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Abstract
This paper is concerned with the stability criteria for a discrete-time linear system with
interval time-varying delays. By using the time delay division we construct an
augmented Lyapunov–Krasovskii functional for two delay subintervals. Moreover, we
use a new summation inequality to estimate the derivatives of LKFs more accurately
and derive less conservative criteria. Finally, we present two numerical examples to
demonstrate that the obtained results are less conservative.
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1 Introduction
During the transmission and processing of signal or data, time delay inevitably occurs in
such practical systems as neural networks and networked control systems. It is well known
that the presence of time delay often affects the dynamic behavior of the system, resulting
in deterioration or even instability in system performance. Therefore, the research on the
stability of time delay systems has been the focus of many scholars [1–5].

One essential research focus on a system with time delay is how to reduce the conser-
vatism of the stability condition. In view of this, many researchers choose to approach this
from two perspectives, selecting an appropriate Lyapunov–Krasovskii functional (LKF)
and making a more accurate estimation of its derivative. With regard to the former aspect,
many significant results have been achieved such as constructing an amplified LKF [6], in-
creasing its integral multiplicity [7], or dividing the time delay interval [8]. With regard to
the latter, the Jensen inequality [9, 10] is the first powerful tool used to estimate the deriva-
tive of LKF in the stability theory of time-delay systems. Later on, the Wirtinger-based
integral inequality [11, 12], the free-matrix-based integral inequality [13–15], and a series
of integral inequalities [16] have been proposed. These inequalities are widely applied in
time delay systems [17–28]. Of course, there are other methods or combinations of differ-
ent methods, such as the free-weighting matrix approach proposed in the literature [29],
the basic idea is introducing some free weighting matrix through the Newton–Leibniz for-
mula and/or the equation of state of the system, and the less conservative stability results
can also be obtained.

It is worth noting that not only continuous-time systems, but also discrete-time systems
play an important role and have received extensive attention in the literature [30–47]. In
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[12], by using the Wirtinger-based inequality an improved stability condition is obtained.
However, the allowable delay upper bound can be further lifted. This inspires our research
in this paper.

Based on the above discussions, by means of a new summation inequality and time delay
division, less conservative criteria than some existing ones are obtained, and two examples
are presented to demonstrate the effectiveness and superiority of the proposed approach.
The main contributions of this paper are as follows:

(i) A new summation inequality is obtained by the Schmidt orthogonalization method,
and the corresponding result is less conservative.

(ii) The proof of Corollary 1 in [15] can be simplified by the substitution of variables,
which is demonstrated by Lemma 2.1 in this paper.

Notation: Throughout this paper, �n denotes the n-dimensional Euclidean space, and
�n×m is the set of all n × m real matrices; I is used to denote the identity matrix of proper
dimension; diag{· · ·} denotes block diagonal matrix, and 〈f , g〉 denotes the inner product
of f and g ; P > 0 (≥ 0) means that P is a real symmetric and positive definite (semipositive
definite) matrix; the symmetric term in a matrix is denoted by ∗, and sym[A] = A + AT ;
N+(N) is the set of all positive (nonnegative) integers.

2 Preliminaries
Consider the following discrete time-varying delay system:

⎧
⎨

⎩

x(k + 1) = Ax(k) + Bx(k – d(k)), k ∈ N ,

x(k) = φ(k), k = –d2, –d2 + 1, . . . , 0,
(1)

where x(k) = (x1(k), x2(k), . . . , xn(k))T ∈ �n is the state vector, φ(k) ∈ �n is the initial condi-
tion, n ∈ N+, A and B ∈ �n×n are constant matrices, and d(k) is the discrete time-varying
delay satisfying d1 ≤ d(k) ≤ d2, where d1 and d2 are nonnegative integers.

