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Abstract
Pesticides often cause residual and delayed effects on pests. Considering these
effects, we use a pollution emission model to simulate the process of spraying
pesticides. Many pests reproduce only at a fixed time in a year. So a pest control
model with birth pulse and spraying pesticides is proposed. Using the limit system of
the developed model, we analyze the dynamics of the system. The stability of the
trivial equilibrium and the positive equilibrium of the model is analyzed, and the
threshold conditions of pest eradication and permanence of the system are given. We
obtain the optimal frequency of spraying pesticides by numerical simulations. The
important parameters related to the pest eradication or permanence of the system
are given by analyzing the sensitivity of the parameters. Finally, biological
explanations are provided.

Keywords: Pesticide function; Birth pulse; Locally asymptotic stability; Threshold
conditions; Sensitivity analysis

1 Introduction
Recently, the economic development of China has been advancing rapidly. Methods to in-
crease crop yield are highly desired and are critical to the economic growth of the nation.
Every year, crops such as corn and fruit trees are severely damaged by pests, resulting
in tremendous financial losses to the farmers. How to control pests quickly and effec-
tively without a negative impact on the environment and the growth of crops is becoming
even more important. Now the common pest control strategies include chemical control
(spraying pesticides) and biological control (releasing natural enemies). Many scholars
[1–10] used mathematical models to simulate pest control strategies. Some of them [1–4]
analyzed the dynamics of the pest control models based on biological control. Whereas
some studies [5–10] built pest management models only based on chemical controls. Liu
and Teng [5] studied a pest management model with spraying pesticides at a fixed time
of the pest reproductive cycles. They assumed that pesticides only affected adult pests.
The optimal time of pest control was obtained if the pesticides were applied just before
each birth pulse of the cycle. Wei [9] analyzed the dynamics of the pest control mod-
els with birth pulse under the assumptions that pesticides killed adult pests or larvaes
or both of them, respectively. By mathematical simulations, it was found that with the
different elimination rates for larvaes and adults, the corresponding optimal time for pes-
ticide applications was also different. To more efficiently control pests, some authors es-
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tablished mathematical models with integrated pest management to control pests, which
combined the spraying of pesticides with the release of natural enemies at the fixed time
[11–17]. However, the release of natural enemies is difficult to manage, so chemical con-
trol remains the most common and convenient pest management method. It is noted that
the long-term repetitive use of the same pesticide could result in resistance to pests [18,
19], causing relapse of pest and severe crop losses. Therefore, when applying chemical
control to manage pest, critical factors influencing pest management must be well un-
derstood, and we should use as little pesticides as possible. In nature, pests generally go
through two stages: larval pests and adult pests. Assuming adults only lay eggs at a fixed
time in a year, then the increase in the number of larvaes occurs instantly. Based on the
above biological background, in this paper, we study a pest management model with stage
structure and birth pulse, and only chemical control is applied. In our study, an impul-
sive differential equation [20–22] is used to better describe the birth pulse of pests [6, 9,
23]. In the past, scholars often assumed that the effects of pesticides on pests were in-
stantaneous and the pests were killed proportionally. In fact, the effects of pesticides will
gradually weaken with time and will last for a long period of time [24, 25]. When pes-
ticides are applied, they first affect the growth environment, then are absorbed by the
pests, which cause their death. This mechanism is similar to that of pollution emission
[26]. Therefore, we adopt the pollution emission model to simulate the spraying process
of pesticides and construct the pesticide function with residual and delayed effects of pes-
ticide. The pest management model built in this paper is more consistent with the re-
ality. To the best of our knowledge, there have been no results on dynamics for such a
system.

This paper is organized as follows. In Sect. 2, we assume that pesticides are applied q
times periodically at the fixed time during a birth cycle. The pollution emission model
is used to obtain the pesticide function. Then a pest control model with stage structure
and birth pulse is set up. In Sect. 3, the dynamics is analyzed by using the limit system
of the model. By numerical simulations, the optimal frequency of spraying pesticides is
discussed. The important parameters related to the pest eradication or permanence of
the system are also given. In the last section, a discussion of our results is given.

2 Model formulation
Without a staged structure in the growth cycle, we assume that the population size satisfies
the following birth function equation:

Ṅ = B(N)N – dN , (2.1)

where d > 0 indicates the population mortality rate, B(N) is the birth function of the pop-
ulation and B(N) (N ∈ (0,∞)) satisfies the following assumptions:

(H1): B(N) > 0;
(H2): B(N) is a continuously differentiable function and B′(N) < 0;
(H3): B(0+) > d > B(∞).
Based on assumptions (H2) and (H3), we know there exists an inverse function B–(N) of

B(N) for N ∈ (0,∞). There are various types of B(N) that satisfy assumptions (H1)–(H3).
Here, we only discuss the following two types: (A1) B1(N) = be–N , where b is the population
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birth rate, b > d, called the Ricker function. (A2) B2(N) = p
β+Nn ,where p,β , n > 0 and p

β
> d,

called the Beverton–Holt function. Considering the stage structure of the pest population,
we divide the pest population N(t) into the larval stage x(t) and the adult stage y(t). So
N(t) = x(t) + y(t), and only the adult population can reproduce. Thus, the pest population
model with stage structure is as follows:

⎧
⎨

⎩

˙x(t) = B(N(t))y(t) – dx(t) – δx(t),
˙y(t) = δx(t) – dy(t),

(2.2)

where δ (δ > 0) is the maturity rate, which determines the mean length of the juvenile
period.

