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where α,β � R, m � 2, f (φ) is a polynomial function of order n (n � 2). Setting α = 0,
β = 4, f (φ) = φ2

2 , Eq. (3) reduces to the Degasperis–Procesi equation (1).
In the present paper, α = 0, f (φ) = φn, n � Z+ is considered, and then Eq. (3) becomes

φt – φtxx + βnφn–1φx = n(n – 1)(n – 2)φn–3φ3
x + 3n(n – 1)φn–2φxφxx + nφn–1φxxx, (4)

by substituting the traveling wave transformation φ(x, t) = φ(x – ct) = φ(ξ ), where c is the
wave speed. Integrating once and neglecting the integral constant, the partial differential
equation (4) changes to the following ordinary differential equation:

–cφ + cφ�� + βφn = n(n – 1)φn–2φ�2 + nφn–1φ�� . (5)

Equation (5) is equivalent to the two-dimensional system as follows:

dφ

dξ
= y,

dy
dξ

=
cφ – βφn + n(n – 1)φn–2y2

c – nφn–1 , (6)

with the first integral being

H(φ, y) =
1
2

�
c – nφn–1� 2y2 – φ

�
c2

2
φ –

cn + cβ
n + 1

φn +
β

2
φ2n–1

�
= h. (7)

Obviously, Eq. (5) is a three-parameter planar dynamical system depending on the pa-
rameter triplet (c,β ,n). Since the phase orbits defined by the vector fields of Eq. (5) deter-
mine all traveling wave solutions of Eq. (4), we will investigate the bifurcations of phase
portraits of Eq. (5) in the phase plane (φ, y) when the parameters (c,β ,n) change. For the
given physical model, we aim to find the bounded solutions of Eq. (5) which are meaningful
in physics.

Suppose that φ(ξ ) is a continuous solution of (6) for ξ � (–� , +� ) and limξ � –� φ(ξ ) = α

as well as limξ � +� φ(ξ ) = β . If α = β , φ(x, t) is called a solitary wave solution. If α �= β ,
φ(x, t) is called a kink (anti-kink) wave solution. A solitary wave solution corresponds to
a homoclinic orbit, a kink (anti-kink) wave solution corresponds to a heteroclinic orbit, a
periodic orbit corresponds to a periodic traveling wave solution.

This paper is organized as follows. In Sect. 2, we discuss the bifurcations of phase por-
traits of system (6) under different parameter conditions. In Sect. 3, we prove the existence
of solitary wave, periodic, and loop solutions of (6). A brief conclusion is given in Sect. 4.

2 Bifurcations of phase portraits of (6) and (8)
In this section, the phase portraits of Eq. (6) will be considered. First, let dτ = (c–nφn–1)dξ ,
then Eq. (6) becomes

dφ

dτ
=

�
c – nφn–1�

y,
dy
dτ

= cφ – βφn + n(n – 1)φn–2y2. (8)

Obviously, Eq. (8) has the same topological phase portraits as Eq. (6) except for the
straight line c – nφn–1 = 0, and Eqs. (8) and (6) are integrable, which have the same first
integral as (7). For a fixed h, (7) determines a set of invariant curves of (8), which contains
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different branches of curves. As h is varied, (7) defines different families of orbits of (8)
with different dynamical behaviors.

Denoting F(φ) = cφ –βφn, to investigate the critical points of the system, we need to find
all zeros of the equation F(φ) = 0. In the (φ, y)-phase plane, the abscissas of equilibrium
points of Eq. (6) on the φ-axis are the zeros of F(φ). Notice that F �(φ) = c – βnφn–1, for
an odd n and cβ > 0, F �(φ) has two zeros φ± = ± ( c

βn ) 1
n–1 ; for an even n, F �(φ) has one zero

φ+ = ( c
βn ) 1

n–1 . Then the distribution of the zeros of F(φ) on the φ-axis is presented. For an
odd n, there exist three equilibrium points of Eq. (8) at O(0, 0) and E(φa,b, 0) when cβ > 0,
where φa = ( c

βn ) 1
n–1 , φb = –( c

βn ) 1
n–1 . For an even n, there exist two equilibrium points of

O(0, 0) and E(φc, 0), where φc = ( c
βn ) 1

n–1 .
Let E(φi, 0) be an equilibrium point of (8) and M(φi, 0) be the coefficient matrix of the

linearized system of Eq. (8) at an equilibrium point E(φi, 0). We obtain

J(φi, 0) = detM(φi, 0) = –
�
c – nφn–1

i
��
c – βnφn–1

i
�
.

