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Abstract
This paper deals with the problems of robust stability for a class of uncertainty
parameter systems with delays. By using a new Lyapunov–Krasovskii functional,
quadratic inequality, and Schur complement technique, two conditions are
developed to guarantee the robust stability of a class of discrete systems with
uncertainty parameters in terms of the linear matrix inequality (LMI). By applying the
forward difference method and via a quadratic cost function, the criteria of LMI are
obtained by the input control u(k) = 0 and u(k) = Kx(k); meanwhile, the bounds of cost
function are established. The feedback control gain is designed to ensure the robust
stability of the closed-loop system. A numerical example and simulation figures are
provided to illustrate the effectiveness and potential of the proposed techniques and
results.
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1 Introduction
It is very important for dynamical systems to be stable before system performance can be
considered. The stability of various systems is worth investigating due to their wide range
of applications, such as information science, pattern recognition, biological science, au-
tomatic control, image processing [1]. In the past decade, the stability analysis [2], such
as asymptotic stability [3], robust stability and stabilization [4–9], global robust exponen-
tial stability [10], and optimal stabilizing compensator, and so on, have been extensively
studied because of their potential applications. For example, the work in [9] studied the
robust stability for uncertain recurrent neural networks with leakage delay based on delay-
partitioning approach, while the global robust exponential stability problem for uncertain
inertial-type BAM neural networks with discrete and distributed time varying was dis-
cussed in [10]. Cheng and Zhang [11] studied the robust stability and stabilization for
descriptor systems with uncertainties in all matrices. On the other hand, Svetoslav, Yang
et al. investigated the robust stability problem for a class of parameter-uncertainty non-
linear systems (see [12–15] and the references therein). In particular, Li et al. studied the
stability of a class of nonlinear differential systems and received some wonderful results
(see [16–18]).
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Note that an applied system is usually disturbed by some uncertain noises of external
environment. Therefore, an uncertainty parameter system is better than a defined param-
eter system to simulate a real system. A lot of significant results based on feedback control
[19–21] for a class of uncertainty systems have aroused much interest in the past few years,
because these models have come to play an important role in many real systems such as dy-
namic tracking system. For example, the work in [17] studied robust stability for nonlinear
Markovian jump systems with mode-dependent time-varying delays and randomly occur-
ring uncertainties. Dong and Zhang in [19] studied the design of observer-based feedback
control for a class of discrete-time nonlinear systems with time delay. On the other hand,
Manivannan et al. studied the stability, generalized dissipativity, and extended dissipativ-
ity for a class of neural networks by state estimation design method and obtained some
valuable results (see [22–25]).

Comparing with the existing works on uncertainty parameter systems with delays, the
guaranteed cost control is considered in this paper. Currently, some results have been ob-
tained in guaranteed cost control, but have not been fully studied. For example, Fernando
et al. [21] studied the output feedback guaranteed cost control of uncertain linear dis-
crete systems with interval time-varying delays. As for the method used, we adopt the
forward difference method based on Lyapunov functional in terms of linear matrix in-
equality, which can be computed conveniently in the numerical simulation. To the best of
the authors’ knowledge, the robust stability of discrete uncertainty systems has not been
fully studied, which motivates us for the current work.

The main contributions of this paper are as follows:
(1) The problem of robust stability for a class of uncertainty parameter systems with

delays is studied in this paper.
(2) Based on the stochastic analysis theory, two conditions for robust stability of a class

of discrete systems with uncertainty parameters in terms of LMI are obtained.
(3) By the approach of forward difference and the input control u(k) = 0 and

u(k) = Kx(k), the bounds of cost function are established to guarantee the robust
stability for our given system.

This paper is organized as follows. In Sect. 2, the problem description and preliminaries
are stated. In Sect. 3, the main results and proofs are derived. In Sect. 4, an example is
given to illustrate the results. Finally, some conclusions are drawn in Sect. 5.