Obviously, system (2.2) has a trivial equilibrium E0(0, 0). If

B–
(

d(d + δ)
δ

)

> 0, (2.3)

there exists a unique positive equilibrium E∗(x∗, y∗) in system (2.2), where

E∗(x∗, y∗) =
(

d
δ + d

B–
(

d(δ + d)
δ

)

,
δ

δ + d
B–

(
d(δ + d)

δ

))

.

Lemma 2.1 ([23]) Assume (H1) and (H2) hold. If inequality (2.3) is reversed, then the triv-
ial equilibrium E0(0, 0) is locally asymptotically stable. If inequality (2.2) holds, then the
trivial equilibrium E0(0, 0) is unstable, and the positive equilibrium E∗(x∗, y∗) is locally
asymptotically stable.

If B(∞) < d, then it is easy to see that system (2.2) is dissipative, that is, there exists a
positive constant M > 0 such that the set Ω = {(x, y)|0 ≤ x ≤ M, 0 ≤ y ≤ M} is a positive
invariant set of system (2.2). Then, the global stability of the system on the equilibria is as
follows.

Lemma 2.2 ([23]) Assume (H1), (H2) and B(∞) < d hold. If inequality (2.3) is reversed,
then the set Ω is the asymptotically stable region of the trivial equilibrium E0(0, 0). If in-
equality (2.3) holds, then the set Ω is the asymptotically stable region of the positive equi-
librium E∗(x∗, y∗).

Assuming the adult population reproduce at the fixed time in a year, the model consid-
ering stage structure and birth pulse constructed by Tang [23] is as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = –dx(t) – δx(t),

ẏ = δx(t) – dy(t),

⎫
⎬

⎭
t �= m,

x(m+) = x(m–) + B(N(m–))y(m–), t = m, m ∈ N .

(2.4)
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Based on the above birth pulse model and the assumption that the pesticide is applied
at fixed time in a birth cycle, Liu [6] built the following pest management model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = –dx(t) – δx(t),

ẏ = δx(t) – dy(t),

⎫
⎬

⎭
t �= m, t �= m + l – 1,

�x(t) = 0,

�y(t) = –ky(t),

⎫
⎬

⎭
t = m + l – 1,

x(m+) = x(m–) + B(N(m–))y(m–), t = m, m ∈ N ,

y(m+) = 0,

(2.5)

where k is the mortality rate of adult pest caused by the pesticide and m + l – 1 (0 < l < T ,
m ∈ N ) is the time for pesticide application during each birth cycle.

For the above pest management model, the pest mortality rate caused by the pesticide
was assumed to be instant and proportional. In fact, the effects of pesticides on pests grad-
ually weaken with time and could last for a long time. In this study, we adopt the pollution
emission model to simulate the function of pesticide effects. The following pest manage-
ment model with stage structure and birth pulse is constructed:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = –dx(t) – δx(t) – c(t)x(t),

ẏ = δx(t) – dy(t) – c(t)y(t),

⎫
⎬

⎭
t �= m,

x(t+) = x(t–) + B(N(t–))y(t–), t = m, m ∈ N ,

(2.6)

where c(t) is the pesticide function which satisfies

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dc(t)
dt = rf (t) – gc(t),

df (t)
dt = –hf (t),

⎫
⎬

⎭
t �= m + nT ,

f (t+) = f (t) + μ, t = m + nT ,

(2.7)

where c(t) is the pesticide concentration in the pests at time t; f (t) is the pesticide con-
centration in the environment at time t; rf (t) (r > 0) represents the pest’s net uptake of
pesticide from the environment; gc(t) is the egestion and depuration rates of pesticide in
the pest population; hf (t) represents the pesticide loss from the environment itself due
to photosynthesis, evaporation, bacterial degradation and so on; μ (μ > 0) is the dose of
pesticide applied each time. For convenience, assume that there are q times of spraying
pesticides at regular intervals during each birth cycle (m, m + 1], and let the time interval
of pesticide application be T . Then T = 1

q .

3 Dynamics of system (2.6)
3.1 Model solving and the equilibrium of stroboscopic maps
As shown by Ref. [26], there existed a globally asymptotically stable periodic solution in
the pollution emission model (2.7) as follows.

Lemma 3.1 ([26]) System (2.7) has a unique globally asymptotically stable T-period so-
lution (c̃(t), f̃ (t)) and for every solution (c(t), f (t)) of system (2.7), we have c(t) → c̃(t) and
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Figure 1 The curves of change of pesticide concentration in the pest and in the environment after each
application of pesticide. (a) Pesticide concentration in the environment. (b) Pesticide concentration in the pest

f (t) → f̃ (t) as t → ∞, where t ∈ (m + nT , m + (n + 1)T), n = 0, 1, . . . , q – 1, m ∈ N ,

c̃(t) = c̃
(
m + nT+)

e–g(t–(m+nT)) +
rμ(e–g(t–(m+nT)) – e–h(t–(m+nT)))

(h – g)(1 – e–hT )
,

f̃ (t) = f̃
(
m + nT+)

e–h(t–(m+nT)),

and

c̃
(
m + nT+)

=
rμ(e–gT – e–hT )

(h – g)(1 – e–gT )(1 – e–hT )
, f̃

(
m + nT+)

=
μ

1 – e–hT .

Figure 1 illustrates the curves of change of pesticide concentration in the pest and in the
environment after each application, respectively. As seen in Fig. 1(a), after each applica-
tion, the pesticide concentration in the environment f (t) reaches its maximum and then
gradually decreases. However, the pesticide concentration in the pest c(t) first increases
and then decreases as illustrated in Fig. 1(b). These curves suggest that the effects of pes-
ticide on pests do not immediately work but delay to a certain extent and can last for a
time. Thus, pesticides have residual and delayed effects on pest.