Lemma 2.1 Let x(i) be a sequence of discrete-time variables in [a, a+n] → �n. For symmet-
ric matrices R ∈ �n×n and Z11, Z22, Z33 ∈ �4n×4n and for any matrices Z12, Z13, Z23 ∈ �4n×4n

and N1, N2, N3 ∈ �4n×n satisfying

Ξ =

⎛

⎜
⎜
⎜
⎝

Z11 Z12 Z13 N1

∗ Z22 Z23 N2

∗ ∗ Z33 N3

∗ ∗ ∗ R

⎞

⎟
⎟
⎟
⎠

≥ 0,

we have the following inequality:

–
a+n–1∑

i=a

ηT (i)Rη(i) ≤ ωTΩω, (2)

where

η(i) = x(i + 1) – x(i),
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ω =

(

xT (a + n), xT (a),
1

n + 1

a+n∑

i=a

xT (i),
2

(n + 1)(n + 2)

a+n∑

i=a

a+n∑

j=i

xT (j)

)T

,

Ω = n
(

Z11 +
1
3

Z22 +
1
5

Z33

)

+ sym[N1Π1 + N2Π2 + N3Π3],

Π1 = ε1 – ε2, Π2 = ε1 + ε2 – 2ε3, Π3 = ε1 – ε2 + 6ε3 – 6ε4,

ε1 =
(
I 0 0 0

)
, ε2 =

(
0 I 0 0

)
,

ε3 =
(
0 0 I 0

)
, ε4 =

(
0 0 0 I

)
.

Proof Define

f0(i) = 1, f1(i) = i, f2(i) = i2.

By the Schmidt orthogonalization method, where 〈f , g〉 =
∑n

i=1 f (i)g(i), we obtain the fol-
lowing orthogonal polynomials gk(i), k = 0, 1, 2:

g0(i) = 1, g1(i) = i –
n + 1

2
, g2(i) = i2 – (n + 1)i +

(n + 1)(n + 2)
6

.

Then converting the coefficient of constant term to 1 or –1 by multiplying by a positive
number, we have

h0(i) = 1, h1(i) = –1 +
2

n + 1
i, h2(i) = 1 –

6
n + 2

i +
6

(n + 1)(n + 2)
i2,

and hk(i), k = 0, 1, 2, satisfy

〈h0, h0〉 = n, 〈h1, h1〉 = n
n – 1

3(n + 1)
, 〈h2, h2〉 = n

(n – 1)(n – 2)
5(n + 1)(n + 2)

.

Let ς (i) = (h0(i)uT , h1(i)uT , h2(i)uT , ξT (i))T , where u = (yT (n + 1), yT (1), 1
n+1

∑n+1
i=1 yT (i),

2
(n+1)(n+2)

∑n+1
i=1

∑n+1
j=i yT (j))T , y(i) is a sequence of discrete-time variable in [1, 1 + n] → �n,

and ξ (i) = y(i + 1) – y(i). Noticing that
∑n+1

i=1 iy(i) =
∑n+1

i=1
∑n+1

j=i y(j), we can obtain

n∑

i=1

hk(i)ξ (i) = Πk+1u, k = 0, 1, 2.

It is easy to see that ςT (i)Ξς (i) ≥ 0. Then summing both sides of the inequality before
from 1 to n yields

–
n∑

i=1

ξT (i)Rξ (i) ≤ uTΩ̃u,

where Ω̃ = n(Z11 + n–1
3(n+1) Z22 + (n–1)(n–2)

5(n+1)(n+2) Z33) + sym[N1Π1 + N2Π2 + N3Π3].
Let x(i) = y(i – a + 1) be a sequence of discrete-time variables in [a, a + n] → �n satisfying

–
a+n–1∑

i=a

ηT (i)Rη(i) = –
n∑

i=1

ξT (i)Rξ (i) ≤ uTΩ̃u = ωTΩ̃ω.
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Table 1 Allowable delay upper bound d2 for various d1 for Example 1

Method d1 2 4 6 10 15 20 25 30

[32] d2 13 13 14 15 18 22 26 30
[33] d2 13 13 14 17 20 24 29 33
[20] d2 14 15 16 18 21 25 30 34
[21] d2 17 17 18 20 23 27 31 35
[34] d2 18 18 19 20 23 26 30 35
[40] d2 20 21 21 22 24 27 29 34
[43] (Theorem 2) d2 22 22 22 23 25 28 32 36
[12] (Remark 4) d2 20 21 21 23 25 29 32 36
[12] (Theorem 1) d2 22 22 22 23 26 29 32 36
Remark 3 d2 21 22 22 23 25 29 32 36
Theorem 3.1 d2 22 22 22 23 26 29 32 36