2 System description and preliminaries
The notations are quite standard. Throughout this paper, Rn and Rn×n denote the n-
dimensional Euclidean space and the set of all n × n real matrices, respectively. Denote
by λmin(A) the smallest eigenvalues of matrix A. The superscript T denotes matrix trans-
position. x(k) denotes the n-dimensional column vector. ‖ · ‖ stands for the Euclidean
norm, and I denotes the identity matrix with the corresponding dimension. In particular,
P > 0 represents that P is a real symmetric positive-definite matrix. �A, �B, and �Ad de-
note uncertainty parameter matrices. �f (x(k)) = f (x(k + 1)) – f (x(k)) denotes the forward
difference function. The scalars ε1, ε2, and so on are some arbitrary constants greater than
zero.

Consider the discrete uncertainty parameter system with delays as follows:
⎧
⎨

⎩

x(k + 1) = (A + �A)x(k) + (Ad + �Ad)x(k – d) + (B + �B)u(k),

x(k) = ϕ(k), k ∈ [–d, 0],
(1)
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where x(k) ∈ Rn is the state vector, u(k) ∈ Rm is the input vector, d > 0 is integer delay, A,
Ad , and B are known constant matrices. �A, �Ad , and �B are the uncertainty parameter
matrices such that the following equalities hold:

[

�A �B
]

= E1F1(k)
[

H1 H3

]
K , �Ad = E2F2(k)H2,

where Ei, Hj (j = 1, 2, 3) are known constant matrices with appropriate dimension, and the
uncertainty matrix Fi(k) subject to bounded condition FT

i (k)Fi(k) ≤ I , i = 1, 2.
In order to analyze the robust stability for system (1) with uncertainty parameters, the

assumption is needed as follows.

Assumption 2.1 There exists a constant L > 0 such that all uncertainty parameters are
bounded to system (1), namely ‖�A‖ < L, ‖�Ad‖ < L, and ‖�B‖ < L.

For the readability of this paper, as usual, we also present some definitions.

Definition 2.2 Setting function f (x), the forward difference �f (x(k)) is defined as follows:

�f
(
x(k)

)
= f

(
x(k + 1)

)
– f

(
x(k)

)
, x(k) = x0 + kh, h is step and k = 0, 1, 2, . . . , n.

Definition 2.3 System (1) is said to be robust stable if every object of group models can
guarantee inner stability state in the feedback system for a concrete controller.

Definition 2.4 For system (1), we define a quadratic cost function as follows:

J =
∞∑

k=0

[
xT (k)Qx(k) + uT (k)Ru(k)

]
,

where Q and R are given symmetric positive-definite matrices, and u(k) is system input.

Before giving the main results, we also need the following lemmas, which are viewed as
a pretty significant contribution to the proof of the theorems.

Lemma 2.5 (Schur complement [26]) Given constant matrices �1, �2, �3, where �1 = �
T
1

and 0 < �2 = �
T
2 , then

�1 + �
T
3 �

–1
2 �3 < 0

if and only if

[
�1 �

T
3

�3 –�2

]

< 0.

Lemma 2.6 (Quadratic inequality [27]) Let x ∈ Rn, y ∈ Rn, and ∀ε > 0, then we have

xT y + yT x ≤ εxT x + ε–1yT y.
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3 Main results and proofs
For system (1), we have the following theorem, which is one of the main results.

Theorem 3.1 System (1) with u(k) = 0 is said to robust stable with permission uncertainty
and possesses the following cost function:

J ≤ J0 = xT (0)P1x(0) +
–1∑

θ=–d

xT (θ )S2x(θ ) +
0∑

θ=–d+1

–1∑

s=–1+θ

yT (s)S1y(s), (2)

where y(s) = x(s + 1) – x(s), if there exist symmetric positive-definite matrices P1, S1, S2,
matrices P2, P3, W1, W2, W3, M1, M2, and E1, E2, H1, H2 are defined in system description,
as well as scalars ε1 > 0, ε2 > 0 such that the following LMI

