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Abstract
In this paper, we consider the linear finite volume method (FVM) for the stochastic
Helmholtz equation, driven by white noise perturbed forcing terms in
one-dimension. We first deduce the linear FVM for the deterministic Helmholtz
problem. The dispersion equation is presented, and the error between the numerical
wavenumber and the exact wavenumber is then analyzed. Comparisons between the
linear FVM and the linear finite element method (FEM) are also made. The theoretical
analysis and practical calculation indicate that the error of the linear FVM is half of that
of the linear FEM. For the stochastic Helmholtz equation, convergence analysis and
error estimates are given for the numerical solutions. The effects of the noises on the
accuracy of the approximations are illustrated. Numerical experiments are provided to
examine our theoretical results.
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1 Introduction
In this paper, we consider the stochastic Helmholtz problem in one-dimension driven by
an additive white noise forcing term (see [6, 15, 18])

⎧
⎨

⎩

– d2u
dx2 – k2u(x) = g(x) + Ẇ (x), x ∈ (0, 1),

u(0) = 0, u′(1) – iku(1) = 0,
(1.1)

with the wavenumber k, where unknown u usually represents a pressure field in the fre-
quency domain, i2 = –1, g is a deterministic real function with compact supports con-
tained in I := [0, 1], and Ẇ (x) denotes the standard one-parameter family Brownian white
noise that satisfies

E
[
Ẇ (x) · Ẇ

(
x′)] = δ

(
x – x′),

where δ denote the usual Dirac δ-function and E the expectation. Following the standard
stochastic theory of the white noise [23, 27], we have

E
[
f (x)

]
= g(x) and V

[
f (x)

]
= 1,

where V is the variance operator. The stochastic Helmholtz equation has important ap-
plications in geophysics and medical science [4, 16, 18, 20, 26].
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In recent years, finite difference methods (FDMs) and finite element methods (FEMs)
have been developed to discretize the stochastic Helmholtz equation, for which the reader
is referred to [5, 6, 8] and references cited therein. FDMs are easy to implement and lo-
cally conservative but not flexible to handle complex geometry. FEMs enjoy this flexibil-
ity. However, the main drawback of FEMs is its computational complexity and loss of the
local conservation property. Finite volume methods (FVMs) possess the following advan-
tages: the grid is flexible and the natural boundary conditions are easy to deal with; their
implementation capability is comparable to that of finite difference methods; the mass
conservation law is maintained, which is desirable in many engineering and science ap-
plications (see [10, 11, 13, 19] and references therein). It is worth mentioning that, for
elliptic equations, although theoretical results indicate that both FVMs and FEMs enjoy
the same optimal convergence order, the calculational effort of FVMs is usually less than
that of FEMs, because of the asymmetry of their discrete schemes [19]. However, FVMs
display many advantages when looking for the numerical solutions of computational fluid
dynamics problems, because the mass conservation law is preserved [10]. The linear FVM
for the stochastic Helmholtz equation in one-dimension will be developed in this paper.
Furthermore, theoretical results and practical computations will illustrate that the FVM
is more efficient than the FEM when solving the deterministic Helmholtz equation. In
particular, the error of the linear FVM is only half of that of the linear FEM.

To numerically solve the stochastic Helmholtz equation, we should consider two issues:
one is randomness, and the other is a high wavenumber. We turn to randomness first.
The stochastic Helmholtz equation is a stochastic partial differential equation. As pre-
sented in [1, 7, 12], the difficulty in the error analysis of general numerical methods for a
stochastic partial differential equation is the lack of regularity of its solution. Particularly,
for the one-dimensional case, if Ẇ corresponds to the white noise, it has been shown
that the regularity estimates are usually very weak, and lead to low order error estimates
[1]. Therefore, we first follow [1, 7, 12] to approximate the white noise by a piecewise
constant process, which converts the stochastic Helmholtz equation into the determin-
istic Helmholtz equation. For other methods to discretize the white noise, the reader is
referred to [27] and references therein. We then apply the linear FVM to the stochastic
Helmholtz equation with discretized white noise forcing terms. For the case with a more
regular noise, high-order FVMs will be discussed in our future work.

On the other hand, solving the deterministic Helmholtz equation numerically with large
wavenumbers is still a challenging task. For many years, FDMs (see [17, 22, 24, 25] and
the reference therein), FEMs (see [2, 3, 15]) and discontinuous Galerkin methods (DGs)
(see [14]) have been widely used to discrete the deterministic Helmholtz equation with
various boundaries. For large wavenumbers, the quality of the numerical results usually
deteriorates as the wavenumber k increases, which is the so-called “pollution effect” of
high wavenumbers [3, 15]. Moreover, due to this pollution effect, the wavenumber of the
numerical solution is different from that of the exact solution, which is known as “numeri-
cal dispersion” [15]. Hence, for numerically solving the deterministic Helmholtz equation,
two main issues should be focused on: one is the numerical dispersion which is closely re-
lated to the pollution error, while the other is the solver cost. So far, the “pollution term” of
the error estimates, which is connected with the “pollution effect” of high wavenumbers,
and the numerical dispersion have not been considered for FVMs.
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This paper is organized as follows. In Sect. 2, we deduce the linear FVM for the deter-
ministic Helmholtz problem in one-dimension, and then consider its solution’s existence
and uniqueness. For the linear FVM, we establish its solution’s error estimates in H1- and
L2-norm, then present its dispersion equation, and analyze the error between the numer-
ical and exact wavenumbers. Comparisons between the linear FVM and FEM are also
made in this section. Theoretical results indicate that the error for the linear FVM is half
of that for the linear FEM. In Sect. 3, we study the approximation of (1.1) using discretized
white noises. We also establish the regularity of the solution of the approximate problem
and its error estimates in H1-norm. In Sect. 4, we study the linear FVM of the stochastic
Helmholtz equation with discretized white noise forcing terms, and obtain the H1 error
estimates between the finite volume solutions and the exact solution of (1.1). In Sect. 5,
three numerical experiments, including two for the deterministic Helmholtz problem and
one for the stochastic Helmholtz equation, are given to demonstrate the efficiency and ac-
curacy of the linear FVM. In particular, numerical results illustrate that, when solving the
deterministic Helmholtz problem, the error for the linear FVM is only half of that for the
linear FEM. Finally, Sect. 6 contains the conclusions of this paper.

2 The linear FVM for the deterministic Helmholtz equation in one-dimension
In this section, we deduce the linear FVM for the deterministic Helmholtz problem in
one-dimension

⎧
⎨

⎩

– d2u
dx2 – k2u(x) = g(x), x ∈ (0, 1),

u(0) = 0, u′(1) – iku(1) = 0.
(2.1)

We choose the trial and the test function spaces as linear finite element and piecewise
constant function spaces, respectively. For the linear FVM, we consider its solution’s ex-
istence and uniqueness, and establish the error estimates. The dispersion equation is also
presented, and the error between the numerical and exact wavenumbers is analyzed. Fur-
thermore, we make comparisons between the linear FVM and FEM. Theoretical analysis
indicates that the error for the linear FVM is half of that for the linear FEM.

We begin with introducing some useful notations. We denote by L2(I) the space of all
square-integrable complex-valued functions equipped with the inner product

(v,ω) :=
∫ 1

0
v(x)ω̄(x) dx, ∀v,ω ∈ L2(I),

and the norm

‖ω‖0 := (ω,ω)
1
2 , ∀ω ∈ L2(I).

By H1(I) we denote the Sobolev space

H1(I) :=
{

u : u ∈ L2(I) and u′ ∈ L2(I)
}

.

