ0, x0) – 1
]L

	= 0.

By Theorem 2.3 (Implicit Function Theorem), there exists 0 ≺ δ2 ≤ δ1 and continuous
X0(μ0, e) defined on Bδ2 (μ0) × Bδ2 (0) such that X0(μ0, 0) = X0, H(μ, e, X0(μ, e)) = X0(μ, e).
Choose 0 ≺ δ′(μ0) ≤ δ2 so that X0(μ, e) ∈ B0

r0 (X0), μ ∈ Bδ′(μ0)(μ0), e ∈ Bδ′(μ0)(0). Therefore,
we can choose r(μ, e) = inf{‖X0(μ, e) – Y‖ : ‖Y – X0‖ = r0}, then r(μ0, e) � 0 is continu-
ous with respect to (μ, e) ∈ Bδ′(μ)(μ0) × Bδ′(μ0)(0) and r(μ0, 0) = r0. It is easy to see that
Br(μ,e)(X0(μ, e)) ⊂ Br0 (X0). Thus for any (μ, e) ∈ Bδ′(μ0) × Bδ′(μ0)(0) and Y ∈ Br(μ,e)(X0(μ, e)),
all eigenvalues of D2H(μ, e, Y ) exceed l in norm. The proof of Lemma 3.1 is complete. �

Lemma 3.2 If (H) is satisfied, for μ0 mentioned above, there exist δ(μ0) and continuous
functions X0(μ, e), r0(μ, e) and X0(μ, e) with (μ, e) ∈ Bδ(μ0)(μ0) × Bδ(μ0)(0) such that

(i) r0(μ0, e) = r0, X0(μ0, 0) = X0, X0(μ0, 0) = (x0(μ0), . . . , x(μ0));
(ii) H(μ, e, X0(μ, e)) = X0(μ, e), all eigenvalues of D2H(μ, e, X) exceed l in norm for all

X ∈ Br0(μ,e)(X0(μ, e));
(iii) X0(μ, e) ∈ Br0(μ,e)(X0(μ, e)), X0(μ, e) 	= X0(μ, e), Hm(μ, e, X0(μ, e)) = X0(μ, e),

det[D2Hm(μ, e, X0(μ, e))] 	= 0,
where m = m(μ0), i.e., X0(μ, e) is a snap-back repeller of H(μ, e, ·).
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Proof Let J(μ, e, X) = Hm(μ, e, X) – X0(μ, e), where m = m(μ0), (μ, e) ∈ Bδ′(μ0)(μ0) ×
Bδ′(μ0)(0) and X0(μ, e) is defined as in Lemma 3.1. From this we get J(μ0, 0, X0) = Fm(μ0,
X0) – X0 = 0 and

det
[
D2J(μ0, 0, X0)

]
= det

[
D2Fm(μ0, X0)

]
=

[
∂f
∂x

(
μ0, x(μ0)

)]L

.

By (H), det[D2J(μ0, 0, X0)] 	= 0. Now Theorem 2.3 (Implicit Function Theorem) yields
the existence of 0 < δ3 ≤ δ′(μ0) and continuous function X0(μ, e) on Bδ3 (μ0) × Bδ3 (0) such
that X0(μ0, 0) = X0, J(μ, e, X0(μ, e)) = 0, i.e., Hm(μ, e, X0(μ, e)) = X0(μ, e). It is clear that
X0(μ0, 0) = X0 ∈ B0

r0 (X0). Let d0 = ‖X0 – X0‖, then d0 ≺ r0. We can chose 0 ≺ δ4 ≤ δ3 so
that ‖X0 – X0(μ, e)‖ ≺ 1

3 (r0 – d0), ‖X0 – X0(μ, e)‖ ≺ 1
3 (r0 – d0), |r(μ, e) – r0| ≺ 1

3 (r0 – d0),
with (μ, e) ∈ Bδ4 (μ0) × Bδ4 (0). It follows from this that

∥∥X0(μ, e) – X0(μ, e)
∥∥ ≤ ∥∥X0(μ, e) – X0

∥∥ + ‖X0 – X0‖ +
∥∥X0 – X0(μ, e)

∥∥

≤ 1
3

(r0 – d0) + d0 +
1
3

(r0 – d0) = r0 –
1
3

(r0 – d0) ≺ r(μ, e),

i.e., X0(μ, e) ∈ Br0(μ,e)(X0(μ, e)). Since det[D2Hm(μ0, 0, X0)] = [ ∂f m

∂x (μ0, x(μ0))]L 	= 0, we can
chose 0 ≺ δ5 ≤ δ4 such that det[D2Hm(μ, e, X0(μ, e))] 	= 0 with (μ, e) ∈ Bδ5 (μ0) × Bδ5 (0).