As seen from Lemma 3.1, the arbitrary solution (c(t), f (t)) of system (2.7) eventually
tends to a globally asymptotically stable periodic solution (c̃(t), f̃ (t)). Therefore, the dy-
namics of system (2.6) is equivalent to the ones of the following limit system of system
(2.6):

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ẋ = –dx(t) – δx(t) – c̃(t)x(t),

ẏ = δx(t) – dy(t) – c̃(t)y(t),

⎫
⎬

⎭
t �= m,

x(t+) = x(t–) + B(N(t–))y(t–), t = m, m ∈ N .

(3.1)
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Denote c̃(m+) = cm, x(m+) = xm, y(m+) = ym. When m < t ≤ m + T , we integrate and solve
for the larval pests population in system (3.1),

x(t) = xm exp

[

–(d + δ)(t – m) –
1
g
(
1 – e–g(t–m))cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–g(t–m)) –

1
h
(
1 – e–h(t–m))

)]

,

x(t) + y(t) = (xm + ym) exp

[

–d(t – m) –
1
g
(
1 – e–g(t–m))cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–g(t–m)) –

1
h
(
1 – e–h(t–m))

)]

.

Therefore,

y(t) = xm
(
1 – e–δ(t–m)) exp

[

–d(t – m) –
1
g
(
1 – e–g(t–m))cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–g(t–m)) –

1
h
(
1 – e–h(t–m))

)]

+ ym exp

[

–d(t – m) –
1
g
(
1 – e–g(t–m))cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–g(t–m)) –

1
h
(
1 – e–h(t–m))

)]

.

When t = m + T , we have

x(m + T) = xm exp

[

–(d + δ)T –
1
g
(
1 – e–gT)

cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–gT)

–
1
h
(
1 – e–hT)

)]

,

y(m + T) = xm
(
1 – e–δT)

exp

[

–dT –
1
g
(
1 – e–gT)

cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–gT)

–
1
h
(
1 – e–hT)

)]

+ ym exp

[

–dT –
1
g
(
1 – e–gT)

cm

–
rμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–gT)

–
1
h
(
1 – e–hT)

)]

,

...

When t = m + qT , we have

x(m + qT) = xm exp

[

–q(d + δ)T –
q
g
(
1 – e–gT)

cm

–
qrμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–gT)

–
1
h
(
1 – e–hT)

)]

,
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y(m + qT) = xm
(
1 – e–qδT)

exp

[

–q dT –
q
g
(
1 – e–gT)

cm

–
qrμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–gT)

–
1
h
(
1 – e–hT)

)]

+ ym exp

[

–q dT –
q
g
(
1 – e–gT)

cm

–
qrμ

(h – g)(1 – e–hT )

(
1
g
(
1 – e–gT)

–
1
h
(
1 – e–hT)

)]

.

Denote H = rμ
(h–g)(1–e–hT ) ( 1

g (1 – e–gT ) – 1
h (1 – e–hT )), we get

⎧
⎪⎪⎨

⎪⎪⎩

x(m + qT) = x((m + 1)–) = xm exp[–q(d + δ)T – q
g (1 – e–gT )cm – qH],

y(m + qT) = y((m + 1)–) = xm(1 – eqδT ) exp[–q dT – q
g (1 – e–gT )cm – qH]

+ ym exp[–q dT – q
g (1 – e–gT )cm – qH].

(3.2)

Thus,

x
(
(m – 1)–)

+ y
(
(m – 1)–)

= (xm + ym) exp

[

–q dT –
q
g
(
1 – e–gT)

cm – qH
]

.

When t = m+1, the birth pulse occurs, and the number of larval pests increases instantly.
If the birth function B(N) = be–N , then the stroboscopic map is as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xm+1 = xm exp[–q(d + δ)T – q
g (1 – e–gT )cm – qH] + b[ym + xm(1 – e–qδT )]

· exp[–q dT – q
g (1 – e–gT )cm – qH – (xm + ym)e–q dT– q

g (1–e–gT )cm–qH ],

ym+1 = xm(1 – e–qδT ) exp[–q dT – q
g (1 – e–gT )cm – qH]

+ ym exp[–qδT – q
g (1 – e–gT )cm – qH].

(3.3)

If the birth function B(N) = p
β+Nn , we have

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

xm+1 = xm exp[–q(d + δ)T – q
g (1 – e–gT )cm – qH]

+ pe–q dT– q
g (1–e–gT )cm–qH [ym+xm(1–e–qδT )]

β+e–qn dT– qn
g (1–e–gT )cm–qnH (ym+xm)n

,

ym+1 = xm(1 – e–qδT ) exp[–q dT – q
g (1 – e–gT )cm – qH]

+ ym exp[–qdT – q
g (1 – e–gT )cm – qH].

(3.4)

Obviously, systems (3.3) and (3.4) have trivial equilibria Eb
0(0, 0) and Ep

0(0, 0).
Let

Rb
0 �

b(1 – e–q dT )e–q dT– q
g (1–e–gT )cm–qH

(1 – e–q(d+δ)T– q
g (1–e–gT )cm–qH )(1 – e–q dT– q

g (1–e–gT )cm–qH )
,

Rp
0 �

p(1 – e–q dT )e–q dT– q
g (1–e–gT )cm–qH

β(1 – e–q(d+δ)T– q
g (1–e–gT )cm–qH )(1 – e–q dT– q

g (1–e–gT )cm–qH )
.
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Table 1 The positive equilibrium and the threshold of model (3.2) and (3.3)