The norm of the space H1(I) is defined as

‖u‖1 :=
(‖u‖2

0 +
∥
∥u′∥∥2

0

) 1
2 , ∀u ∈ H1(I).
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We also introduce the H1-seminorm as

|u|1 :=
∥
∥u′∥∥

0, ∀u ∈ H1(I).

It follows from [15] that the Green’s function of (2.1) can be presented as

G(x, s) =
1
k

⎧
⎨

⎩

sin(kx)eiks, 0 ≤ x ≤ s,

sin(ks)eikx, s ≤ x ≤ 1.
(2.2)

The solution u(x) of problem (2.1) exists for all k > 0 and can be written as

u(x) =
∫ 1

0
G(x, s)g(s) ds.

In addition, Lemma 1 in [15] presents bounds of the exact solution and its derivatives
given the data g .

Lemma 2.1 Let u ∈ H2(I) be the solution to problem (2.1) for given data g ∈ L2(I). Then

‖u‖0 ≤ 1
k
‖g‖0,

∥
∥u′∥∥

0 ≤ ‖g‖0,
∥
∥u′′∥∥

0 ≤ (1 + k)‖g‖0.

2.1 Trial and test function spaces
In this subsection, we present the trial and the test function spaces for the linear FVM.
We begin with discretizing the interval I into a grid Th with nodes

0 = x0 < x1 < · · · < xn = 1.

Denote the length of the element Ij := [xj–1, xj] by hj = xj – xj–1 and write h = max1≤j≤n hj.
We assume the grid satisfies the quasi-uniformity condition hj ≥ μh (j = 1, 2, . . . , n) for
some positive constant μ.

The trial space Uh is taken as the linear element space with respect to Th, which consists
of all the functions uh satisfying

(i) uh ∈ C(I), uh(0) = 0 and
(ii) uh is linear on each Ij and is determined uniquely by its values at the endpoints of

the element.
Obviously Uh is an n-dimensional subspace of H1

E(I) := {v : v ∈ H1(I), v(0) = 0}.
We next present the nodal basis functions for Uh. The basis function with respect to xj

is

φj(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 + x–xj
hj

, xj–1 ≤ x ≤ xj,

1 – x–xj
hj+1

, xj ≤ x ≤ xj+1,

0, elsewhere,

j = 1, 2, . . . , n – 1, (2.3)

and

φn(x) =

⎧
⎨

⎩

1 + x–xn
hn

, xn–1 ≤ x ≤ xn,

0, elsewhere.
(2.4)
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The functions {φj(x) : j = 1, 2, . . . , n} form a basis of Uh and any uh ∈ Uh has the following
expression

uh =
n∑

j=1

ujφj(x),

where uj = uh(xj). On the element Ij we have

uh = uj–1(1 – ξ ) + ujξ , ξ =
x – xj–1

hj
, (2.5)

u′
h = (uj – uj–1)/hj, x ∈ Ij, j = 1, 2, . . . , n. (2.6)

We then present a dual grid T∗
h with nodes

0 = x0 < x1/2 < x3/2 < · · · < xn–1/2 < xn = 1,

where xj–1/2 = (xj–1 + xj)/2, j = 1, 2, . . . , n. The dual elements are I∗
0 = [x0, x1/2], I∗

j =
[xj–1/2, xj+1/2] (j = 1, 2, . . . , n – 1), and I∗

n = [xn–1/2, xn]. Accordingly we choose the test func-
tion space Vh as the piecewise constant function (step function) space, which contains all
the functions vh ∈ L2(I) satisfying

(i) vh(x) = 0, for x ∈ I∗
0 , and

(ii) vh is a constant on each I∗
j (j = 1, 2, . . . , n).

The basis functions of Vh are

ψj(x) =

⎧
⎨

⎩

1, x ∈ I∗
j ,

0, x ∈ I – I∗
j ,

j = 1, 2, . . . , n. (2.7)

Any vh ∈ Vh has the form

vh =
n∑

j=1

vjψj(x),

where vj = vh(xj).

2.2 Variational formulation and linear FVM
We deduce the linear FVM for the deterministic problem (2.1) in this subsection. For this
purpose, we first present the variational formulation of (2.1). A variational formulation of
(2.1) can be obtained formally by multiplying the deterministic Helmholtz equation with
v ∈ H1

E(I). After partial integration we then arrive at the variational problem as follows:
Find a function u ∈ H1

E(I) such that

a(u, v) = (g, v), ∀v ∈ H1
E(I), (2.8)

where

a(u, v) :=
∫ 1

0

[
u′(x)v̄′(x) – k2u(x)v̄(x)

]
dx – iku(1)v̄(1), (g, v) :=

∫ 1

0
g(x)v̄(x) dx.
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According to [15], the variational problem (2.8) has a unique weak solution. Applying
Poincaré inequality, we obtain a continuity estimate for a(·, ·), namely

∣
∣a(u, v)

∣
∣ ≤ (

1 + k + k2)|u|1|v|1, ∀u, v ∈ H1
E .

We turn to the FVM for solving (2.1). The linear FVM approximation to (2.1) is: Find
uh =

∑n
m=1 umφm(x) such that

a(uh,ψj) = (g,ψj), j = 1, 2, . . . , n, (2.9)

where

a(uh,ψj) =
∫ b

a
u′

h(x)
[
δ(x – xj–1/2) – δ(x – xj+1/2)

]
dx – k2

∫ xj+1/2

xj–1/2

uh(x) dx

=
uj – uj–1

hj
–

uj+1 – uj

hj+1
–

k2

8
[
(hjuj–1 + hj+1uj+1) + 3(hj + hj+1)uj

]
,

j = 1, 2, . . . , n – 1,

u0 = 0, a(uh,ψn) =
un – un–1

hn
–

k2

8
hn(un–1 + 3un) – ikun.

2.3 Existence and uniqueness
In this subsection, we establish the existence and uniqueness of the solution for the linear
FVM (2.9).

First, for uh ∈ Uh it follows from (2.6) that

|uh|1 =
[∫ 1

0
u′

hū′
h dx

] 1
2

=

[ n∑

j=1

(uj – uj–1)(ūj – ūj–1)/hj

] 1
2

. (2.10)

Next, we define an interpolation operator Π∗
h : H1

E(I) → Vh by

Π∗
h u =

n∑

j=1

ujψj, ∀u ∈ H1
E(I). (2.11)

We then have the lemma as follows.

Lemma 2.2 As the homogeneous equation

a(u, v) = 0, ∀v ∈ H1
E(I), (2.12)

admits only the trivial solution, there exists a constant α > 0 independent of the subspace
Uh such that for sufficiently small kh,

sup
ωh∈Uh ,|ωh|1=1

∣
∣a

(
uh,Π∗

h ωh
)∣
∣ ≥ α|uh|1, ∀uh ∈ Uh. (2.13)
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Proof We first rewrite a(uh,Π∗
h ωh) as follows:

a
(
uh,Π∗

h ωh
)

= a1
(
uh,Π∗

h ωh
)

– 2k2(uh,Π∗
h ωh

)
,

where

a1
(
uh,Π∗

h ωh
)

= a
(
uh,Π∗

h ωh
)

+ 2k2(uh,Π∗
h ωh

)
.

Below we examine the positive definiteness of a1(uh,Π∗
h uh). By (2.5),

k2(uh,Π∗
h uh

)
= k2

n–1∑

j=1

ūj

[∫ xj

xj–1/2

uh dx +
∫ xj+1/2

xj

uh dx
]

+ k2ūn

∫ xn

xn–1/2

uh dx

= k2
n–1∑

j=1

ūj

{

hj

∫ 1

1
2

[
uj–1(1 – ξ ) + ujξ

]
dξ + hj+1

∫ 1
2

0

[
uj(1 – ξ ) + uj+1ξ

]
dξ

}

+ k2ūnhn

∫ 1

1
2

[
un–1(1 – ξ ) + unξ

]
dξ

=
3
8

n∑

j=1

ujūjhj +
3
8

n–1∑

j=1

ujūjhj+1 +
1
8

n∑

j=1

uj–1ūjhj +
1
8

n∑

j=1

ūj–1ujhj.