Ω =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω11 Ω12 PT
2 Ad – M1 PT

2 E1 PT
2 E2

ΩT
12 Ω22 PT

3 Ad – M2 PT
3 E1 PT

3 E2

AT
d P2 – MT

1 AT
d P3 – MT

2 –S2 + ε2H2HT
2 0 0

ET
1 P2 ET

1 P3 0 –ε1I 0
ET

2 P2 ET
2 P3 0 0 –ε2I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0 (3)

and
⎡

⎢
⎣

W1 W2 M1

W T
2 W3 M2

MT
1 MT

2 S1

⎤

⎥
⎦ ≥ 0 (4)

hold, where

Ω11 = PT
2 (A – I) + (A – I)T P2 + dW1 + M1 + MT

1 + ε1H1HT
1 + S2 + Q,

Ω12 = P1 – PT
2 + (A – I)T P3 + dW2 + MT

2 ,

Ω22 = –P3 – PT
3 + P1 + dW3 + dS1.

Proof In order to express conveniently, we denote

A(k) = A + �A(k), Ad(k) = Ad + �Ad(k).

Then

x(k + 1) = A(k)x(k) + Ad(k)x(k – d)

=
[
A(k) + Ad(k)

]
x(k) – Ad(k)

k∑

θ=k–d

y(θ ). (5)

Correspondingly, (5) is equal to the following equation:

[
A(k) + Ad(k) – I

]
x(k) – y(k) – Ad(k)

k∑

θ=k–d

y(θ ) = 0, (6)

where y(k) = x(k + 1) – x(k) and I is an identity matrix with proper dimension.
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Define the Lyapunov function as follows:

V
(
x(k)

)
= xT (k)P1x(k) +

k–1∑

θ=k–d

xT (θ )S2x(θ ) +
0∑

θ=–d+1

k–1∑

s=k–1+θ

yT (s)S1y(s). (7)

Computing forward difference �V (x(k)) = V (x(k + 1)) – V (x(k)) along the trajectory of the
system, i.e., x(k + 1) = A(k)x(k) + Ad(k)x(k – d), we obtain

�V
(
x(k)

)
= 2xT (k)P1

[
x(k + 1) – x(k)

]
+ xT (k)S2x(k)

+
[
x(k + 1) – x(k)

]T (P1 + dS1)
[
x(k + 1) – x(k)

]

– xT (k – d)S2x(k – d) –
k–1∑

θ=k–d

yT (θ )S1y(θ )

= 2xT (k)P1y(k) + xT (k)S2x(k) + yT (k)(P1 + dS1)y(k)

– xT (k – d)S2x(k – d) –
k–1∑

θ=k–d

yT (θ )S1y(θ ), (8)

where y(k) = x(k + 1) – x(k).
Associating with (5), we have

2xT (k)P1y(k) = ηT (k)PT

[
y(k)

0

]

= ηT (k)PT

{[
y(k)

(A(k) + Ad(k) – I)x(k) – y(k)

]

–
k–1∑

θ=k–d

[
0

Ad(k)

]

y(θ )

}

, (9)

where

η(k) =

[
x(k)
y(k)

]

, P =

[
P1 0
P2 P3

]

.

Using the quadratic inequality lemma, we obtain that

–2ηT (k)PT
k–1∑

θ=k–d

[
0

Ad(k)

]

y(θ )

≤
k–1∑

θ=k–d

[
η(k)
y(θ )

]T [
W M – PT[ 0

Ad(k)
]

∗ S1

][
η(k)
y(θ )

]

= dηT (k)Wη(k) + 2ηT (k)

(

M – PT

[
0

Ad(k)

])
[
x(k) – x(k – d)

]

+
k–1∑

θ=k–d

yT (θ )S1y(θ ), (10)
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where W , M, S1 possess proper dimension and are such that

[
W M
MT S1

]

≥ 0.