Birth function Equilibrium R0

Ricker x∗ = (1–e
–qdT– qg (1–e

–gT )cm–qH
) lnRb0

(1–e
–q(d+δ)T– qg (1–e

–gT )cm–qH
)e
–qdT– qg (1–e

–gT )cm–qH
Rb0 � b(1–e–qdT )e

–qdT– qg (1–e
–gT )cm–qH

1–e
–q(d+δ)T– qg (1–e

–gT )cm–qH

· 1

1–e
–qdT– qg (1–e

–gT )cm–qHy∗ = 1–e–qδT

1–e
–q(d+δ)T– qg (1–e

–gT )cm–qH
lnRb0

Beverton–Holt x∗ =
(1–e

–qdT– qg (1–e
–gT )cm–qH

) n
√

β(R
p
0–1)

(1–e
–q(d+δ)T– qg (1–e

–gT )cm–qH
)e
–qdT– qg (1–e

–gT )cm–qH
Rp0 �

p(1–e–qdT )e
–qdT– qg (1–e

–gT )cm–qH

β(1–e
–q(d+δ)T– qg (1–e

–gT )cm–qH
)

· 1

1–e
–qdT– qg (1–e

–gT )cm–qHy∗ = 1–e–qδT

1–e
–q(d+δ)T– qg (1–e

–gT )cm–qH
n
√

β(Rp0 – 1)

If Rb
0 > 1 (Rp

0 > 1), system (3.3) ((3.4)) has a positive equilibrium E∗
b(x∗, y∗) (E∗

p(x∗, y∗))
which satisfies the following equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x∗ = x∗ exp[–q(d + δ)T – q
g (1 – e–gT )cm – qH] + b[y∗ + x∗(1 – e–qδT )]

· exp[–q dT – q
g (1 – e–gT )cm – qH – (x∗ + y∗)e–q dT– q

g (1–e–gT )cm–qH],

y∗ = x∗(1 – e–qδT ) exp[–q dT – q
g (1 – e–gT )cm – qH]

+ y∗ exp[–qδT – q
g (1 – e–gT )cm – qH],

(3.5)

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

x∗ = x∗ exp[–q(d + δ)T – q
g (1 – e–gT )cm – qH]

+ pe–q dT– q
g (1–e–gT )cm–qH [y∗+x∗(1–e–qδT )]

β+e–qn dT– qn
g (1–e–gT )cm–qnH (y∗+x∗)n

,

y∗ = x∗(1 – e–qδT ) exp[–q dT – q
g (1 – e–gT )cm – qH]

+ y∗ exp[–qdT – q
g (1 – e–gT )cm – qH].

(3.6)

The solution for the positive equilibrium is

⎧
⎪⎨

⎪⎩

x∗ = 1–e–q dT– q
g (1–e–gT )cm–qH

(1–e–q(d+δ)T– q
g (1–e–gT )cm–qH )e–q dT– q

g (1–e–gT )cm–qH
ln Rb

0,

y∗ = 1–e–qδT

1–e–q(d+δ)T– q
g (1–e–gT )cm–qH

ln Rb
0,

(3.7)

or

⎧
⎪⎨

⎪⎩

x∗ = 1–e–q dT– q
g (1–e–gT )cm–qH

(1–e–q(d+δ)T– q
g (1–e–gT )cm–qH )e–q dT– q

g (1–e–gT )cm–qH
n
√

β(Rp
0 – 1),

y∗ = 1–e–qδT

1–e–q(d+δ)T– q
g (1–e–gT )cm–qH

n
√

β(Rp
0 – 1).

(3.8)

In summary, we have the results shown in Table 1.

3.2 Stability of equilibrium
Lemma 3.2 ([27]; Jury criterion)) The linearization equation of a differential equation
system is

Xm = AXm–1, (3.9)
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where A is the linear segment of the system and X = (x, y)T . If the modulus of all eigenvalues
of the matrix A is less than 1, then the equilibrium of the system is stable, that is, the matrix
A satisfies the following three Jury criteria:

(a) 1 – tr A + det A > 0,

(b) 1 + tr A + det A > 0,

(c) 1 – det A > 0.

(3.10)

These three conditions correspond to the three ways that an eigenvalue may exceed the
unit circle in the complex plane. If inequality (3.10a) is violated, then matrix A has an
eigenvalue which is greater than 1. If the inequality (3.10b) is violated, then the matrix A
has an eigenvalue which is less than –1. If the inequality (3.10c) is not true, then the matrix
A has a pair of complex conjugated eigenvalues which exceed the unit circle.

Let

b0 =
(1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH )(1 – e–q dT– q
g (1–e–gT )cm–qH )

(1 – e–q dT )e–q dT– q
g (1–e–gT )cm–qH

,

p0 =
β(1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH )(1 – e–q dT– q
g (1–e–gT )cm–qH )

(1 – e–q dT )e–q dT– q
g (1–e–gT )cm–qH

.

Theorem 3.1 If 0 < b < b0 (0 < p < p0), then the trivial equilibrium of (3.2) ((3.3)) is locally
asymptotically stable.

Proof For trivial equilibrium Eb
0(0, 0) and Ep

0(0, 0), the linearization matrix of (3.2) ((3.3))
is

AEb
0

=

⎛

⎝
e–q(d+δ)T– q

g (1–e–gT )cm–qH + b(1 – e–qδT )e–q dT– q
g (1–e–gT )cm–qH be–q dT– q

g (1–e–gT )cm–qH

(1 – e–qδT )e–q dT– q
g (1–e–gT )cm–qH e–q dT– q

g (1–e–gT )cm–qH

⎞

⎠

(3.11)

or

AEp
0

=

⎛

⎜
⎝

e–q(d+δ)T– q
g (1–e–gT )cm–qH + p(1–e–qδT )e–q dT– q

g (1–e–gT )cm–qH

β

pe–q dT– q
g (1–e–gT )cm–qH

β

(1 – e–qδT )e–q dT– q
g (1–e–gT )cm–qH e–q dT– q

g (1–e–gT )cm–qH

⎞

⎟
⎠ .