Thus, k2(uh,Π∗
h uh) is a real number. Furthermore, by (2.9) we have

a1
(
uh,Π∗

h uh
)

=
n–1∑

j=1

ūj

[
uj – uj–1

hj
–

uj+1 – uj

hj+1

]

+ ūn
un – un–1

hn
+ k2(uh,Π∗

h uh
)

– ikunūn

=
n∑

j=1

(uj – uj–1)(ūj – ūj–1)
hj

+ k2(uh,Π∗
h uh

)
– ikunūn.

Therefore,

Re a1
(
uh,Π∗

h uh
)

= |uh|21 + k2(uh,Π∗
h uh

)

= |uh|21 + k2(uh, uh) + k2(uh,Π∗
h uh – uh

)

≥ |uh|21 + k2‖uh‖2
0 – k2‖uh‖0

∥
∥Π∗

h uh – uh
∥
∥

0. (2.14)

By the interpolation theory, we get

∥
∥Π∗

h uh – uh
∥
∥

0 ≤ C1h|uh|1, ∀uh ∈ Uh. (2.15)

Then we combine (2.14) with (2.15) to obtain

Re a1
(
uh,Π∗

h uh
) ≥ |uh|21 + k2‖uh‖2

0 – C1k2h‖uh‖0|uh|1,

≥
(

1 –
C1

2
k2h2

)

|uh|21 +
k2

2
‖uh‖2

0.
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Hence, for sufficiently small kh, one has

∣
∣a1

(
uh,Π∗

h uh
)∣
∣ ≥ Re a1

(
uh,Π∗

h uh
) ≥

(

1 –
C1

2
k2h2

)

|uh|21, ∀uh ∈ Uh. (2.16)

Now we turn to showing (2.13). Suppose by contradiction that there exists a sequence
{ũh}, ũh ∈ Uh, satisfying

|ũh|1 = 1, sup
ωh∈Uh ,|ωh|1=1

∣
∣a

(
ũh,Π∗

h ωh
)∣
∣ → 0 as h → 0. (2.17)

Since H1
E(I) is weakly sequentially compact, {ũh} has a subsequence (again written as {ũh})

which converges weakly to some ũ ∈ H1
E(I). Take any ω ∈ H1

E(I) and write Πhω as the inter-
polation projection of ω onto the trial function space Uh. It is clear that Π∗

h (ω – Πhω) = 0.
It follows from the interpolation theory that, when h is sufficiently small,

|Πhω|1 ≤ |ω|1 + |Πhω – ω|1 ≤ |ω|1 + Ch|ω|2 ≤ ‖ω‖2. (2.18)

By (2.17) we have

∣
∣a

(
ũh,Π∗

h ω
)∣
∣ =

∣
∣a

(
ũh,Π∗

h (Πhω)
)∣
∣ ≤ sup

ωh∈Uh ,|ωh|1=1

∣
∣a

(
ũh,Π∗

h ωh
)∣
∣ · |Πhω|1

≤ C sup
ωh∈Uh ,|ωh|1=1

∣
∣a

(
ũh,Π∗

h ωh
)∣
∣ · ‖ω‖2 → 0, h → 0. (2.19)

On the other hand, we next prove that |a(ũh,Π∗
h ω – ω)| → 0, h → 0. We first rewrite

a(ũh,Π∗
h ω – ω) as follows:

a
(
ũh,Π∗

h ω – ω
)

= a
(
ũh,Π∗

h ω
)

– a(ũh,Πhω) + a(ũh,Πhω – ω). (2.20)

It follows from the continuity of a(u, v) and the interpolation theory that

∣
∣a(ũh,Πhω – ω)

∣
∣ ≤ (

1 + k + k2)|ũh|1|Πhω – ω|1
≤ C

(
1 + k + k2)h|ũh|1|ω|2 → 0, h → 0. (2.21)

In addition,

a(ũh,Πhω) =
∫ 1

0
ũ′

h(Πhω)′ dx – k2
∫ 1

0
ũhΠhω dx – ikũnω̄n

=
n∑

j=1

hj
ũj – ũj–1

hj

ω̄j – ω̄j–1

hj
– k2

∫ 1

0
ũhΠhω dx – ikũnω̄n, (2.22)
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a
(
ũh,Π∗

h ω
)

=
n–1∑

j=1

ω̄j
[
ũ′

h(xj– 1
2

) – ũ′
h(xj+ 1

2
)
]

+ ω̄nũ′
h(xn– 1

2
)

– k2
∫ 1

0
ũhΠ

∗
h ω dx – ikũnω̄n

=
n∑

j=1

ũ′
h(xj– 1

2
)(ω̄j – ω̄j–1) – k2

∫ 1

0
ũhΠ

∗
h ω dx – ikũnω̄n

=
n∑

j=1

ũj – ũj–1

hj
(ω̄j – ω̄j–1) – k2

∫ 1

0
ũhΠ

∗
h ω dx – ikũnω̄n. (2.23)

By (2.22) and (2.23), we get

a
(
ũh,Π∗

h ω
)

– a(ũh,Πhω) = k2(ũh,Πhω – Π∗
h ω

)
= k2(ũh,Πhω – ω) + k2(ũh,ω – Π∗

h ω
)
.

It follows from the Cauchy inequality and the interpolation theory that

∣
∣a

(
ũh,Π∗

h ω
)

– a(ũh,Πhω)
∣
∣ ≤ k2‖ũh‖0‖Πhω – ω‖0 + k2‖ũh‖0

∥
∥ω – Π∗

h ω
∥
∥

0

≤ Ck2h‖ũh‖0‖ω‖2 → 0, h → 0. (2.24)

Combining (2.20) and (2.21) with (2.24) yields

∣
∣a

(
ũh,Π∗

h ω – ω
)∣
∣ → 0, h → 0. (2.25)

We combine (2.19) with (2.25) to obtain

a(ũh,ω) → 0, h → 0. (2.26)

For fixed ω ∈ H1
E(I), a(u,ω) is a bounded linear functional on H1

E(I), which implies

a(ũh,ω) → a(ũ,ω), h → 0. (2.27)

By (2.26) and (2.27), we have

a(ũ,ω) = 0, ∀ω ∈ H1
E(I). (2.28)

The assumption of the lemma then implies ũ = 0. So the sequence ũh converges weakly to
zero. From the compactness of the imbedding of H1

E(I) in L2(I), we know that ũh converges
strongly to zero in L2(I), which gives

‖ũh‖0 → 0, as h → 0.

Furthermore, it follows from the Cauchy inequality and the interpolation theory that

∣
∣2k2(ũh,Π∗

h ũh
)∣
∣ ≤ 2k2‖ũh‖0

∥
∥Π∗

h ũh
∥
∥

0 ≤ Ck2‖ũh‖0‖ũh‖0 → 0, h → 0. (2.29)
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Finally, by (2.17) and (2.29), we conclude

∣
∣a1

(
ũh,Π∗

h ũh
)∣
∣ ≤ ∣

∣a
(
ũh,Π∗

h ũh
)∣
∣ +

∣
∣2k2(ũh,Π∗

h ũh
)∣
∣

≤ sup
ωh∈Uh ,|ωh|1=1

∣
∣a

(
ũh,Π∗

h ωh
)∣
∣ + Ck2‖ũh‖0‖ũh‖0 → 0, h → 0. (2.30)

This contradicts (2.16) and completes the proof. �

Based on Lemma 2.2, the following theorem indicates that the solution of (2.9) exists
and is unique.