By the theory of planar dynamical systems, the equilibrium point E(φi, 0) of the Hamil-
tonian system is a center if J(φi, 0) > 0; E(φi, 0) is a saddle if J(φi, 0) < 0; while if J(φi, 0) = 0
and Poincaré index of this equilibrium point is zero, then E(φi, 0) is a cusp.

From the analysis above, we obtain the different phase portraits of Eq. (6) shown in Fig. 1.

3 Some exact traveling wave solutions of (6) and (8)
In this section, we will use the phase portrait analytical technique [11–21] to get smooth
solitary, loop and periodic wave solutions under some conditions.

1. If n = 2, we notice that the curves defined by H(φ, y) = h = 0 correspond to the or-
bits consisting of two stable manifolds, two unstable manifolds of the saddle point O(0, 0)
and two open curves passing through the points (φc, 0), respectively (see the red orbits in
Fig. 1-6). From Eq. (7), it is obvious that the arch curve on the left-hand side of the straight
line φ = c

2 has the algebraic equation

y2 =
φ2(c2 – 2c(2+β)

3 φ + βφ2)
(c – 2φ)2 =

(–β)φ2(φ1 – φ)(φ – φ2)
(c – 2φ)2 , (9)

where φ1,2 = c(2+β)
3 ± c

3

�
β2 – 5β + 4. By Eq. (9) and the above standard phase portrait anal-

ysis, integrating along the stable and unstable manifolds, approaching the straight line
φ = c

2 to the saddle point O(0, 0) and two open curves passing through the points (φ2, 0),
we obtain the following representations:

ξ =
	 1

2 φ1

φ

η1(φ)dφ = –
1

�
–β



Φ1(φ) + Φ2(φ) – Φ1

�
1
2
φ1

�
– Φ2

�
1
2
φ1

��
(10)

and

ξ =
	 φ2

φ

η1(φ)dφ = –
1

�
–β

�
Φ1(φ) + Φ2(φ) – Φ1(φ2) – Φ2(φ2)

�
, (11)

where η1(φ) = c–2φ
�

–βφ
�

(φ1–φ)(φ–φ2)
, Φ1(φ) = c�

–φ1φ2
cosh–1(

φ1+φ2– 2φ1φ2
φ

φ1–φ2
), and Φ2(φ) = 2 ×

arcsin( 2φ–φ1–φ2
φ1–φ2

). Employing (10) and (11), we obtain a loop solution.



Wei Advances in Difference Equations        (2019) 2019:126 Page 4 of 8

Figure 1 Phase portraits of (8) under different parameter conditions, form � Z+ andm � 1

Remark The loop solution is a solitary wave solution with a singularity, which possesses
infinite derivatives at certain points, and consist of two or more independent branches.
The loop solution illustrated in (10) and (11) may be regarded as a composite solution
made up of three single-valued solutions. The notion of composite solutions for the
Camassa–Holm equation is discussed in detail in [15–19].

2. If n = 2, we notice that the curves defined by H(φ, y) = h � (h1, 0) corresponding to a
family of periodic orbits (see the blue orbits in Fig. 1-6). Under this condition, the algebraic
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equation is obtained as follows:

y2 =
2h + φ2(c2 – 2c(2+β)

3 φ + βφ2)
(c – 2φ)2 =

(–β)(φ – φ3)(φ – φ4)(φ – φ5)(φ6 – φ)
(c – 2φ)2 , (12)

where φ3 < φ4 < 0 < φ5 < φ6, and φ3 = –φ5, φ4 = –φ6. Thus, we have parametric represen-
tations for the family of periodic solutions as follows:

|ξ | =
c – 2φ3�
–βφ6φ5

F(ϕ,k) –
2(φ6 – φ3)

�
φ6φ5

Π

�
ϕ,

φ5 – φ6

φ5 – φ3
,k

�
, (13)

where ϕ = arcsin
�

(φ5–φ3)(φ6–φ)
(φ6–φ5)(φ–φ3) , k2 = (φ6–φ5)(φ4–φ3)

(φ6–φ4)(φ5–φ3) ; F(ϕ,k) and Π (ϕ, φ5–φ6
φ5–φ3

,k) are the Legen-
dre’s incomplete elliptic integrals of the first and third kind, respectively (see [22]).