The fact that X0(μ, e) 	= X0 gives us the existence of 0 ≺ δ(μ0) ≤ δ5 such that X0(μ, e) 	=
X0(μ, e) with (μ, e) ∈ Bδ(μ0)(μ0) × Bδ(μ0)(0). The proof of Lemma 3.2 is complete. �

Proof Lemma 3.2 yields that for any μ0 ∈ [μ∗,μ∗] there exists δ(μ0) � 0 such that X0(μ, e)
is a snap-back repeller of H(μ, e, ·) with (μ, e) ∈ Bδ(μ0) × Bδ(μ0)(0). Now, we note that
[μ∗,μ∗] ⊂ ⋃

μ∈[μ∗ ,μ∗] Bδ(μ)(μ).
Thus there exist μ1, . . . ,μq ∈ [μ∗,μ∗] and δ∗

1 , . . . , δ∗
q such that

[
μ∗,μ∗] ⊂

q⋃

j=1

Bδ∗j(μj)

and, for each 1 ≤ j ≤ q, there exist continuous rj(μ, e) � 0, Xj(μ, e) and Xj(μ, e) such that
(i) rj(μj, 0) = r(μj), Xj(μj, 0) = X(μj) = (x(μj), . . . , x(μj)),

Xj(μj, 0) = X(μj) = (x(μj), . . . , x(μj));
(ii) H(μ, e, Xj(μ, e)) = Xj(μ, e) and all eigenvalues of D2H(μ, e, X) exceed l in norm for

all X ∈ Brj(μ,e)(Xj(μ, e)) with (μ, e) ∈ Bδ∗j(μj) × Bδ∗j(0);
(iii) Xj(μ, e) ∈ Brj(μ,e)(Xj(μ, e)), Xj(μ, e) 	= Xj(μ, e) and Hmj (μ, e, Xj(μ, e)) = Xj(μ, e),

mj = m(μj), det[D2Hmj(μ, e, Xj(μ, e))] 	= 0, for (μ, e) ∈ Bδ∗j(μj) × Bδ∗j(0).
Letting e∗ = min1≤j≤qδ

∗
j , for each (μ, e) ∈ [μ∗,μ∗] × [–e∗, e∗], there exists some 1 ≤ j ≤ q

such that (μ, e) ∈ Bδ∗j(μj) × Bδ∗j(0), thus Xj(μ, e) is a snap-back repeller of H(μ, e, ·). The-
orem 2.2 yields that (1.1) is chaotic. The proof of Theorem 1.1 is complete. �

We conclude the paper with two examples.

Example 3.1 In system (1.1), we let f (x) = μx(1 – x). By [11, Example 4.1], we can find a
snap-back repeller of f for μ � 3.5. Choose 3.5 ≺ μ∗ ≺ μ∗ ≺ 4, then Theorem 1.1 tells us



Wei and Zhou Advances in Difference Equations        (2019) 2019:172 Page 6 of 6

that there exists e∗ � 0 such that for any (μ, e) ∈ [μ∗,μ∗] × [–e∗, e∗], with f (x) = μx(1 – x)
is chaotic by means of Theorem 1.1.

Example 3.2 In system (1.1), let f (x) = μx exp(–x). By [11, Example 4.2], f possesses a
snap-back repeller for ν � 16.999. Thus for any 16.999 ≺ μ∗ ≺ μ∗, Theorem 1.1 yields the
existence of e∗ � 0 such that (1.1) with (μ, e) ∈ [μ∗,μ∗] × [–e∗, e∗] is chaotic by means of
Theorem 1.1.
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