Table 2 Allowable delay upper bound d2 for various d1 for Example 2

Method d1 2 5 7 10 20

[33] d2 7 9 11 14 24
[21] d2 9 11 13 16 26
[40] d2 13 14 16 19 29
[12] (Theorem 1) d2 14 17 18 21 31
Theorem 3.1 d2 15 17 18 21 31

Define Ω = Ω̃ + 2n
3(n+1) Z22 + 6n2

5(n+1)(n+2) Z33. Then Ω is affinely dependent on n, and we obtain
(2). This completes the proof. �

Remark 1 Define f3(i) = i3. Then h3(i) = –1 + λ 12
n+3 i – 30

(n+2)(n+3) i2 + 20
(n+1)(n+2)(n+3) i3, where

λ = 6n2+15n+11
6(n+1)(n+2) , and it is not the fourth Legendre polynomial anymore [16]. Thus deriving

a general form of the discrete inequality (2) is still an interesting and challenging task.

Remark 2 By the substitution of variables demonstrated in Lemma 2.1, the proof of Corol-
lary 1 in [15] can be simplified. By means of the new summation inequality the results cal-
culated based on the criteria given in this paper are less conservative than those reported
in the existing literature from Tables 1 and 2.

3 Main results
For reducing the conservatism, we further present a delay partitioning method, where the
time delay interval is divided into two segments: [d1, d2] = [d1, d] ∪ [d, d2].

Theorem 3.1 For given positive integers d1 and d2 satisfying d1 ≤ d(k) ≤ d2, system (1) is
asymptotically stable if there exist matrices P > 0 (∈ �4n×4n), Qi > 0 (∈ �n×n), symmetric
matrices R ∈ �n×n and Zj11, Zj22, Zj33 ∈ �4n×4n, any matrices Zj12, Zj13, Zj23 ∈ �4n×4n and
Nji ∈ �4n×n (i = 1, 2, 3; j = 1, 2, . . . , 7) such that the following LMIs hold:

Ψ1
(
d(k)

)
= D1 + D3 + D4 + D5 + D6 + G1

(
d(k)

)
+ G3

(
d(k)

)
+ G4

(
d(k)

)
+ H1 + H2

< 0, d(k) ∈ [d1, d] ∩ N , (3)

Ψ2
(
d(k)

)
= D2 + D3 + D4 + D7 + D8 + G2

(
d(k)

)
+ G5

(
d(k)

)
+ G6

(
d(k)

)
+ H1 + H3

< 0, d(k) ∈ [d, d2] ∩ N , (4)
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Ξj =

⎛

⎜
⎜
⎜
⎝

Zj11 Zj12 Zj13 Nj1

∗ Zj22 Zj23 Nj2

∗ ∗ Zj33 Nj3

∗ ∗ ∗ Ri

⎞

⎟
⎟
⎟
⎠

≥ 0, and i =

⎧
⎪⎪⎨

⎪⎪⎩

1 if j = 1,

2 if j = 2, 3, 5,

3 if j = 4, 6, 7,

(5)

where

D1 = ET
2 PE2 – ET

1 PE1,

D2 = ET
4 PE4 – ET

3 PE3,

D3 = eT
1 Q1e1 – eT

2 (Q1 – Q2)e2 – eT
4 (Q2 – Q3)e4 – eT

5 Q3e5,

D4 = d1(e0 – e1)T R1(e0 – e1) + α1 sym[N11Π1 + N12Π2 + N13Π3]αT
1 ,

D5 = (d – d1)(e0 – e1)T R2(e0 – e1) + α2 sym[N21Π1 + N22Π2 + N23Π3]αT
2

+ α3 sym[N31Π1 + N32Π2 + N33Π3]αT
3 ,

D6 = (d2 – d)(e0 – e1)T R3(e0 – e1) + α4 sym[N41Π1 + N42Π2 + N43Π3]αT
4 ,

D7 = (d – d1)(e0 – e1)T R2(e0 – e1) + α5 sym[N51Π1 + N52Π2 + N53Π3]αT
5 ,

D8 = (d2 – d)(e0 – e1)T R3(e0 – e1) + α6 sym[N61Π1 + N62Π2 + N63Π3]αT
6

+ α7 sym[N71Π1 + N72Π2 + N73Π3]αT
7 ,

G1
(
d(k)