(3.12)

With matrix A defined in Eq. (3.11) or (3.12), inequalities (3.10b) and (3.10c) always hold.
If inequality (3.10a) is true, then the following inequalities should be satisfied:

1 – tr AEb
0

+ det AEb
0

=
(
1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH)(
1 – e–q dT– q

g (1–e–gT )cm–qH)

– b
(
1 – e–qδT)

e–q dT– q
g (1–e–gT )cm–qH > 0,
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or

1 – tr AEp
0

+ det AEp
0

=
(
1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH)(
1 – e–q dT– q

g (1–e–gT )cm–qH)

–
p(1 – e–qδT )e–q dT– q

g (1–e–gT )cm–qH

β
> 0.

Based on the above two inequalities, we have

0 < b <
(1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH )(1 – e–q dT– q
g (1–e–gT )cm–qH )

(1 – e–qδT )e–q dT– q
g (1–e–gT )cm–qH

� b0, (3.13)

or

0 < p <
β(1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH )(1 – e–q dT– q
g (1–e–gT )cm–qH )

(1 – e–qδT )e–q dT– q
g (1–e–gT )cm–qH

� p0. (3.14)

By Lemma 3.2, we know that if 0 < b < b0 (0 < p < p0), then the trivial equilibrium of
system (3.3) ((3.4)) is locally asymptotically stable.

The locally asymptotical stability of the trivial equilibrium of system (3.3) ((3.4)) suggests
that system (2.6) has a pest-eradication periodic solution which is locally asymptotically
stable. The inequality (3.13) ((3.14)) is equivalent to Rb

0 < 1 (Rp
0 < 1). Thus, if Rb

0 < 1 (Rp
0 < 1),

then the pest population will be extinct. Define

bc � b0 · exp

{
2 + 2e–q dT– q

g (1–e–gT )cm–qH · e–q dT– q
g (1–e–gT )cm–qH

(1 + e–q(d+δ)T– q
g (1–e–gT )cm–qH ) · (1 – e–q dT– q

g (1–e–gT )cm–qH )

}

,

pc � p0 · (n
(
1 – e–q dT– q

g (1–e–gT )cm–qH)(
1 + e–q(d+δ)T– q

g (1–e–gT )cm–qH))

/
(
n
(
1 – e–q dT– q

g (1–e–gT )cm–qH)(
1 + e–q(d+δ)T– q

g (1–e–gT )cm–qH)

– 2
(
1 + e–q(2d+δ)T– 2q

g (1–e–gT )cm–2qH))
. �

Theorem 3.2 If b0 < b < bc (p0 < p < pc), then the positive equilibrium of (3.3)((3.4)) is
locally asymptotically stable.

Proof For the positive equilibrium E∗
b(x∗, y∗), the linearization matrix of (3.3) is

WE∗
b

=

⎛

⎝
w11 w12

(1 – e–qδT )e–q dT– q
g (1–e–gT )cm–qH e–q dT– q

g (1–e–gT )cm–qH

⎞

⎠ ,

where

w11 = e–q(d+δ)T– qc
α (1–e–αT ) +

(
1 – e–q dT– q

g (1–e–gT )cm–qH)

· (1 – e–q(d+δ)T– q
g (1–e–gT )cm–qH)

–
(
1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH)
ln Rb

0,

w12 =
(1 – e–q dT– q

g (1–e–gT )cm–qH )(1 – e–q(d+δ)T– q
g (1–e–gT )cm–qH )

1 – e–qδT

–
(
1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH)
ln Rb

0.
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Obviously, the inequalities (3.10a) and (3.10b) always hold. If inequality (3.10c) is true,
then the following inequality should be satisfied:

b0 < b < bc,

where

bc � b0 · exp

{
2 + 2e–q dT– q

g (1–e–gT )cm–qH · e–q dT– q
g (1–e–gT )cm–qH

(1 + e–q(d+δ)T– q
g (1–e–gT )cm–qH ) · (1 – e–q dT– q

g (1–e–gT )cm–qH )

}

.

From Lemma 3.2, we know that if b0 < b < bc, then the positive equilibrium E∗
b(x∗, y∗) of

(3.3) is locally asymptotically stable.
For positive equilibrium E∗

p(x∗, y∗), the linearization matrix of (3.4) is

WE∗
p =

⎛

⎝
z11 z12

(1 – e–qδT )e–q dT– qc
α (1–e–αT ) e–q dT– qc

α (1–e–αT )

⎞

⎠ , (3.15)

where

z11 = e–q(d+δ)T– q
g (1–e–gT )–qH +

(
1 – e–q dT– q

g (1–e–gT )cm–qH)

· (1 – e–q(d+δ)T– q
g (1–e–gT )cm–qH)

–
n(1 – e–q dT– q

g (1–e–gT )cm–qH )(Rp
0 – 1)

Rp
0

,

z12 =
(1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH)(1 – e–q dT– q
g (1–e–gT )cm–qH )

1 – e–qδT

–
n(1 – e–q dT– q

g (1–e–gT )cm–qH)(Rp
0 – 1)

Rp
0

.