3. If n = 3, we notice that the curves defined by H(φ, y) = h = 0 correspond to two homo-
clinic orbits passing through the saddle point O(0, 0) (see the red orbits in Fig. 1-5). Under
this condition, the algebraic equation is obtained as follows:

y2 =
φ2(c2 – c(3+β)

2 φ2 + βφ4)
(c – 3φ2)2 =

βφ2(φ – z1)(φ – z2)(φ – z3)(φ – z4)
(c – 3φ2)2 , (14)

where zi (i = 1 – 4) are complex numbers, z2 is conjugate to z1, and z4 is conjugate to z3.
Thus, by using the first equation of (6) and Eq. (14), we obtain the parametric representa-
tion of two homoclinic orbits:

|ξ | =
1

�
β

�
ω1F(ϕ1,k1) + ω2Π

�
ϕ1, 1 + α2,k1

�
+ ω3Π

�
ϕ1, 1 + g2

1 ,k1
�

+ ω4f2
�
, (15)

where ω1 = gcα(1+g1α)
(a1+b1g1)(1+α2) – 3g(b1–a1g1)(1+αg1)

(1+g2
1 ) , ω2 = gcα2(α–g1)

(a1+b1g1)(1+α2) , ω3 = 3gg2
1 (b1–g1a1)(g1–α)

g1(1+g2
1 ) , and

ω4 = αgc(α–g1)
a1+b1g1

– 3g1(b1–g1a1)(g1–α)
g1

. It gives rise to two smooth solitary solutions. The details
of the computation can be seen in Appendix.

4. If n = 3, the curves defined by H(φ, y) = h = 0 correspond to different orbits of Eq. (8)
consisting of two stable manifolds, two unstable manifolds of the saddle point (0, 0), and
two open curves passing through the points (φa, 0) (see the red orbits in Fig. 1-7). On the
right-hand side of the vertical axis, from Eq. (7), the arch curve on the right-hand side of
the straight line φ = ( c3 ) 1

2 is

y2 =
φ2(c2 – c(3+β)

2 φ2 + βφ4)
(c – 3φ2)2 =

βφ2(φ – φ7)(φ – φ8)(φ – z5)(φ – z6)
(c – 3φ2)2

=
βφ2(φ – φ7)(φ – φ8)[(φ – b1)2 + a2

1]
(c – 3φ2)2 , (16)

where φ7, φ8 are real numbers, z5, z6 are complex numbers, and φ7 > φ8, z6 is conjugate to
z5. By Eq. (16) and the above standard phase portrait analysis, integrating along the stable
and unstable manifolds, approaching the straight line φ = ( c3 ) 1

2 to the saddle point O(0, 0)
and the open-end curve passing through the points (φc, 0), integrating on the intervals
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[0,φ) and (φ, φc
2 ], we obtain the following representations:

ξ =
1

�
β



ω5F(ϕ2,k2) + ω6Π

�
ϕ2,

α2
1

α2
1 – 1

,k2

�
+ ω7Π

�
ϕ2,

α2
2

α2
2 – 1

,k2

�

+ ω8 arctan

� 
k2

2 + (1 – k2
2)α2

1
1 – α2

1
s du

�
+ ω9 arctan

� 
k2

2 + (1 – k2
2)α2

2
1 – α2

2
s du

��
, (17)

where η2(φ) = c–3φ2
�

βφ
�

(φ–φ7)(φ–φ8)(φ–z5)(φ–z6)
, ϕ2 = arccos( (A–B)φ+φ7B–φ8A

(A+B)φ–φ7B–φ8A
),A2 = (φ7 –b1)2 +a2

1,

B2 = (φ8 – b1)2 + a2
1, k2

2 = (A+B)2–(φ7–φ8)
4AB , ω5 = cg2α2(B–A)

φ7B+φ8A
– 3g2α1(φ7B–φ8A)