)
= sym

[
(E2 – E1)T PF1

(
d(k)

)]
,

G2
(
d(k)

)
= sym

[
(E4 – E3)T PF2

(
d(k)

)]
,

G3
(
d(k)

)
= α2

[
(
d(k) – d1

)
(

Z211 +
1
3

Z222 +
1
5

Z233

)]

αT
2 ,

G4
(
d(k)

)
= α3

[
(
d – d(k)

)
(

Z311 +
1
3

Z322 +
1
5

Z333

)]

αT
3 ,

G5
(
d(k)

)
= α6

[
(
d(k) – d

)
(

Z611 +
1
3

Z622 +
1
5

Z633

)]

αT
6 ,

G6
(
d(k)

)
= α7

[
(
d2 – d(k)

)
(

Z711 +
1
3

Z722 +
1
5

Z733

)]

αT
7 ,

F1
(
d(k)

)
=

(
0, 0,

(
d(k) – d1 + 1

)
eT

7 +
(
d – d(k) + 1

)
eT

8 , 0
)T ,

F2
(
d(k)

)
=

(
0, 0,

(
d(k) – d + 1

)
eT

8 +
(
d2 – d(k) + 1

)
eT

9 , 0
)T ,

E1 =
(

eT
1 , (d1 + 1)eT

6 – eT
1 , (d2 – d + 1)eT

9 – eT
2 – eT

3 – eT
4 ,

1
2

(d1 + 1)(d1 + 2)eT
10 – (d1 + 1)eT

1

)T

,

E2 =
(

eT
0 , (d1 + 1)eT

6 – eT
2 , (d2 – d + 1)eT

9 – eT
3 – eT

4 – eT
5 ,

1
2

(d1 + 1)(d1 + 2)eT
10 – (d1 + 1)eT

6

)T

,
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E3 =
(

eT
1 , (d1 + 1)eT

6 – eT
1 , (d – d1 + 1)eT

7 – eT
2 – eT

3 – eT
4 ,

1
2

(d1 + 1)(d1 + 2)eT
10 – (d1 + 1)eT

1

)T

,

E4 =
(

eT
0 , (d1 + 1)eT

6 – eT
2 , (d – d1 + 1)eT

7 – eT
3 – eT

4 – eT
5 ,

1
2

(d1 + 1)(d1 + 2)eT
10 – (d1 + 1)eT

6

)T

,

H1 = α1

[

d1

(

Z111 +
1
3

Z122 +
1
5

Z133

)]

αT
1 ,

H2 = α4

[

(d2 – d)
(

Z411 +
1
3

Z422 +
1
5

Z433

)]

αT
4 ,

H3 = α5

[

(d – d1)
(

Z511 +
1
3

Z522 +
1
5

Z533

)]

αT
5 ,

and

α1 =
(
eT

1 , eT
2 , eT

6 , eT
10

)
, α2 =

(
eT

2 , eT
3 , eT

7 , eT
11

)
, α3 =

(
eT

3 , eT
4 , eT

8 , eT
12

)
,

α4 =
(
eT

4 , eT
5 , eT

9 , eT
13

)
, α5 =

(
eT

2 , eT
4 , eT

7 , eT
11

)
, α6 =

(
eT

4 , eT
3 , eT

8 , eT
12

)
,

α7 =
(
eT

3 , eT
5 , eT

9 , eT
13

)
, ei = (0n×(i–1)n, I, 0n×(13–i)n), i = 1, 2, . . . , 13,

e0 = Ae1 + Be3.