Theorem 2.3 If h is sufficiently small, then the linear FVM (2.9) has a unique solution for
any given g ∈ L2(I).

Proof By virtue of the well-known results in linear algebra, we only need to show that the
homogeneous equation

a(uh,ψj) = 0, j = 1, 2, . . . , n – 1,

admits only the trivial solution, which follows from (2.13). �

2.4 Convergence order estimates
In this subsection, we present estimates for the error u – uh in H1- and L2-norm for the
linear FVM (2.9). The following theorem establishes an estimate for the error u – uh in
H1-norm.

Theorem 2.4 Let u be solution of (2.1) satisfying u ∈ H2(I) and uh be the solution of the
linear FVM (2.9). If h is sufficiently small, then

|u – uh|1 ≤ C
(
1 + k2h

)
h|u|2 ≤ C(1 + k)

(
1 + k2h

)
h‖g‖0. (2.31)

Proof Clearly, we have

a
(
u – uh,Π∗

h ωh
)

= 0, ∀ωh ∈ Uh. (2.32)

Together with Lemma 2.2 and the interpolation theory, we observe that

|Πhu – uh|1 ≤ 1
α

sup
ωh∈Uh ,|ωh|1=1

∣
∣a

(
u – Πhu,Π∗

h ωh
)∣
∣. (2.33)

Let ωj = ωh(xj). Then we have Π∗
h ωh =

∑n
j=1 ωjψj and

a
(
u – Πhu,Π∗

h ωh
)

=
n∑

j=1

(u – Πhu)′j–1/2(ω̄j – ω̄j–1) – k2
∫ 1

0
(u – Πhu)Π∗

h ωh dx

– ik
[
u(1) – Πhu(1)

]
ω̄n. (2.34)
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By the Cauchy and Hölder inequalities and the definition of Πh, we have that

∣
∣a

(
u – Πhu,Π∗

h ωh
)∣
∣

≤
{ n∑

j=1

[
(u – Πhu)′j–1/2

]2
} 1

2
{ n∑

j=1

|ω̄j – ω̄j–1|2
} 1

2

+ k2‖u – Πhu‖0
∥
∥Π∗

h ωh
∥
∥

0. (2.35)

Below we present estimates for a(u – Πhu,Π∗
h ωh) based on the above inequality, which

leads to an estimate for |uh – Πhu|1. It follows from (2.6) that

(u – Πhu)′j–1/2 = u′
j–1/2 – (uj – uj–1)/hj.

Furthermore, by the mean value theorem, there exists ξ0 ∈ Ij such that

u′(ξ0) = (uj – uj–1)/hj, i.e., (u – Πhu)′ξ0 = 0.

Hence, we deduce that

(u – Πhu)′j–1/2 =
∫ xj–1/2

ξ0

(u – Πhu)′′ dx =
∫ xj–1/2

ξ0

u′′ dx,

which yields

∣
∣(u – Πhu)′j–1/2

∣
∣2 ≤ h

[∫ xj–1/2

ξ0

(
u′′)2 dx

]

,

{ n∑

j=1

[
(u – Πhu)′j–1/2

]2
} 1

2

≤ h1/2|u|2.

(2.36)

Therefore, we have

{ n∑

j=1

[
(u – Πhu)′j–1/2

]2
} 1

2
{ n∑

j=1

|ω̄j – ω̄j–1|2
} 1

2

≤ h|u|2|ωh|1. (2.37)

In addition, by the interpolation theory we have

k2‖u – Πhu‖0 ≤ Ck2h2|u|2, (2.38)
∥
∥Π∗

h ωh
∥
∥

0 ≤ ∥
∥Π∗

h ωh – ωh
∥
∥

0 + ‖ωh‖0 ≤ C|ωh|1. (2.39)

Combining (2.33) with (2.37)–(2.39) yields

|uh – Πhu|1 ≤ C
(
1 + k2h

)
h|u|2.

Applying the interpolation theory in Sobolev spaces leads to

|u – Πhu|1 ≤ Ch|u|2.
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The above two estimates and the regularity of u (see Lemma 2.1) lead to (2.31) and com-
pletes the proof. �

The above theorem indicates that the solution uh of the linear FVM (2.9) approximates
the solution u of (2.1) to first order in H1-norm. Moreover, the term associated with k2h2

presents the pollution effect, which depends on the wavenumber k. The next theorem
establishes an estimate for the error u – uh in L2-norm.

Theorem 2.5 Let uh be the solution of (2.9), and u be the solution of (2.1) with u ∈ H1
E(I)∩

W 3,1(I). If k2h is small enough, then

‖u – uh‖0 ≤ C(1 + k)h2‖u‖3,1. (2.40)

Proof Let us introduce an auxiliary problem: For a given e = u – uh, find ω ∈ H1
E(I) such

that

a(v,ω) = (v, e), ∀v ∈ H1
E(I). (2.41)

It follows from Lemma 2.1 that the above problem possesses a unique solution satisfying

‖ω‖2 ≤ 2(1 + k)‖e‖0. (2.42)

Combining (2.41) with (2.32) leads to

‖u – uh‖2
0 = a(u – uh,ω)

= a(u – uh,ω – Πhω) + a(u – uh,Πhω) – a
(
u – uh,Π∗

h ω
)
. (2.43)

By (2.31),(2.42) and the continuity of a(·, ·), we have

∣
∣a(u – uh,ω – Πhω)

∣
∣ ≤ (

1 + k + k2)|u – uh|1|ω – Πhω|1
≤ C1(1 + k)2(1 + k + k2)(1 + k2h

)
h2|u|2‖u – uh‖0. (2.44)

Moreover, by a simple computation, we get

a(u – uh,Πhω) =
n∑

j=1

∫ xj

xj–1

(u – uh)′ dx
ω̄j – ω̄j–1

hj
– k2

∫ 1

0
(u – uh)Πhω dx

– ik
[
u(1) – uh(1)

]
ω̄n, (2.45)

a
(
u – uh,Π∗

h ω
)

=
n∑

j=1

(u – uh)′j–1/2(ω̄j – ω̄j–1) – k2
∫ 1

0
(u – uh)Π∗

h ω dx

– ik
[
u(1) – uh(1)

]
ω̄n. (2.46)
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Thus there holds

a(u – uh,Πhω) – a
(
u – uh,Π∗

h ω
)

=
n∑

j=1

(
uj – uj–1 – hju′

j–1/2
) ω̄j – ω̄j–1

hj
– k2

∫ 1

0
(u – uh)

[
Πhω – Π∗

h ω
]

dx. (2.47)

Applying the Taylor expansion with an integral remainder yields

∣
∣
∣
∣
∣

n∑

j=1

(
uj – uj–1 – hju′

j–1/2
) ω̄j – ω̄j–1

hj

∣
∣
∣
∣
∣

≤ C2h2|u|3,1|ω|1,∞ ≤ C2(1 + k)h2|u|3,1‖u – uh‖0. (2.48)

In addition, we have

∣
∣
∣
∣k

2
∫ b

a
(u – uh)

[
Πhω – Π∗

h ω
]

dx
∣
∣
∣
∣

≤
∣
∣
∣
∣k

2
∫ b

a
(u – uh)[Πhω – ω̄] dx

∣
∣
∣
∣ +

∣
∣
∣
∣k

2
∫ b

a
(u – uh)

[
Π∗

h ω – ω̄
]

dx
∣
∣
∣
∣

≤ k2‖u – uh‖0‖Πhω – ω‖0 + k2‖u – uh‖0
∥
∥Π∗

h ω – ω
∥
∥

0

≤ [
C3k2h2 + C4k2h

]
(1 + k)‖u – uh‖2

0. (2.49)

Combining (2.47)–(2.49) yields

∣
∣a(u – uh,Πhω) – a

(
u – uh,Π∗

h ω
)∣
∣

≤ C2(1 + k)h2|u|3,1‖u – uh‖0 +
[
C3k2h2 + C4k2h

]
(1 + k)‖u – uh‖2

0. (2.50)

By (2.43), (2.44), (2.50) and noting the imbedding relation W 3,1(I) → H2(I), for sufficiently
small k2h, we have

‖u – uh‖2
0 ≤ C1(1 + k)(1 + k + k2)(1 + k2h) + C2

1 – (C3k2h2 + C4k2h)(1 + k)
(1 + k)h2‖u‖3,1‖u – uh‖0.

