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Abstract
In this paper, we introduce the concept of a generalized weak (φ ,R)-contraction and
employ this to prove some fixed point results for self-mappings in partial metric
spaces endowed with a binary relationR. We also establish some consequences in
ordered partial metric spaces and metric spaces with a binary relation and exemplify
that our results are a sharpened version of results of Zhiqun Xue (Nonlinear Funct.
Anal. Appl. 21(3):497–500, 2016) and Alam and Imdad (J. Fixed Point Theory Appl.
17(4):693–702, 2015). Finally, we provide the existence of a solution for integral and
fuzzy partial differential equations.
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1 Introduction
The very first contribution to fixed point theory was due to Banach [3] in 1922. He con-
ferred the celebrated result in his thesis, namely the Banach contraction principle. Later
on, many researchers, fascinated by his idea, extended this result in various directions.
One of these is by generalizing the metric. In this direction, Matthews [4] in 1994 pre-
sented the idea of a partial metric by extending the concept of metric and proved a sup-
plementary result of the Banach contraction principle in partial metric spaces. Thereafter,
many results on the fixed points in partial metric spaces were established (see [5–14] and
the references therein).

In 1986, Turinici [15] initiated the idea of order theoretic metric fixed point theory,
which was later modified and generalized by Ran and Reurings [16], Nieto and Rodríguez-
López [13, 17] and others. In the recent past, Alam and Imdad [2] extended the Banach
contraction principle to complete metric space endowed with a binary relation, which
generalizes several existing results. Then [18–23] did a variety of work in this field and
proved common and relation theoretic fixed point fixed point results in various distance
spaces under different conditions.

The growing applications of fixed point theory in various domains, such as mathemat-
ics, economics, engineering and game theory, are very encouraging. In mathematics, the
applications of suitable fixed point results to establish the existence and uniqueness to
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the solutions of differential and integral equations to find their solutions are proving very
fruitful these days. Very recently, Long et al. [24] have given novel and innovative results
for the existence of a solution of some uncertain differential equations. Some more results
in this direction were obtained in [25, 26] and the references therein, which are expected
to attract the attention of various researchers in the near future.

In this paper, we introduce the notions, e.g. R-precompleteness, ρ-self-closedness and
R-continuity in the setting of partial metric spaces endowed with a binary relation R and
establish fixed point results for generalized weak (φ,R)-contraction mappings. We also
present the variants of our results in a metric space. Moreover, some examples are fur-
nished to validate the utility of our results and we deduce some consequences via our re-
sults. In the end, we furnish sufficient conditions for the existence of solutions for integral
equations and fuzzy partial differential equations by utilizing our results.

2 Preliminaries
Matthews [4] defined the partial metric spaces as follows.

Definition 2.1 ([4]) Let M be a non-empty set and ρ : M × M → [0,∞) a mapping satis-
fying the following conditions:

(ρ1) z1 = z2 ⇐⇒ ρ(z1, z1) = ρ(z1, z2) = ρ(z2, z2);
(ρ2) ρ(z1, z1) ≤ ρ(z1, z2);
(ρ3) ρ(z1, z2) = ρ(z2, z1);
(ρ4) ρ(z1, z2) ≤ ρ(z1, z3) + ρ(z3, z2) – ρ(z3, z3),

∀z1, z2, z3 ∈ M. Then the mapping ρ is known as a partial metric and the pair (M,ρ) is
called partial metric space.

It is observed that the self-distance of a point in partial metric need not be zero. If it zero
for all points z ∈ M, i.e., ρ(z, z) = 0, ∀z ∈ M, then that partial metric is a metric.

The topology, say τρ , generated by a partial metric ρ on M is a T0-topology and the base
is the family of open balls Bρ(z, ε) (z ∈ M and ε > 0) defined by

Bρ(z, ε) =
{

w ∈ M : ρ(z, w) ≤ ρ(z, z) + ε
}

.