Putting (8) and (9) into (7), we obtain

�V
(
x(k)

) ≤ ηT (k)Ψ η(k) + 2ηT (k)

(

PT

[
0

Ad(k)

]

– M

)

x(k – d)

+ xT (k – d)
(
ε2HT

2 H2 – S2
)
x(k – d) – xT (k)Qx(k), (11)

where

Ψ = PT

[
0 I

A – I –I

]

+

[
0 I

A – I –I

]T

P + dW +
[

M 0
]

+

[
MT

0

]

+

[
ε1HT

1 H1 + S2 + Q 0
0 P1 + dS1

]

+
2∑

i=1

ε–1
i PT

[
0
Ei

]
[

0 ET
i

]
P,

ε1 > 0 and ε2 > 0 are arbitrary variables.
Denote

ξ (k) =

⎡

⎢
⎣

x(k)
y(k)

x(k – d)

⎤

⎥
⎦ , Σ =

[
Ψ PT[ 0

Ad

]
– M

[ 0 AT
d ]P – MT –S2 + ε2HT

2 H2

]

,

then (10) can be rewritten as follows:

�V
(
x(k)

) ≤ ξT (k)Σξ (k) – xT (k)Qx(k).

Decompose W and M, respectively

W =

[
W1 W2

W T
2 W3

]

, M =

[
M1

M2

]

.

Then, by the Schur complement lemma, (11) is equal to Σ < 0.
Therefore, we have

�V
(
x(k)

) ≤ –λmin(Q)
∥
∥x(k)

∥
∥2,

so then

xT (k)Qx(k) ≤ –�V
(
x(k)

)
.
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If we obtain the sum of above inequalities by two sides, then we obtain

∞∑

k=1

xT (k)Qx(k) ≤ V (x0)

= xT (0)P1x(0) +
–1∑

θ=–d

xT (θ )S2x(θ )

+
0∑

θ=–d+1

–1∑

s=–d+θ

yT (s)S1y(s).

This is the desirable assertion. Therefore the proof is completed. �

Theorem 3.2 Given scalar ε > 0, if there exist symmetric positive-definite matrices P̂1,
Ŝ1, Ŝ2, and matrices Ŵ1, Ŵ2, Ŵ3, P̂2, P̂3, Ŷ as well as scalars ε1 > 0, ε2 > 0 such that the
following inequalities

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Ω̂11 Ω̂12 0 0 P̂1 Ω̂16 P̂T
2 dP̂T

2 P̂1 Ŷ T

∗ Ω̂22 (1 – ε)AdŜ2 0 0 0 P̂T
3 dP̂T

3 0 0
∗ ∗ –Ŝ2 Ŝ2HT

2 0 0 0 0 0 0
∗ ∗ ∗ –ε2I 0 0 0 0 0 0
∗ ∗ ∗ ∗ –Ŝ2 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ –ε1I 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ –P̂1 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ –dŜ1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –Q–1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ –R–1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0

and

⎡

⎢
⎣

Ŵ1 Ŵ2 0
Ŵ T

2 Ŵ3 εAdŜ1

0 εŜ1AT
d Ŝ1

⎤

⎥
⎦ ≥ 0

hold, where

Ω̂11 = P̂2 + P̂T
2 + dŴ1,

Ω̂12 = P̂1
(
AT + εAT

d – I
)

+ Ŷ T BT – P̂T
2 + P̂3 + dŴ2,

Ω̂16 = P̂1HT
1 + Ŷ T H3,

Ω̂22 = –P̂3 – P̂T
3 +

2∑

i=1

εiEiET
i + dŴ3,
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then system (1) with feedback control u(k) = Ŷ P̂–1
1 x(k) is robust stable and the cost function

meets the following inequality:

J =
∞∑

k=1

xT (k)Qx(k) ≤ V (x0)

= xT (0)P1x(0) +
–1∑

θ=–d

xT (θ )S2x(θ ) +
0∑

θ=–d+1

–1∑

s=–1+θ

yT (s)S1y(s),

where y(s) = x(s + 1) – x(s).