This validates the estimate (2.40) and completes the proof. �

The above theorem indicates that in L2-norm the solution uh of the linear FVM (2.9)
approximates the solution u of (2.1) to second order. Moreover, the term associated with
kh2 presents the pollution effect, which depends on the wavenumber k.

2.5 Error analysis between the numerical and exact wavenumbers
In this subsection, we obtain the dispersion equation for the linear FVM (2.9) by a clas-
sical dispersion analysis, and provide an error analysis between the numerical and exact
wavenumbers. Comparisons between the linear FVM and FEM are also made in this sub-
section, which indicate that the error for the linear FVM is half of that for the linear FEM.
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Assuming that a uniform mesh is used, we then rewrite the linear FVM (2.9) for “inte-
rior” points xj = j/n, 1 < j < n as

As(uj–1 + uj+1) + Aouj = (g,ψj), (2.51)

where

As = –
1
h

–
1
8

k2h, Ao =
2
h

–
6
8

k2h.

Following the classical harmonic approach, we next insert the discrete expression of a
plane wave uj := eikxj into equation (2.51). By a simple computation, we get the dispersion
equation

2As cos(kh) + Ao = 0. (2.52)

Replacing variable k in the parameters As, Ao with the numerical wavenumber kN in equa-
tion (2.52) yields an equation for the exact wavenumber k and the numerical wavenumber
kN , namely

kN =
1
h

√
1 – cos(kh)

3
8 + 1

8 cos(kh)
. (2.53)

Based on the above equation, we will analyze the error between the numerical wavenum-
ber kN and the exact wavenumber k in the following proposition, when kh is small enough.

Proposition 2.6 For the linear FVM (2.9), if kh is small enough, then

kN = k +
1

48
k3h2 + O

(
k4h3). (2.54)

Proof Let τ := kh, and denote

f1(τ ) = 1 – cos(τ ), f2(τ ) =
3
8

+
1
8

cos(τ ).

Applying Taylor expansions for f1(τ ) and 1
f2(τ ) at the point τ = 0 yields

f1(τ ) =
τ 2

2
–

τ 4

24
+ O

(
τ 6), (2.55)

1
f2(τ )

= 2 +
1
4
τ 2 + O

(
τ 3). (2.56)

In addition, from equation (2.53), we have

(
kN h

)2 =
f1(τ )
f2(τ )

.

Together with equations (2.55) and (2.56), we have

(
kN)2 = k2 +

1
24

k4h2 + O
(
k5h3), kh → 0.



Xu and Wu Advances in Difference Equations         (2019) 2019:84 Page 15 of 26

Based on the above equation, applying the Taylor expansion of the function
√

1 + τ at the
point τ = 0 leads to the conclusion of this proposition. �

The above proposition indicates that kN approximates k to second order. Moreover, the
term associated with k3h2 presents the pollution effect, which depends on the wavenum-
ber k. For the linear finite element method, a similar estimate for the relation kN and k is
obtained; see Remark 2.7.

Remark 2.7 For the linear finite element method, if kh is sufficiently small, then

kN = k +
1

24
k3h2 + O

(
k4h3). (2.57)

Equations (2.54) and (2.57) indicate that kN approximates k to second order, for both
the linear FVM and FEM. Moreover, the term associated with k3h2 presents the pollution
effect. We also find that the term associated with k3h2 for the linear FVM is half of that
for the linear FEM, when kh is small enough. However, when a uniform mesh is used, the
quadratic finite volume method may not behave as well as the quadratic finite element
method; see Remark 2.8.

Remark 2.8 Assume that a uniform mesh is used. For the quadratic finite volume method,
when kh is sufficiently small, we have

kN = k –
1

192
k3h2 + O

(
k5h4). (2.58)

For the quadratic finite element method, when kh is small enough, we get

kN = k +
1

1440
k5h4 + O

(
k7h6). (2.59)

We next present the normalized numerical phase and group velocities for the linear
FVM, which are two important tools for measuring the numerical dispersion (see [17, 21]).
In practice, the former is usually preferred. For a numerical method, when its normalized
numerical phase velocity approximates 1 better, its numerical dispersion is smaller, and its
accuracy is higher. Similar conclusions hold for the normalized numerical group velocity.
For the convenience of analysis, let v be the velocity of propagation, ω be the angular
frequency, λ be the wavelength, and G be the number of gridpoints per wavelength, that
is, G = λ

h . Since λ = 2πv
ω

and k = ω
v , we have kh = 2π

G . Together with equation (2.53), we
conclude that

kN

k
=

G
2π

√
1 – cos( 2π

G )
3
8 + 1

8 cos( 2π
G )

. (2.60)

The normalized numerical phase velocity, which is equivalent to kN

k (cf. [9, 17]), is

V N
ph

v
=

G
2π

√
1 – cos( 2π

G )
3
8 + 1

8 cos( 2π
G )

. (2.61)
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In addition, together with (2.54), we get

kN

k
= 1 +

1
48

k2h2 + O
(
k3h3), (2.62)

which indicates that the normalized numerical phase velocity approximates 1 to second
order, when kh → 0, and 1

48 k2h2 is the main error term. Furthermore, the normalized
numerical group velocity for the linear FVM is

V N
gr

v
=

G
4π

v
V N

ph

1
2 sin( 2π

G )
[ 3

8 + 1
8 cos( 2π

G )]2
. (2.63)

Figure 1 shows the normalized phase and group velocity curves for the linear FVM and
FEM, respectively. It is easy to find that the curves for the linear FVM approximate 1
better than those for the linear FEM. Specifically, the error between the normalized phase

Figure 1 (a) Normalized phase velocity curves for the linear FEM and FVM, (b) normalized group velocity
curves for the linear FEM and FVM
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velocity for the linear FVM and 1 is almost half of that for the linear FEM. The reason may
be that, for the normalized phase velocity, the coefficient of the main error term for the
linear FVM is half of that for the linear FEM (see (2.62)). Therefore, we expect that the
linear FVM will enjoy higher numerical accuracy, when compared with the linear FEM.
This will be illustrated by two numerical experiments in the next section.

3 The approximation problem for the stochastic Helmholtz equation in
one-dimension

In this section, we first introduce an approximate problem of (1.1) by replacing the white
noise Ẇ by its piecewise constant approximation Ẇ s. Then we establish the regularity of
the solution of the approximate problem and its error estimates.

We discretize the interval I in the same way as it is done in Sect. 2.1. Let

ξIj :=
1

√
hj

∫ xj

xj–1

1 dW (x),

for each interval Ij. It is well-known that {ξIj} is a family of independent identically dis-
tributed normal random variables with mean 0 and variance 1 (see [23]). Then the piece-
wise constant approximation to Ẇ (x) is given by

Ẇ s(x) =
n∑

j=1

h– 1
2

j ξIjχIj (x), (3.1)

where χIj is the characteristic function of Ij. It is easy to see that Ẇ s(x) ∈ L2(I). However,
the following lemma shows that the L2-norm ‖Ẇ s‖0 of Ẇ s is unbounded as h → 0.