Let ρ be a partial metric on M. Then the mapping dρ : M × M → [0,∞) defined by

dρ(z1, z2) = 2ρ(z1, z2) – ρ(z1, z1) – ρ(z2, z2), z1, z2 ∈ M,

is a metric on M and hence, (M, dρ) is a metric space.

Definition 2.2 ([4]) Let (M,ρ) be a partial metric space.
(a) A sequence {zn} is convergent to a point z ∈ M, if limn→∞ ρ(zn, z) = ρ(z, z).
(b) A sequence {zn} is Cauchy if limm,n→∞ ρ(zn, zm) exists and is finite.
(c) (M,ρ) is said to be complete if every Cauchy sequence {zn} in M converges (with

respect to τρ ) to a point z ∈ M and ρ(z, z) = limn,m→∞ ρ(zn, zm).

Lemma 2.1 ([4]) Let (M,ρ) be a partial metric space.
(a) A sequence {zn} is Cauchy in (M,ρ) if and only if it is Cauchy in (M, dρ).
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(b) (M,ρ) is complete if and only if (M, dρ) is complete. Besides,

lim
n→∞ dρ(zn, z) = 0 ⇐⇒ ρ(z, z) = lim

n→∞ρ(zn, z) = lim
m,n→∞ρ(zn, zm).

Lemma 2.2 ([12]) Let (M,ρ) be a partial metric space and {zn} ⊆ M such that {zn} → z,
for some z ∈ M with ρ(z, z) = 0. Then, for any z∗ ∈ M, we have limn→∞ ρ(zn, z∗) = ρ(z, z∗).

3 Relation theoretic notions and auxiliary results
For a non-empty subset M, a binary relation R on M is a subset of M × M. Now, we write
some relation theoretic notions as follows:

(z1, z2) ∈R (also denoted z1Rz2) if z1 is related to z2 under R;
(z1, z2) ∈R �= (also denoted (z1, z2) ∈R �=) if (z1, z2) ∈R such that z1 and z2 are distinct;
R–1 is the inverse, transpose or dual relation of R, which is defined by R–1 = {(z1, z2) ∈

M × M : (z2, z1) ∈R};
Rs is the the symmetric closure of R, which is defined by Rs = R∪R–1.
It is observed that R �= ⊆ R is also a binary relation. M × M and ∅ are trivial binary

relations on M, specifically called a universal relation and an empty relation.
Throughout the manuscript, M is a non-empty set, N a non-empty subset of M. R and

S stand for a binary relation and a self-mapping on M, respectively.

Definition 3.1 ([2]) For a binary relation R:
(a) Two elements z1, z2 ∈ M are said to be R-comparative if (z1, z2) ∈R or (z2, z1) ∈R.

We denote it by [z1, z2] ∈R.
(b) R is said to be complete if [z1, z2] ∈R, ∀z1, z2 ∈ M.

Proposition 3.1 ([2]) For a binary relation R on M,

(z1, z2) ∈Rs ⇐⇒ [z1, z2] ∈R, ∀z1, z2 ∈ M.

Definition 3.2 ([2]) A sequence {zn} ⊆ M is said to be R-preserving if (zn, zn+1) ∈R, ∀n ∈
N0 and R �=-preserving if (zn, zn+1) ∈R �=, ∀n ∈N0.

Here, we follow the notion (of R-preserving) as used by Alam and Imdad [2]. Notice
that Roldán and Shahzad [27] and Shahzad et al. [28] used the term “R-nondecreasing”
instead of “R-preserving”.

Definition 3.3 ([29]) N ⊆ M is said to be R-directed if for each z1, z2 ∈ N , there exists a
point z3 ∈ M such that (z1, z3) ∈R and (z2, z3) ∈R.

Definition 3.4 ([30]) For z1, z2 ∈ M, a path of length l(∈ N) in R from z1 to z2 is a finite
sequence {p0, p1, . . . , pl} ⊆ M such that p0 = z1, pl = z2 and (pi, pi+1) ∈ R, for each 0 ≤ i ≤
l – 1.

Definition 3.5 ([18]) N ⊆ M is said to be R-connected if, for each z1, z2 ∈ N , there exists
a path in R from z1 to z2.