A+B , ω6 = cg2(B–A)(α1–α2)
(φ7B+φ8A)(1–α2

1 ) ,

ω7 = – 3g2(φ7B–φ8A)(α2–α1)
(A+B)(1–α2

2 ) , ω8 = – α1cg2(B–A)(α1–α2)
(φ7B+φ8A)(1–α2

1 )

�
1–α2

1
k2

2 +(1–k2
2 )α2

1
, and ω9 = 3α2g2(φ7B–φ8A)(α2–α1)

(A+B)(1–α2
2 ) ×

�
1–α2

2
k2

2 +(1–k2
2 )α2

2
. It gives rise to a loop solitary solution like in (10) and (11). Paralleling with

the orbits on the right-hand side of the vertical axis, another loop solution can be found
which consists of orbits on the left-hand side of the y-axis in Fig. 1-7.

4 Conclusion
In summary, we have obtained the bifurcations of the parameters and proved the existence
of some exact traveling wave solutions for the modified Degasperis–Procesi equation, with
the aid of dynamical systems theory. We have shown that modified Degasperis–Procesi
equation has smooth solitary wave solutions, periodic wave solutions and loop solitary
solutions under some parameter conditions.

Appendix
Equatio (14) can be rewritten as

dφ

dξ
= ±



c – 3φ2

φ

�
c2 – c(3+β)

2 φ2 + βφ4
=

c – 3φ2

�
βφ

�
(φ – z1)(φ – z2)(φ – z3)(φ – z4)

�

= ±



c
�

β

1
φ

�
(φ – z1)(φ – z2)(φ – z3)(φ – z4)

–
3

�
β

φ
�

(φ – z1)(φ – z2)(φ – z3)(φ – z4)

�
,

thus, we can obtain

|ξ | =
c

�
β

	
dφ

φ
�

(φ – z1)(φ – z2)(φ – z3)(φ – z4)

–
3

�
β

	
φ dφ

�
(φ – z1)(φ – z2)(φ – z3)(φ – z4)

.

1. From 267.02, 342.02 and 342.03 in [22],
	

dφ

φ
�

(φ – z1)(φ – z2)(φ – z3)(φ – z4)

=
g

a1 + b1g1



g

	
du + (α – g1)

	
du

1 + αtnu

�
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=
g

a1 + b1g1



gF(ϕ1,k1) + (α – g1)

1
1 + α2

�
F(ϕ1,k1) + α2Π

�
ϕ1, 1 + α2,k1

�

+ α
�
α2 + 1

�
f2

�
�

,

where f2 defined by 361.64 in [22] is

f2 =
1

2
�

(1 + α2)(1 – k2
1 + α2)

ln


 �
1 – k2

1 + α2 –
�

1 + α2dnu
�

1 – k2
1 + α2 +

�
1 + α2dnu

�
.

2. From 267.01, 342.02 and 342.03 in [22],

	
φ dφ

�
(φ – z1)(φ – z2)(φ – z3)(φ – z4)

=
g(b1 – a1g1)

g1



α

	
du + (g1 – α)

	
du

1 + g1tnu

�

=
g(b1 – a1g1)

g1



αF(ϕ1,k1) +

g1 – α

1 + g2
1

�
F(ϕ1,k1) + g2

1Π
�
ϕ1, 1 + g2

1 ,k1
�

+ g1
�
g2

1 + 1
�
f2

�
�

.

where a2
1 = – (z1–z2)2

4 , b1 = z1+z2
2 , a2 = – (z3–z4)2

4 , b2 = z3+z4
2 ,

g =
2

�
(b1 – b2)2 + (a1 + a2)2 +

�
(b1 – b2)2 + (a1 – a2)2

,

k2
1 =

4
�

(b1 – b2)2 + (a1 + a2)2
�

(b1 – b2)2 + (a1 – a2)2

(
�

(b1 – b2)2 + (a1 + a2)2 +
�

(b1 – b2)2 + (a1 – a2)2)2
, α =

a1 + b1g1

b1 – a1g
,

g2
1 =

4a2
1 – (

�
(b1 – b2)2 + (a1 + a2)2 –

�
(b1 – b2)2 + (a1 – a2)2)2

(
�

(b1 – b2)2 + (a1 + a2)2 +
�

(b1 – b2)2 + (a1 – a2)2)2 – 4a2
1

.

Hence, from the computation above, Eq. (15) is obtained.
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