From matrix (3.15), the determinant value and trace of the matrix are

det WE∗
p = e–q(2d+δ)T– 2q

g (1–e–gT )cm–2qH

–
ne–q(d+δ)T– q

g (1–e–gT )cm–qH (1 – e–q dT– q
g (1–e–gT )cm–qH )(Rp

0 – 1)
Rp

0
,

tr WE∗
p = e–q dT– q

g (1–e–gT )cm–qH + e–q(d+δ)T– q
g (1–e–gT )cm–qH

+
(
1 – e–q(d+δ)T– q

g (1–e–gT )cm–qH) · (1 – e–q dT– q
g (1–e–gT )cm–qH)

–
n(1 – e–q dT– q

g (1–e–gT )cm–qH )(Rp
0 – 1)

Rp
0

,

respectively.
Then, the inequalities

1 – det WE∗
p = 1 – e–q(2d+δ)T– 2q

g (1–e–gT )cm–2qH

+
ne–q(d+δ)T– q

g (1–e–gT )cm–qH (1 – e–q dT– q
g (1–e–gT )cm–qH )(Rp

0 – 1)
Rp

0
> 0
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and

1 – tr WE∗
p + det WE∗

p

=
n(1 – e–q dT– q

g (1–e–gT )cm–qH)(Rp
0 – 1)

Rp
0

· (1 – e–q(d+δ)T– q
g (1–e–gT )cm–qH)

> 0

always hold. In other words, inequalities (3.10a) and (3.10c) always hold. If inequality
(3.10b) is true, then the following inequality should be satisfied:

1 + tr WE∗
p + det WE∗

p = 2
(
1 + e–q(2d+δ)T– 2q

g (1–e–gT )cm–2qH)

–
n(1 – e–q dT– q

g (1–e–gT )cm–qH )(Rp
0 – 1)

Rp
0

· (1 + e–q(d+δ)T– q
g (1–e–gT )cm–qH)

> 0.

Solving it, we get

p0 < p < pc,

where

pc � p0 · (n
(
1 – e–q dT– q

g (1–e–gT )cm–qH)(
1 + e–q(d+δ)T– q

g (1–e–gT )cm–qH))

/
(
n
(
1 – e–q dT– q

g (1–e–gT )cm–qH)(
1 + e–q(d+δ)T– q

g (1–e–gT )cm–qH)

– 2
(
1 + e–q(2d+δ)T– 2q

g (1–e–gT )cm–2qH))
. �

Therefore, if p0 < p < pc holds, then the positive equilibrium of system (3.4) is locally
asymptotically stable. The locally asymptotical stability of positive equilibrium of sys-
tem (3.3) or (3.4) shows that system (2.6) has a positive periodic solution which is locally
asymptotically stable. In this case, the pest population would be permanent.

3.3 Mathematical simulation and the biological significance
If we fix other parameters and let b or p vary, as learned from Theorems 3.1 and 3.2,
then the extinction and permanence of the pest population rely on the birth rate b or p.
If 0 < b < b0, then the trivial equilibrium of (3.3) ((3.4)) is locally asymptotically stable,
which implies the pest-eradication periodic solution of system (2.6) is locally asymptot-
ically stable. If b0 < b < bc (p0 < p < pc), then the positive equilibrium of (3.3) ((3.4)) is
locally asymptotically stable, which implies system (2.6) has a locally stable positive peri-
odic solution, the system will be permanent, and the pest population does not go extinct.
If parameter b or p continues to increase, then the stability of the positive periodic so-
lution is destroyed and system (3.3) ((3.4)) will present very complex dynamics including
period-doubling bifurcations and chaos (see Fig. 2).

Taking the Ricker function as an example, we further analyze the important factors
which influence pest extinction and the optimal frequency of pesticide applications. It
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Figure 2 The bifurcation diagram of the parameter b(p) on the population x(t) in system (3.3) (system (3.4));
the other parameters δ = 0.6, d = 0.4, g = 0.05, h = 0.1, r = 0.8, μ = 0.4, q = 10, n = 6. (a) Ricker function;
(b) Beverton–Holt function

Figure 3 (a) The effects of birth rate b of the pest population on the threshold Rb0 , μ = 0.4; (b) the effects of
pesticide dose μ on the threshold Rb0 , b = 20, other parameters are d = 0.4, δ = 0.6, g = 0.1, r = 0.6, h = 0.2

is well known that 0 < b < b0 is equivalent to Rb
0 < 1; under this condition, the pest popu-

lation is extinct. Figures 3(a)–(b) give the effects of pest birth rate b and the dose of pes-
ticide applied on the threshold Rb

0,respectively, which can help us determine the optimal
frequency of pesticide applications when their values are different. Figure 3(a) indicates
that the higher the birth rate b is, the greater Rb

0 is. Thus, to keep pests under control,
the pesticide applications should be more frequent. To avoid environmental pollution and
financial losses due to excessive pesticide use, we consider the minimum times of pesti-
cide applications such that Rb

0 < 1 as the optimal frequencies of pesticide applications. So
if b = 10, b = 20, b = 30, the optimal frequencies of pesticide applications is q = 3, q = 4,
q = 6, respectively. Figure 3(b) suggests the smaller the pesticide dose μ is,the greater Rb

0

is, which is undesired for pest control. So if μ = 0.1, μ = 0.2, μ = 0.4, then the optimal
frequencies of pesticide applications is q = 4, q = 3, q = 1, respectively.