Definition 3.6 ([2]) R is said to be S-closed if ∀z1, z2 ∈ M such that (z1, z2) ∈ R, we have
(Sz1, Sz2) ∈R.
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Proposition 3.2 ([2]) If R is S-closed, then Rs is also S-closed.

Definition 3.7 ([19]) R is said to be locally S-transitive if for each R-preserving sequence
S(M) with range E = {zn : n ∈N0}, the binary relation R|E is transitive.

Motivated by Alam and Imdad [18], we present the notion of R-continuity in the setting
of partial metric spaces as follows.

Definition 3.8 Let (M,ρ,R) be a partial metric space endowed with a binary relation
R. Then a self-mapping S is said to be R-continuous at a point z ∈ M if for any R-
preserving sequence {zn} such that {zn} → z, we have {Szn} → Sz. S is R-continuous, if
it is R-continuous at each point of M.

Following Imdad et al. [22], we introduce the following in the setting of partial metric
spaces.

Definition 3.9 Let (M,ρ,R) be a partial metric space endowed with binary relation R.
A subset N ⊆ M is said to beR-precomplete if eachR-preserving Cauchy sequence {zn} ⊆
N converges to some z ∈ M.

Definition 3.10 Let (M,ρ,R) be a partial metric space endowed with binary relation R.
Then R is said to be ρ-self closed if for each R-preserving sequence {zn} ⊆ M with {zn} →
z, there exists a subsequence {znk } of {zn} such that [znk , z] ∈R, ∀k ∈N0.

In the sequel, for convenience, we use N0 for N ∪ {0} and other notations are used in
their natural meaning.

4 Main result
Before presenting our main result, we define the following.

Let Φ denote the set of all mappings φ : [0,∞) → [0,∞) satisfying the following:
(Φ1) φ is nondecreasing;
(Φ2) φ(δ) = 0 iff δ = 0 and lim infn→∞ φ(δn) > 0 if limn→∞ δn > 0.

Notice that [1] used the condition that φ is continuous. Inspired by [31], we replace this
condition by a weaker condition (Φ2). In fact this condition is also weaker than that φ is
lower semicontinuous. Indeed, if φ is lower semicontinuous function, then, for a sequence
{δn} with limn→∞ δn = δ > 0, we have lim infn→∞ φ(δn) ≥ φ(δ) > 0.

Now, we embark on the first result in this section.

Theorem 4.1 Let (M,ρ,R) be a partial metric space equipped with a binary relation R
and S : M → M. Assume that the following conditions are satisfied:

(a) ∃ z0 ∈ M such that (z0, Sz0) ∈R;
(b) R is S-closed and locally S-transitive;
(c) ∃ N ⊆ M such that N is R �=-precomplete and S(M) ⊆ N ;
(d) S satisfies generalized weak (φ,R)-contraction, i.e.,

ρ(Sz, Sw) ≤ ρ(z, w) – φ
(
ρ(Sz, Sw)

)
, (4.1)

∀z, w ∈ M with (z, w) ∈R �= and φ ∈ Φ ;
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(e) S is R �=-continuous or R �=|N is ρ-self closed.
Then S has a fixed point z∗ ∈ M with ρ(z∗, z∗) = 0.

Proof Choose z0 ∈ M as in (a) and construct a sequence {zn} in M defined by zn = Szn–1 =
Snz0 based on z0. If there is some m0 ∈N0 such that zm0 = zm0+1, then zm0 is the fixed point
of S and we are done. Assume that zn �= zn+1, for every n ∈ N0 which along with (b) ensures
that (zn, zn+1) ∈R �=, ∀n ∈N0. Then, by employing condition (d), we obtain

ρ(Szn–1, Szn) ≤ ρ(zn–1, zn) – φ
(
ρ(Szn–1, Szn)