Proof Construct a Lyapunov functional as follows:

V (k) =
5∑

i=1

Vi(k),

where

V1(k) = θT (k)Pθ (k),

V2(k) =
k–1∑

i=k–d1

xT (i)Q1x(i) +
k–d1–1∑

i=k–d

xT (i)Q2x(i) +
k–d–1∑

i=k–d2

xT (i)Q3x(i),

V3(k) =
–1∑

i=–d1

k–1∑

j=k+i

ηT (j)R1η(j),

V4(k) =
–d1–1∑

i=–d

k–1∑

j=k+i

ηT (j)R2η(j),

V5(k) =
–d–1∑

i=–d2

k–1∑

j=k+i

ηT (j)R3η(j),

and

θ (k) =

(

xT (k),
k–1∑

i=k–d1

xT (i),
k–d1–1∑

i=k–d2

xT (i),
k–1∑

i=k–d1

k–1∑

j=i

xT (j)

)T

.
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For simplicity, we first define the following vectors:

ξT
1 (k) =

(
xT (k) xT (k – d1) xT(

k – d(k)
)

xT (k – d) xT (k – d2)

UT
1 UT

2 UT
3 UT

4 W T
1 W T

2 W T
3 W T

4
)
,

ξT
2 (k) =

(
xT (k) xT (k – d1) xT(

k – d(k)
)

xT (k – d) xT (k – d2)

UT
1 UT

5 UT
6 UT

7 W T
1 W T

5 W T
6 W T

7
)
,

where

U1 =
1

d1 + 1

k∑

i=k–d1

x(i),

U2 =
1

d(k) – d1 + 1

k–d1∑

i=k–d(k)

x(i),

U3 =
1

d – d(k) + 1

k–d(k)∑

i=k–d

x(i),

U4 =
1

d2 – d + 1

k–d∑

i=k–d2

x(i),

U5 =
1

d – d1 + 1

k–d1∑

i=k–d

x(i),

U6 =
1

d(k) – d + 1

k–d∑

i=k–d(k)

x(i),

U7 =
1

d2 – d(k) + 1

k–d(k)∑

i=k–d2

x(i),

W1 =
2

(d1 + 1)(d1 + 2)

k∑

i=k–d1

k∑

j=i

x(j),

W2 =
2

(d(k) – d1 + 1)(d(k) – d1 + 2)

k–d1∑

i=k–d(k)

k–d1∑

j=i

x(j),

W3 =
2

(d – d(k) + 1)(d – d(k) + 2)

k–d(k)∑

i=k–d

k–d(k)∑

j=i

x(j),

W4 =
2

(d2 – d + 1)(d2 – d + 2)

k–d∑

i=k–d2

k–d∑

j=i

x(j),

W5 =
2

(d – d1 + 1)(d – d1 + 2)

k–d1∑

i=k–d

k–d1∑

j=i

x(j),

W6 =
2

(d(k) – d + 1)(d(k) – d + 2)

k–d∑

i=k–d(k)

k–d∑

j=i

x(j),

W7 =
2

(d2 – d(k) + 1)(d2 – d(k) + 2)

k–d(k)∑

i=k–d2

k–d(k)∑

j=i

x(j).
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Case (i): d(k) ∈ [d1, d] ∩ N . The forward difference of Vi(k) (i = 1, 2, . . . , 5) is given by

�V1(k) = θT (k + 1)Pθ (k + 1) – θT (k)Pθ (k)

= ξT
1 (k)

{
ET

2 PE2 – ET
1 PE1 + sym

[
(E2 – E1)T PF1

(
d(k)

)]}
ξ1(k)

= ξT
1 (k)

[
D1 + G1

(
d(k)

)]
ξ1(k), (6)

�V2(k) = xT (k)Q1x(k) – xT (k – d1)Q1x(k – d1) + xT (k – d1)Q2x(k – d1)

– xT (k – d)Q2x(k – d) + xT (k – d)Q3x(k – d) – xT (k – d2)Q3x(k – d2)

= ξT
i (k)

[
eT

1 Q1e1 – eT
2 (Q1 – Q2)e2 – eT

4 (Q2 – Q3)e4 – eT
5 Q3e5

]
ξi(k)

= ξT
i (k)D3ξi(k), i = 1, 2. (7)

Using Lemma 2.1, we can obtain

�V3(k) =
–1∑

i=–d1

k∑

j=k+i+1

ηT (j)R1η(j) –
–1∑

i=–d1

k–1∑

j=k+i

ηT (j)R1η(j)