Similarly, let the parameter r vary and the other parameters be the same as in Fig. 3,
it can be seen from Fig. 4(a) that the greater the pest’s net uptake rate r is, the smaller
Rb

0 is, which is more beneficial to pest control. If r = 0.2, r = 0.4, r = 0.6, then the optimal
frequencies of pesticide applications is q = 5, q = 2, q = 1, respectively. Setting r = 0.2 if we
let parameter h vary and fix the other parameters, from Fig. 4(b) we know that the smaller
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Figure 4 (a) The effect of the pest’s net uptake rate r of pesticide from the environment on the threshold Rb0 ,
h = 0.2. (b) The effect of the pesticide loss rate h from the environment itself on the threshold Rb0 , r = 0.2. The
other parameters are b = 20, μ = 0.4, d = 0.4, δ = 0.6, g = 0.1

pesticide loss rate h is more beneficial to pest control. If h = 0.18, h = 0.23, h = 0.27, the
optimal frequencies of pesticide applications are q = 3, q = 5, q = 7, respectively.

With the above method, we can investigate the effects of pest mortality rate d, the ma-
turity rate δ, and the egestion and depuration rates g of pesticide on the threshold Rb

0 and
their corresponding optimal frequencies of pesticide applications.

To determine critical factors which affect pest control strategy, we take Beverton–
Holt function as the birth function of (2.6) and perform sensitivity analysis for the pest-
eradication threshold Rp

0 [28, 29]. By calculating the PRCC value of the parameters, the
sensitivities of these parameters on Rp

0 are analyzed, then some key parameters of affect-
ing outbreaks of the pest population are determined. When performing the analysis, 2000
samples are included for each parameter for uncertainty sensitivity analysis. Additionally,
the following rules are applied: when the PRCC values of the parameter are positive, the
parameter is positively correlated to Rp

0, which means that if the parameter is increased,
the threshold value increases (and vice versa). On the contrary, when the PRCC values of
the parameter are negative, the parameter is negatively correlated with Rp

0, which means
that if the parameter is increased, the threshold value Rp

0 decreases (and vice versa). If
|PRCC| > 0.4, it indicates a strong correlation between input parameters and output vari-
ables, and the parameter has a greater effect on Rp

0. If 0.2 < |PRCC| < 0.4, the parameter
has a moderate effect on Rp

0. If |PRCC| < 0.2, the parameter has weak effect on Rp
0. In Fig. 5,

we set q = 20, δ = 0.6, d = 0.4, g = 0.05, h = 0.1, r = 0.8, μ = 0.4, p = 20 and β = 3. It can
be seen that the parameters δ, g , h, p are positively correlated with the threshold Rp

0. So
the increase of the parameters δ, g , h, p lead to the increase of Rp

0, then the pest popula-
tion expands rapidly, which is undesired for pest management. Parameters q, d, r, μ, β

are negatively correlated with the threshold Rp
0. With the increasing in q, d, r, μ, β , there

is a decrease in Rp
0, and the pest population will tend to be extinct, which is advantageous

for pest management. The effects of the parameters d, g on pest eradication and perma-
nence are relatively less and even near zero. Parameters δ, p, β have moderate effects on
the threshold Rp

0. Therefore, from the above analysis we see that the threshold Rp
0 is most

strongly affected by the frequencies q of pesticide applications, the pesticide loss rate h
from the environment, the absorbance of pesticide by the pest and the dose μ of each
pesticide application. Thus, these parameters are critical to pest management.
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Figure 5 The scatter PRCC value of the threshold Rp0 to key parameters and the scatter plots of the
parameters q, δ , d, g, h, r. The sample size is 2000 and all parameters are varied simultaneously. The parameter
values are as follows: q = 20, δ = 0.6, d = 0.4, g = 0.05, h = 0.1, r = 0.8, μ = 0.4, p = 20 and β = 3

4 Conclusion
In this paper, we divide pests population into larval stage and adult stage and assume that
the increase in the number of larva is instantaneous at the fixed time in a year. Spraying
pesticide is applied to control pest. Considering the delayed and residual effects of the
pesticide, the pollution emission model is employed to simulate the mathematical func-
tion of pesticide effects. Furthermore, a pest management model with stage structure and
birth pulse is established. Ricker and Beverton–Holt birth functions are investigated in our
study. This is the first study in which a mathematical function based on pesticide effects
has been incorporated into a pest management model with stage structure and birth pulse.
The theory of impulsive differential equations is adopted to investigate the dynamics of
the pest management model. The threshold conditions for pest eradication or permanent
are obtained through theoretical analysis. Additionally, by mathematical simulations, we
find that the model studied here have complex dynamics including period-doubling bifur-
cation and chaos. The effects of the various factors on the threshold conditions for pest
eradication are analyzed by numerical simulations. The optimal frequencies of pesticide
applications corresponding to the factors are also confirmed. Furthermore, a sensitivity
analysis is performed for the main parameters. We find that the frequency of pesticide ap-
plications q, the decay of environment pesticide h, the absorbance of pesticide by the pest
population r, and the pesticide dose of each application μ are critical to the eradication
and permanent of the pests. Our results could provide a theoretical base for policy-making
departments.

Funding
This work was supported by the National Natural Science Foundation of China (11371030) and the Natural Science
Foundation of Liaoning Province (20170540001).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the manuscript and read and approved the final draft.



Li et al. Advances in Difference Equations        (2019) 2019:117 Page 16 of 16

Author details
1College of Mathematics, Jilin University, Changchun, China. 2College of Mathematics and Information Science, Anshan
Normal University, Anshan, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 April 2018 Accepted: 16 January 2019

References
1. Liu, X.N., Chen, L.S.: Complex dynamic of Holling type II Lotka–Volterra predator–prey system with impulsive

perturbations on the predator. Chaos Solitons Fractals 16(2), 311–320 (2003)
2. Zhang, Y.J., Liu, B., Chen, L.S.: Extinction and permanence of a two-prey one-predator system with impulsive effect.