Lemma 3.1 There holds

h–1 ≤ E
(∥
∥Ẇ s∥∥2

0

) ≤ 1
μ

h–1. (3.2)

Proof It is easy to see that

∥
∥Ẇ s∥∥2

0 =
∑

Ij∈Th

∫ xj

xj–1

(
h– 1

2
j

)2
ξ 2

Ij
dx =

∑

Ij∈Th

ξ 2
Ij

.

Therefore, we have that

E
(∥
∥Ẇ s∥∥2

0

)
=

∑

Ij∈Th

E
(
ξ 2

Ij

)
=

∑

Ij∈Th

1 =
n∑

j=1

hj · 1
hj

.

By using the quasi-uniformity condition hj ≥ μh (j = 1, 2, . . . , n), we come to the conclusion
of this lemma. �

Replacing Ẇ (x) by Ẇ s(x) in (1.1), we have the following stochastic Helmholtz equation
with a discretized white noise forcing term:

⎧
⎨

⎩

– d2us

dx2 – k2us(x) = g(x) + Ẇ s(x), x ∈ (0, 1),

us(0) = 0, dus(1)
dx – ikus(1) = 0.

(3.3)
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The variational problem of (3.3) is as follows: Find a function us ∈ H1
E(I) such that

a
(
us, v

)
= (g, v) +

(
Ẇ s, v

)
, ∀v ∈ H1

E(I). (3.4)

As Ẇ s ∈ L2(I), it follows from [15] that (3.4) has a unique solution us. We then establish
an estimate for the error u – us, where u is the solution of (1.1).

Lemma 3.2 There is a unique solution us ∈ H2(I) of problem (3.3) which satisfies

E
(∥
∥us∥∥2

2

) ≤ C5h–1, (3.5)

where C5 is a positive constant independent of h.

Proof It follows from Lemma 2.1 that

∥
∥us∥∥2

2 =
∥
∥us∥∥2

0 +
∥
∥
(
us)′∥∥2

0 +
∥
∥
(
us)′′∥∥2

0

≤ 2
[

1
k2 + 1 + (1 + k)2

]
[‖g‖2

0 +
∥
∥Ẇ s∥∥2

0

]
. (3.6)

By (3.6) and (3.2), we come to the desired result. �

Next we estimate the error between the weak solution u of (1.1) and its approximation
us. To this end, we present the solution u of (1.1) and the solution us of (3.3) by the Green
function (2.2) as

u(x) =
∫ 1

0
G(x, y)g(y) dy +

∫ 1

0
G(x, y)Ẇ (y) dy, (3.7)

us(x) =
∫ 1

0
G(x, y)g(y) dy +

∫ 1

0
G(x, y)Ẇ s(y) dy. (3.8)

We then establish the regularity of the Green function G(x, s) and ∂G(x,s)
∂x defined in (2.2)

in the following lemma, which will play an important role in the error estimate between u
and us.

Lemma 3.3 There hold
∫ 1

0

∣
∣G(x, y) – G(x, z)

∣
∣2 dx ≤

(
12
k2 + 6k2

)

(y – z)2, ∀y, z ∈ I, (3.9)

∫ 1

0

∣
∣
∣
∣
∂G(x, y)

∂x
–

∂G(x, z)
∂x

∣
∣
∣
∣

2

dx ≤ (
3k4 + 4

)|y – z|, ∀y, z ∈ I. (3.10)

Proof Assume that 0 ≤ y < z ≤ 1. We first prove that (3.9) holds. Obviously, we have

∫ 1

0

∣
∣G(x, y) – G(x, z)

∣
∣2 dx =

∫ y

0

∣
∣G(x, y) – G(x, z)

∣
∣2 dx +

∫ z

y

∣
∣G(x, y) – G(x, z)

∣
∣2 dx

+
∫ 1

z

∣
∣G(x, y) – G(x, z)

∣
∣2 dx

= I + II + III.
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By (2.2), we get that

I =
∫ y

0

1
k2 sin2(kx)

∣
∣eiky – eikz∣∣2 dx ≤ 2k2(y – z)2, (3.11)

III =
∫ 1

z

∣
∣
∣
∣
1
k

sin(ky)eikx –
1
k

sin(kz)eikx
∣
∣
∣
∣

2

dx ≤ k2(y – z)2. (3.12)

Similarly, we obtain

II =
∫ z

y

∣
∣
∣
∣
1
k

sin(ky)eikx –
1
k

sin(kx)eikz
∣
∣
∣
∣

2

dx

=
1
k2

∫ z

y

∣
∣sin(ky)eikx – sin(ky)eiky + sin(ky)eiky

– sin(kx)eiky + sin(kx)eiky – sin(kx)eikz∣∣2 dx

≤
(

12
k2 + 3k2

)

|z – y|3. (3.13)

Combining (3.11) and (3.13) with (3.12) yields (3.9).
Below we prove (3.10). By (2.2), we have that

∂G(x, s)
∂x

=

⎧
⎨

⎩

cos(kx)eiks, 0 ≤ x ≤ s,

i sin(ks)eikx, s ≤ x ≤ 1.
(3.14)

Arguing as before, we have

∫ 1

0

∣
∣
∣
∣
∂G(x, y)

∂x
–

∂G(x, z)
∂x

∣
∣
∣
∣

2

dx =
∫ y

0

∣
∣
∣
∣
∂G(x, y)

∂x
–

∂G(x, z)
∂x

∣
∣
∣
∣

2

dx

+
∫ z

y

∣
∣
∣
∣
∂G(x, y)

∂x
–

∂G(x, z)
∂x

∣
∣
∣
∣

2

dx

+
∫ 1

z

∣
∣
∣
∣
∂G(x, y)

∂x
–

∂G(x, z)
∂x

∣
∣
∣
∣

2

dx

= Ĩ + ĨI + ĨII.

It follows from (3.14) that

Ĩ =
∫ y

0
cos2(kx)

∣
∣eiky – eikz∣∣2 dx ≤ 2k4(y – z)2, (3.15)

ĨI =
∫ z

y

∣
∣i sin(ky)eikx – cos(kx)eikz∣∣2 dx ≤ 4|y – z|, (3.16)

ĨII =
∫ 1

z

∣
∣i sin(ky)eikx – i sin(kz)eikx∣∣2 dx ≤ k4(y – z)2. (3.17)

Combining the above three inequalities, we obtain the desired estimate (3.10). �

Now we establish an error estimate between u and us.
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Theorem 3.4 Let u and us be the solutions of (1.1) and (3.3), respectively. We have

E
(∣
∣u – us∣∣2

1

) ≤ (
3k4 + 4

)
h. (3.18)

Proof By combining (3.7) with (3.8), we observe that

u′ –
(
us)′ =

∫ 1

0

∂G(x, y)
∂x

Ẇ (y) dy –
∫ 1

0

∂G(x, y)
∂x

Ẇ s(y) dy

=
∑

Ij∈Th

[∫

Ij

∂G(x, y)
∂x

dW (y) – |Ij|–1
∫

Ij

∂G(x, z)
∂x

dz
∫

Ij

1 dW (y)
]

=
∑

Ij∈Th

∫

Ij

∫

Ij

|Ij|–1
(

∂G(x, y)
∂x

–
∂G(x, z)

∂x

)

dz dW (y). (3.19)

Applying Itô’s isometry yields

E
(∣
∣u – us∣∣2

1

)
= E

(∫ 1

0

[∑

Ij∈Th

∫

Ij

∫

Ij

|Ij|–1
(

∂G(x, y)
∂x

–
∂G(x, z)

∂x

)

dz dW (y)
]2

dx
)

=
∫ 1

0

∑

Ij∈Th

∫

Ij

[∫

Ij

|Ij|–1
(

∂G(x, y)
∂x

–
∂G(x, z)

∂x

)

dz
]2

dy dx.