= d1η
T (k)R1η(k) –

k–1∑

i=k–d1

ηT (i)R1η(i)

≤ ξT
i (k)

[
d1(e0 – e1)T R1(e0 – e1)

]
ξi(k)

+ ξT
i (k)

(
eT

1 , eT
2 , eT

6 , eT
10

)
{

d1

(

Z111 +
1
3

Z122 +
1
5

Z133

)

+ sym[N11Π1 + N12Π2 + N13Π3]
}
(
eT

1 , eT
2 , eT

6 , eT
10

)T
ξi(k)

= ξT
i (k)[D4 + H1]ξi(k), i = 1, 2, (8)

�V4(k) =
–d1–1∑

i=–d

k∑

j=k+i+1

ηT (j)R2η(j) –
–d1–1∑

i=–d

k–1∑

j=k+i

ηT (j)R2η(j)

= (d – d1)ηT (k)R2η(k) –
k–d1–1∑

i=k–d(k)

ηT (i)R2η(i) –
k–d(k)–1∑

i=k–d

ηT (i)R2η(i)

≤ ξT
1 (k)

[
(d – d1)(e0 – e1)T R2(e0 – e1)

]
ξ1(k) + ξT

1 (k)
(
eT

2 , eT
3 , eT

7 , eT
11

)
{
(
d(k) – d1

)

×
(

Z211 +
1
3

Z222 +
1
5

Z233

)

+ sym[N21Π1 + N22Π2 + N23Π3]
}

× (
eT

2 , eT
3 , eT

7 , eT
11

)T
ξ1(k)

+ ξT
1 (k)

(
eT

3 , eT
4 , eT

8 , eT
12

)
{
(
d – d(k)

)
(

Z311 +
1
3

Z322 +
1
5

Z333

)

+ sym[N31Π1 + N32Π2 + N33Π3]
}
(
eT

3 , eT
4 , eT

8 , eT
12

)T
ξ1(k)

= ξT
1 (k)

[
D5 + G3

(
d(k)

)
+ G4

(
d(k)

)]
ξ1(k), (9)



Liao et al. Advances in Difference Equations        (2019) 2019:123 Page 9 of 12

�V5(k) =
–d–1∑

i=–d2

k∑

j=k+i+1

ηT (j)R3η(j) –
–d–1∑

i=–d2

k–1∑

j=k+i

ηT (j)R3η(j)

≤ ξT
1 (k)

[
(d2 – d)(e0 – e1)T R3(e0 – e1)

]
ξ1(k) + ξT

1 (k)
(
eT

4 , eT
5 , eT

9 , eT
13

)
{

(d2 – d)

×
(

Z411 +
1
3

Z422 +
1
5

Z433

)

+ sym[N41Π1 + N42Π2 + N43Π3]
}

× (
eT

4 , eT
5 , eT

9 , eT
13

)T
ξ1(k)

= ξT
1 (k)[D6 + H2]ξ1(k). (10)

From (6)–(10) we have �V (k) ≤ ξT
1 (k)Ψ1(d(k))ξ1(k). According to (3), we can obtain

�V (k) < 0 for any ξ1(k) 
= 0 and d(k) ∈ [d1, d] ∩ N .
Case (ii): d(k) ∈ [d, d2] ∩ N . Similarly, we have

�V1(k) = θT (k + 1)Pθ (k + 1) – θT (k)Pθ (k)

= ξT
2 (k)

{
ET

4 PE4 – ET
3 PE3 + sym

[
(E4 – E3)T PF2

(
d(k)

)]}
ξ2(k)

= ξT
2 (k)

[
D2 + G2

(
d(k)

)]
ξ2(k), (11)

�V4(k) =
–d1–1∑

i=–d

k∑

j=k+i+1

ηT (j)R2η(j) –
–d1–1∑

i=–d

k–1∑

j=k+i

ηT (j)R2η(j)

≤ ξT
2 (k)

[
(d – d1)(e0 – e1)T R2(e0 – e1)

]
ξ2(k) + ξT

2 (k)
(
eT

2 , eT
4 , eT

7 , eT
11

)
{

(d – d1)

×
(

Z511 +
1
3

Z522 +
1
5

Z533

)