Math. Med. Biol. 20(4), 309–325 (2003)
3. Zhang, H., Georgescu, P., Chen, L.S.: An impulsive predator–prey system with Beddington–Deangelis functional

response and time delay. Int. J. Biomath. 1(1), 1–18 (2008)
4. Jatav, K.S., Dhar, J., Nagar, A.K.: Mathematical study of stage-structured pests control through impulsively released

natural enemies with discrete and distributed delays. Appl. Math. Comput. 238(7), 511–526 (2014)
5. Lu, Z.H., Chi, X.B., Chen, L.S.: Impulsive control strategies in biological control of pesticide. Theor. Popul. Biol. 64(1),

39–47 (2003)
6. Liu, B., Teng, Z.D.: The effects of impulsive spraying pesticide on stage-structured population models with birth pulse.

J. Biol. Syst. 13(1), 31–44 (2005)
7. Kang, B., He, M., Liu, B.: Optimal control of agricultural insects with a stage-structured model. Math. Probl. Eng. 2013,

Article ID 168979 (2013)
8. Jiang, G.R., Lu, Q.S., Peng, L.: Impulsive control of a stage-structured pest management system. J. Math. Study 36(4),

331–344 (2005)
9. Wei, C.Y.: Study of the dynamics of a pest model with birth pulse. Master Thesis, Shaanxi, Shaanxi Normal University

(2012)
10. Liang, J.H., Tang, S.Y., Cheke, R.A.: Beverton–Holt discrete pest management models with pulsed chemical control

and evolution of pesticide resistance. Commun. Nonlinear Sci. Numer. Simul. 36, 327–341 (2016)
11. Tang, S.Y., Chen, L.S.: Modelling and analysis of integrated pest management strategy. Discrete Contin. Dyn. Syst.,

Ser. B 4(3), 761–770 (2004)
12. Lan, G.J., Fu, Y.J., Wei, C.J., Zhang, S.W.: A research of pest management SI stochastic model concerning spraying

pesticide and releasing natural enemies. Commun. Math. Biol. Neurosci. 2018, Article ID 3648 (2018)
13. Liu, B., Teng, Z.D., Chen, L.S.: Analysis of a predator–prey model with Holling II functional response concerning

impulsive control strategy. J. Comput. Appl. Math. 193(1), 347–362 (2006)
14. Zhang, Y.J., Chen, L.S.: The periodic Volterra model with mutual interference and impulsive effect. Int. J. Biomath. 5(3),

Article ID 1260005 (2012)
15. Zhao, Z.: Complex dynamics of a delayed stage-structured predator–prey model with impulsive effect. J. Appl. Math.

Comput. 45(1–2), 183–197 (2014)
16. Tang, S.Y., Tang, G.Y., Cheke, R.A.: Optimum timing for integrated pest management: modelling rates of pesticide

application and natural enemy releases. J. Theor. Biol. 264(2), 623–638 (2010)
17. Li, C.T., Tang, S.Y.: The effects of timing of pulse spraying and releasing periods on dynamics of generalized

predator–prey model. Int. J. Biomath. 5(1), 157–183 (2012)
18. Liang, J.H., Tang, S.Y., Cheke, R.A., Wu, J.H.: Adaptive release of natural enemies in a pest-natural enemy system with

pesticide resistance. Bull. Math. Biol. 75(11), 2167–2195 (2013)
19. Liang, J.H., Tang, S.Y., Cheke, R.A., Wu, J.H.: Models for determining how many natural enemies to release inoculatively

in combinations of biological and chemical control with pesticide resistance. J. Math. Anal. Appl. 422(2), 1479–1503
(2015)

20. Lakshmikantham, V.: Theory of Impulsive Differential Equations. World Scientific, Singapore (1989)
21. Bainov, D., Simeonov, P.: Impulsive Differential Equations: Periodic Solutions and Applications. Pitman Monographs

and Surveys in Pure and Applied Mathematics, vol. 66 (1993)
22. Lakmeche, A., Arino, O.: Bifurcation of non-trivial periodic solutions of impulsive differential equations arising

chemotherapeutic treatment. Dyn. Contin. Discrete Impuls. Syst. 7(2), 265–287 (2000)
23. Tang, S.Y., Chen, L.S.: Density-dependent birth rate, birth pulses and their population dynamic consequences. J. Math.

Biol. 4(2), 185–199 (2002)
24. Liang, J.H., Tang, S.Y., Cheke, R.A.: An integrated pest management model with delayed responses to pesticide

applications and its threshold dynamics. Nonlinear Anal., Real World Appl. 13(5), 2352–2374 (2012)
25. Liang, J.H., Tang, S.Y.: The residual and delay effects of pesticide application on pest control. In: Proceedings of the 5th

International Congress on Mathematical Biology, vol. 2, pp. 462–467 (2011)
26. Liu, B., Chen, L.S., Zhang, Y.J.: The effects of impulsive toxicant input on a population in a polluted environment. J. Biol.

Syst. 11(3), 265–274 (2003)
27. Jury, E.I.: Inners and stability of dynamic systems. IEEE Trans. Syst. Man Cybern. 6(10), 724–725 (1974)
28. Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV

model, as an example. Int. Stat. Rev. 62(2), 229–243 (1994)
29. Marino, S., Hogue, I.B., Ray, C.J., et al.: A methodology for performing global uncertainty and sensitivity analysis in

systems biology. J. Theor. Biol. 254(1), 178–196 (2008)


	A pest control model with birth pulse and residual and delay effects of pesticides
	Abstract
	Keywords

	Introduction
	Model formulation
	Dynamics of system (2.6)
	Model solving and the equilibrium of stroboscopic maps
	Stability of equilibrium
	Mathematical simulation and the biological signiﬁcance

	Conclusion
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