Proof In order to ensure the robust stability of system (1), we design the control input
u(k) = Kx(k) such that the criteria conditions (2) and (3) hold. Meanwhile, we replace A
and H1 with A + BK and H1 + H3K , respectively. Set the parameters as follows:

M = εPT

[
0

Ad

]

, P–1 =

[
P–1

1 0
–P–1

3 P2P–1
1 P–1

3

]

,

where ε is a known constant. Denote P̂1 = P̂–1
1 , P̂3 = P̂–1

3 , P̂2 = –P̂3P2P̂1, Ŷ = KP̂1, W =
P–T WP–1 =

[ Ŵ1 Ŵ1
Ŵ T

2 Ŵ3

]
, Ŝ1 = S–1

1 , Ŝ2 = S–1
2 . The rest of the proof is similar to that of Theo-

rem 3.1, and we omit it for brevity. Therefore, this proof is completed. �

Remark 1 Note that the time delay d in system (1) is a constant integer delay. If the time
delay d is changed into time-varying case d(k), system (1) is still robust stable under some
proper criteria and such that the following condition

d ≤ d(k) ≤ d

holds, where d and d are bounded integer. The simulation result can be found in Sect. 4.

4 Numerical simulation
Example 4.1 For system (1), the parameters are given as follows:

A =

[
1 0.01

0.01 0.5

]

, Ad =

[
0.1 0
0 0.1

]

, B =

[
1
0

]

, E1 = E2 =

[
0.1 0
0 0.1

]

,

H1 =

[
0.1 0.05

–0.02 0.1

]

, H2 = 0, H3 =

[
–0.2
0.8

]

, d = 1,

x(0) =

[
0.1

–0.1

]

, x(–1) =

[
0.1
0

]

, Q =

[
1 0
0 1

]

, R = 1.

Correspondingly, we compute the gain matrix K = [3.5 325.01], and set symmetric
positive-definite matrices

P̂1 =

[
100 0

0 100

]

, Ŝ1 =

[
2 1
1 2

]

, Ŝ2 =

[
3 1
1 3

]

.
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Then we obtain the supper bound of cost function as follows:

J0 = xT (0)P̂1x(0) +
–1∑

θ=–d

xT (θ )Ŝ2x(θ ) +
0∑

θ=–d+1

–1∑

s=–1+θ

yT (s)Ŝ1y(s) = 2.05,

and

J =
∞∑

k=1

xT (k)Qx(k) =
∞∑

k=1

1
k2 =

π2

6
≈ 1.643.

Obviously, J = 1.643 < J0 = 2.05, which is our desired results. Meanwhile, some simulation
figures are presented in Fig. 1, Fig. 2, and Fig. 3. The robust stability of system (1) with
integer delays based on Theorem 3.1 is showed in Fig. 1. The robust stability of system (1)
with bounded time-varying delays d(k) based on Theorem 3.1 is presented in Fig. 2. And
the robust stability of system (1) with integer delays based on Theorem 3.2 is provided in
Fig. 3. Therefore, system (1) with two states is robust stable.

Remark 2 We know that the uncertainty parameters are difficult to express in this nu-
merical simulation system. In order to address the uncertainty, these uncertainty param-
eters are replaced with matrices randomly generated in Matlab. Therefore matrices �A,

Figure 1 Robust stability with integer delays based on Theorem 3.1

Figure 2 Robust stability with bounded time-varying delays d(k) based on Theorem 3.1
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Figure 3 Robust stability with integer delays based on Theorem 3.2

�Ad , �B can be objectively described with noise matrices by the stochastic quantitative
method.

5 Conclusions
In this paper, we have investigated the robust stability for a class of uncertain parameter
discrete systems with delays. The uncertainty parameter systems are more complex with
time delays. By choosing a Lyapunov functional and utilizing some well-known inequal-
ities, we provide two novel delay-dependent criteria which guarantee the robust stability
of a class of uncertainty discrete-time systems. A method called the forward difference
and an idea called the cost function have been developed to solve this problem of theo-
rem proof. The sufficient conditions based on the feedback control for the robust stability
have been obtained in terms of LMI. Meanwhile, the controller gain is designed for the cost
control. The example has been given to demonstrate the effectiveness of the main results
obtained. In addition, the adaptive synchronization analysis of this model with impulsive
disturbance as well as fractional Brownian noise based on Markov switching parameters
can be discussed in the near future.
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