+ sym[N51Π1 + N52Π2 + N53Π3]
}

× (
eT

2 , eT
4 , eT

7 , eT
11

)T
ξ2(k)

= ξT
2 (k)[D7 + H3]ξ2(k), (12)

�V5(k) =
–d–1∑

i=–d2

k∑

j=k+i+1

ηT (j)R3η(j) –
–d–1∑

i=–d2

k–1∑

j=k+i

ηT (j)R3η(j)

= (d2 – d)ηT (k)R3η(k) –
k–d–1∑

i=k–d(k)

ηT (i)R3η(i) –
k–d(k)–1∑

i=k–d2

ηT (i)R3η(i)

≤ ξT
2 (k)

[
(d2 – d)(e0 – e1)T R3(e0 – e1)

]
ξ2(k) + ξT

2 (k)
(
eT

4 , eT
3 , eT

8 , eT
12

)
{
(
d(k) – d

)

×
(

Z611 +
1
3

Z622 +
1
5

Z633

)

+ sym[N61Π1 + N62Π2 + N63Π3]
}

× (
eT

4 , eT
3 , eT

8 , eT
12

)T
ξ2(k)

+ ξT
2 (k)

(
eT

3 , eT
5 , eT

9 , eT
13

)
{
(
d2 – d(k)

)
(

Z711 +
1
3

Z722 +
1
5

Z733

)

+ sym[N71Π1 + N72Π2 + N73Π3]
}
(
eT

3 , eT
5 , eT

9 , eT
13

)T
ξ2(k)

= ξT
2 (k)

[
D8 + G5

(
d(k)

)
+ G6

(
d(k)

)]
ξ2(k), (13)



Liao et al. Advances in Difference Equations        (2019) 2019:123 Page 10 of 12

and �V (k) ≤ ξT
2 (k)Ψ2(d(k))ξ2(k), which under condition (4) indicates that �V (k) is neg-

ative definite.
Now by combining Case (i) and Case (ii), �V (k) is negative definite, which guarantees

that system (1) is asymptotically stable. This completes the proof. �

Remark 3 To show the advantage of time delay division for the stability condition without
using time delay division, we omitted the proof process and only display the results in
Table 1.

4 Numerical illustrations
In this section, we present some numerical examples that often appear in the literature to
demonstrate the effectiveness and sophistication of the proposed approach.

Example 1 Consider system (1) with the following parameters:

A =

(
0.8 0

0.05 0.9

)

, B =

(
–0.1 0
–0.2 –0.1

)

.

Example 2 Consider system (1), where

A =

(
0.7 0.1

0.05 0.7

)

, B =

(
–0.1 0.1
–0.1 –0.2

)

.

The allowable delay upper bound d2 can be found for given d1 or vice versa. The simu-
lation results are listed in Tables 1 and 2.

Remark 4 In [12] and this paper, the stability conditions are obtained by using the
Wirtinger-based integral inequality and the free-matrix-based integral inequality, respec-
tively. We can see from Table 1 that the latter is superior to the former in reducing the
conservatism when time delay division is not used, whereas the conservatism of both is
the same when time delay division is used. Therefore, on the basis of some processing tech-
niques, such as the time delay division mentioned before, our future research is discussing
the relationship between the tightness of inequalities and the conservatism of criteria.

Remark 5 From Table 2 we can see that with the lower bounds d1 = 2, 5, 7, 10, 20, the cor-
responding d2 = 13, 14, 16, 19, 29 obtained in [40], d2 = 14, 17, 18, 21, 31 obtained by The-
orem 1 in [12], and d2 = 15, 17, 18, 21, 31 derived by Theorem 3.1 in this paper. Thus the
results obtained from Theorem 3.1 in this paper are significantly better than those ob-
tained from the existing methods.

5 Conclusion
In this paper, the problem of stability criteria of discrete systems with interval time-varying
delays has been investigated. By means of the discrete form of free-matrix-based integral
inequality and the time delay division, less conservative criteria than some existing ones
are derived due to a tighter estimation of the new inequality. Finally, some illustrative ex-
amples are presented to demonstrate the effectiveness of the obtained method.
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