It follows from the Hölder inequality that

E
(∣
∣u – us∣∣2

1

) ≤
∫ 1

0

∑

Ij∈Th

|Ij|–1
∫

Ij

∫

Ij

(
∂G(x, y)

∂x
–

∂G(x, z)
∂x

)2

dz dy dx

=
∑

Ij∈Th

|Ij|–1
∫

Ij

∫

Ij

∫ 1

0

(
∂G(x, y)

∂x
–

∂G(x, z)
∂x

)2

dx dz dy. (3.20)

Then the desired result (3.18) follows from (3.10) and (3.20). �

4 Finite volume method for the stochastic Helmholtz equation in
one-dimension

In this section, we consider the finite volume approximation of variational problem (3.4)
and establish its error estimates.

The linear finite volume approximation to (3.4) is: Find us
h =

∑n
m=1 us

mφm(x) such that

a
(
us

h,ψj
)

= (g,ψj) +
(
Ẇ s,ψj

)
, j = 1, 2, . . . , n. (4.1)

The approximate variational problem (4.1) has a unique solution. The following theorem
presents an error estimate for u – us

h.

Theorem 4.1 Let u and us
h be the solutions of (1.1) and (4.1), respectively. If kh is small

enough, then we have

E
(∣
∣u – us

h
∣
∣2
1

) ≤ 2
(
3k4 + 4

)
h + CC5

(
1 + k2h

)2h. (4.2)
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Proof By (2.31), (3.5), (3.18) and the triangle inequality, we have that

E
(∣
∣u – us

h
∣
∣2
1

) ≤ 2E
(∣
∣u – us∣∣2

1

)
+ 2E

(∣
∣us – us

h
∣
∣2
1

)

≤ 2
(
3k4 + 4

)
h + C

(
1 + k2h

)2h2E
(∣
∣us∣∣2

2

)

≤ 2
(
3k4 + 4

)
h + CC5

(
1 + k + k2)2h,

which leads to the desired result. �

5 Numerical experiments
In this section, we present numerical examples to demonstrate our theoretical results in
the previous section. All the experiments are performed with Matlab 7v on an Intel Xeon
(4-core) with 3.60 GHz and 16 GB RAM.

5.1 Problem 1
Consider the deterministic Helmholtz equation

⎧
⎨

⎩

– d2u
dx2 – k2u(x) = –1, x ∈ (0, 1),

u(0) = 0, u′(1) – iku(1) = 0.
(5.1)

The exact solution of the above problem is

u =
1
k2

[
– sin k sin(kx) – cos(kx) + 1 + i sin(kx)(cos k – 1)

]
.

We use this problem to measure the accuracy for two schemes, including the linear FVM
and FEM. The error is measured in the relative discrete L2-norm and the relative discrete
H1-seminorm. In details, the discrete L2-norm and H1-seminorm are respectively defined
as: for any complex vector z = [z0, z1, . . . , zM],

‖z‖2
0 :=

M∑

j=0

h|zj|2, |z|21 :=
M∑

j=1

h
∣
∣
∣
∣
zj – zj–1

h

∣
∣
∣
∣

2

,

where |zj| is the complex modulus of zj. Let u and uh denote the exact and numerical so-
lutions, respectively. Then, the relative discrete L2-norm is defined as ‖u–uh‖0

‖u‖0
. The relative

discrete H1-seminorm is defined in a similar way.
Tables 1, 2 and 3 show the error in the relative discrete L2-norm for two different

schemes with different gridpoints N for k = 30, 200, 500, respectively. We find that, for
both the linear FVM and FEM, the rate of convergence for the error in the relative dis-
crete L2-norm is of order 2, as expected. In addition, Tables 4, 5 and 6 show the error in
the relative discrete H1-seminorm for two different schemes with different gridpoints N
for k = 30, 200, 500, respectively. It is easy to see that, for both schemes, the rate of conver-
gence for the error in the relative discrete H1-seminorm is of order 2. In particular, from
these six tables, we see that the error for the linear FVM is only half of that for the lin-
ear FEM, which verifies the relations between kN and k for the two methods as presented
previously in (2.54) and (2.57).
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Table 1 The error in the relative discrete L2-norm for problem (5.1) with k = 30

n 32 64 128 256 512 1024

linear FEM 0.6719 0.1667 0.0409 0.0102 0.0025 6.3335e–004
linear FVM 0.2964 0.0783 0.0197 0.0049 0.0012 3.0847e–004

Table 2 The error in the relative discrete L2-norm for problem (5.1) with k = 200

n 512 1024 2048 4096 8192 16,384

linear FEM 0.8194 0.1862 0.0440 0.0108 0.0027 6.7253e–004
linear FVM 0.3852 0.0893 0.0217 0.0054 0.0013 3.3556e–004

Table 3 The error in the relative discrete L2-norm for problem (5.1) with k = 500

n 2048 4096 8192 16,384 32,768 65,536

linear FEM 0.8107 0.2235 0.0557 0.0139 0.0035 8.6743e–004
linear FVM 0.4402 0.1114 0.0278 0.0069 0.0017 4.3288e–004

Table 4 The error in the relative discrete H1-seminorm for problem (5.1) with k = 30

n 32 64 128 256 512 1024

linear FEM 0.8555 0.2157 0.0533 0.0133 0.0033 8.2684e–004
linear FVM 0.3789 0.1014 0.0257 0.0064 0.0016 4.0242e–004

Table 5 The error in the relative discrete H1-seminorm for problem (5.1) with k = 200

n 512 1024 2048 4096 8192 16,384

linear FEM 1.1484 0.2616 0.0618 0.0152 0.0038 9.4538e–004
linear FVM 0.5406 0.1254 0.0305 0.0076 0.0019 4.7169e–004

Table 6 The error in the relative discrete H1-seminorm for problem (5.1) with k = 500

n 2048 4096 8192 16,384 32,768 65,536

linear FEM 0.9649 0.2663 0.0664 0.0166 0.0041 0.0010
linear FVM 0.5242 0.1327 0.0331 0.0083 0.0021 5.1575e–004

Table 7 The error in the relative discrete L2-norm for problem (5.1) with kh = 0.125

k 200 300 400 500 600 700

linear FEM 0.0730 0.1278 0.1832 0.2344 0.2776 0.3085
linear FVM 0.0358 0.0626 0.0903 0.1169 0.1406 0.1595

Table 8 The error in the relative discrete H1-seminorm for problem (5.1) with kh = 0.125

k 200 300 400 500 600 700

linear FEM 0.1026 0.1644 0.2238 0.2791 0.3284 0.3685
linear FVM 0.0503 0.0805 0.1103 0.1392 0.1664 0.1905

Further comparison between the linear FEM and FVM is given in Tables 7 and 8. Table 7
presents the error in the relative discrete L2-norm of two schemes for the case kh = 0.125,
and Table 8 shows the corresponding error in the relative discrete H1-seminorm. The
wavenumber k in the two tables varies form 200 to 700. As seen from these two tables,
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the accuracy of the linear FVM is higher than that of the linear FEM, and it deteriorates
much slower if kh is chosen to be a constant.

5.2 Problem 2
We solve the deterministic Helmholtz problem

⎧
⎨

⎩

– d2u
dx2 – k2u(x) = 40 cos(4x) + 80i sin(3x), x ∈ (0, 1),

u(0) = 0, u′(1) – iku(1) = 0.
(5.2)

The above problem’s exact solution is:

u(x) =
1
k

{

20 sin(kx)
[

1
k + 4

(
sin(k + 4) – sin

(
(k + 4)x

))

+
1

k – 4
(
sin(k – 4) – sin

(
(k – 4)x

))
]

+ 40i sin(kx)
[

1
3 + k

(
cos

(
(3 + k)x

)
– cos(3 + k)

)

+
1

3 – k
(
cos

(
(3 – k)x

)
– cos(3 – k)

)
]

+ 40i cos(kx)
[

sin((k – 3)x)
k – 3

–
sin((k + 3)x)

k + 3

]

– 40 sin(kx)
[

sin(k – 3)
k – 3

–
sin(k + 3)

k + 3

]

+ 20 cos(kx)
[

1
k + 4

(
1 – cos

(
(k + 4)x

))
+

1
k – 4

(
1 – cos

(
(k – 4)x

))
]

+ 20i sin(kx)
[

1
k + 4

(
1 – cos(k + 4)

)
+

1
k – 4

(
1 – cos(k – 4)

)
]}

.

By this problem, the accuracy of the linear FVM and FEM are also measured in the relative
discrete L2-norm and the relative discrete H1-seminorm.

Tables 9 and 10 show the error in the relative discrete L2-norm for two different schemes
with different gridpoints N for k = 30, 300, respectively. In addition, Tables 11 and 12 show
the error in the relative discrete H1-seminorm for two different schemes with different
gridpoints N for k = 30, 300, respectively. From these four tables, we know that for both
the linear FVM and FEM, the convergence rate of the error in the relative discrete L2-
norm or the relative discrete H1-seminorm is 2. Furthermore, seen from Tables 9–12, we
find that the error for the linear FVM is only half of that for the linear FEM, which is an
interesting result. This confirms the efficiency of the linear FVM.

Table 9 The error in the relative discrete L2-norm for problem (5.2) with k = 30

n 32 64 128 256 512 1024

linear FEM 0.2067 0.0761 0.0209 0.0053 0.0013 3.3532e–004
linear FVM 0.1332 0.0425 0.0112 0.0028 7.1319e–004 1.7837e–004
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Table 10 The error in the relative discrete L2-norm for problem (5.2) with k = 300

n 1024 2048 4096 8192 16,384 32,768

linear FEM 0.2270 0.0817 0.0220 0.0056 0.0014 3.5200e–004
linear FVM 0.1455 0.0431 0.0112 0.0028 7.0731e–004 1.7692e–004

Table 11 The error in the relative discrete H1-seminorm for problem (5.2) with k = 30

n 32 64 128 256 512 1024

linear FEM 0.4094 0.1532 0.0422 0.0108 0.0027 6.8063e–004
linear FVM 0.2649 0.0852 0.0226 0.0057 0.0014 3.6075e–004

Table 12 The error in the relative discrete H1-seminorm for problem (5.2) with k = 300

n 1024 2048 4096 8192 16,384 32,768

linear FEM 0.4452 0.1603 0.0432 0.0110 0.0028 6.9091e–004
linear FVM 0.2853 0.0846 0.0220 0.0055 0.0014 3.4726e–004

5.3 Problem 3
We consider the stochastic Helmholtz equation

⎧
⎨

⎩

– d2u
dx2 – k2u(x) = –1 + Ẇ (x), x ∈ (0, 1),

u(0) = 0, u′(1) – iku(1) = 0.
(5.3)

When white noise is absent, the above problem reduces to Problem 1. We will use the
random number generator to simulate the Gaussian random process Ẇ s. Furthermore,
we shall follow [8] to evaluate E(us

h) by using the Monte Carlo method when examining

e1(h) :=
∣
∣E(u) – E

(
us

h
)∣
∣
1,

to ensure that we have used enough samples. Notice that it is impossible to evaluate
E(|u – us

h|21), since it is impossible obtain an explicit expression for u. We also employ the
following type of error:

e2(h) :=
∣
∣E

(|u|21
)

– E
(∣
∣us

h
∣
∣2
1

)∣
∣

to check the error estimates for the finite volume method. By a simple computation, we
have

E(u) =
1
k2

[
– sin k sin(kx) – cos(kx) + 1 + i sin(kx)(cos k – 1)

]
,

E
(|u|21

)
=

∫ 1

0

{∣
∣
∣
∣

∫ 1

0
–

∂G(x, y)
∂x

dy
∣
∣
∣
∣

2

+
∫ 1

0

∣
∣
∣
∣
∂G(x, y)

∂x

∣
∣
∣
∣

2

dy
}

dx

=
1
2

+
1
k2

[
3
2

– cos k +
1

4k
sin(2k) –

1
k

sin k
]

.

When k = 1, E(|u|21) = 0.8456. In addition, E(|u|21) = 0.5157 for k = 6, and E(|u|21) = 0.5047
for k = 12.
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Table 13 The linear FVM for problem (5.3) with k = 1

h e1 Rate E(|ush|21) e2 Rate

1/2 0.0101 0.6380 0.2076
1/4 0.0045 1.1664 0.7718 0.0738 1.4921
1/8 0.0029 0.6339 0.8032 0.0424 0.7996
1/16 0.0013 1.1575 0.8270 0.0186 1.1888
1/32 4.8615e–004 1.4190 0.8385 0.0071 1.3894

Table 14 The linear FVM for problem (5.3) with k = 6

h e1 Rate E(|ush|21) e2 Rate

1/3 0.0142 0.2369 0.2788
1/6 0.0081 0.8099 0.3993 0.1164 1.2601
1/12 0.0027 1.5850 0.4719 0.0438 1.4101
1/24 0.0012 1.1699 0.4956 0.0201 1.1237
1/48 7.2862e–04 0.7198 0.5088 0.0068 1.5636

Table 15 The linear FVM for problem (5.3) with k = 12

h e1 Rate E(|ush|21) e2 Rate

1/8 0.0209 0.2739 0.2309
1/16 0.0070 1.5781 0.4332 0.0715 1.6913
1/32 0.0035 1 0.4803 0.0244 1.5511
1/64 0.0013 1.4288 0.4949 0.0098 1.3160
1/128 7.3070e–04 0.8312 0.5023 0.0024 2.0297

The computational results of the linear FVM approximations for (5.3) with k = 1, 6, 12
are displayed in Tables 13, 14 and 15, respectively. The third columns of the tables show
that the convergence rate for E(us

h) is of order 1, which confirms our theoretical result
presented in the previous section. The sixth columns of the tables show that the rate of
convergence for E(|us

h|21) is of order 1 as expected, which implies that our sample sizes are
good enough to ensure the accuracy of the Monte Carlo method.

6 Conclusions
In this paper, we proposed the linear FVM for the stochastic Helmholtz equation, driven
by an additive white noise forcing term in one-dimension. Firstly, the linear FVM for the
deterministic Helmholtz equation in one-dimension was presented, and then its solution’s
existence and uniqueness were considered. For the linear FVM, its solution’s error estimate
in H1- and L2-norm were established. Moreover, its dispersion equation was presented,
and the error between the numerical and exact wavenumbers was analyzed. We also made
comparisons between the linear FVM and FEM. Theoretical analysis and practical com-
putations indicated that the error for the linear FVM is only half of that for the linear FEM.
By means of approximating the white noise by a piecewise constant process, we converted
the stochastic Helmholtz equation into the deterministic Helmholtz equation, which is an
approximate problem for the stochastic Helmholtz problem. The regularity of the solu-
tion for the approximate problem was discussed, and its error estimates in H1-norm were
presented. Furthermore, the linear FVM was applied for solving this approximate prob-
lem, and the H1 error estimates between the finite volume solutions and the exact solution
of the stochastic Helmholtz problem were obtained. Finally, numerical experiments were
given to verify our theoretical results.
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