)
, (4.2)

which implies

ρ(zn, zn+1) = ρ(Szn–1, Szn) ≤ ρ(zn–1, zn), (4.3)

i.e., {ρ(zn, zn+1)} is a nondecreasing sequence of positive real numbers (also bounded below
by 0). So, there exists r ≥ 0 such that limn→∞ ρ(zn, zn+1) = r. Next, we have to show that
r = 0. Suppose to the contrary that it is not so, i.e., r > 0. Passing the limit n → ∞ in (4.2),
we get

r ≤ r – lim inf
n→∞ φ

(
ρ(zn, zn+1)

)
;

a contradiction (due to (Φ2)). Hence,

lim
n→∞ρ(zn, zn+1) = 0. (4.4)

We also have

dρ(zn, zn+1) = 2ρ(zn, zn+1) – ρ(zn, zn) – ρ(zn+1, zn+1)

≤ 2ρ(zn, zn+1),

which on letting n → ∞ and applying (4.4) yields

lim
n→∞ dρ(zn, zn+1) = 0.

Next, our claim is that {zn} is a Cauchy sequence in (N , dρ). Otherwise, there exist sub-
sequences {zmk } and {znk } of {zn} such that nk is the smallest integer for which

nk > mk > k and dρ(zmk , znk ) ≥ ε. (4.5)

Since dρ(z, w) ≤ 2ρ(z, w), ∀z, w ∈ M, so (4.5) gives

nk > mk > k, ρ(zmk , znk ) ≥ ε

2
and ρ(zmk , znk –1) <

ε

2
. (4.6)

Now, using the triangular inequality, we have

ε

2
≤ ρ(zmk , znk ) ≤ ρ(zmk , znk –1) + ρ(znk –1, znk ) – ρ(znk –1, znk –1)
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<
ε

2
+ ρ(znk –1, znk ).

Taking k → ∞ in the above inequality and using (4.4), we get

lim
k→∞

ρ(zmk , znk ) =
ε

2
. (4.7)

Again, (4.3), (4.6) and (ρ4) give rise to

ε

2
≤ ρ(zmk , znk )

≤ ρ(zmk –1, znk –1)

≤ ρ(zmk –1, zmk ) + ρ(zmk , znk –1) – ρ(zmk , zmk )

< ρ(zmk –1, zmk ) +
ε

2
.

Now, on taking k → ∞, the above inequality yields

lim
k→∞

ρ(zmk–1, znk –1) =
ε

2
. (4.8)

Using local S-transitivity, we have (zmk –1, znk –1) ∈R �= and hence, (4.1) implies

ρ(zmk , znk ) ≤ ρ(zmk –1, znk –1)) – φ
(
ρ(zmk , znk )

)
.

Using (4.7), (4.8) and opting for k → ∞ in the above inequality, we get

ε

2
≤ ε

2
– lim inf

k→∞
φ
(
ρ(zmk , znk )

)
;

a contradiction. Hence, {zn} is Cauchy in (N , dρ) and also R �=-preserving. By Lemma 2.1,
{zn} is also Cauchy in (N ,ρ). The R �=-precompleteness of N in M ensures the existence of
a point z∗ ∈ M such that

lim
n→∞ zn = z∗, i.e., lim

n→∞ρ
(
zn, z∗) = ρ

(
z∗, z∗) �⇒ lim

n→∞ dρ

(
zn, z∗) = 0. (4.9)

Again, Lemma 2.1 gives

ρ
(
z∗, z∗) = lim

n→∞ρ
(
zn, z∗) = lim

m,n→∞ρ(zm, zn) = 0. (4.10)

Now, R �=-continuity of S implies that (as {zn} → z∗ and (zn, zn+1) ∈R �=, ∀n ∈N0)

lim
n→∞ Szn = lim

n→∞ zn+1 = Sz∗.

Thus, by virtue of uniqueness of the limit, we obtain Sz∗ = z∗.
Alternatively, if R �=|N is ρ-self closed, then, for any R �=-preserving sequence {zn} in N

with {zn} → z∗, there exists a subsequence {znk } of {zn} such that [znk , z∗] ∈ R, ∀k ∈ N0.
Now, applying condition (d) with z = znk and w = z∗, we obtain

ρ
(
Sznk , Sz∗) ≤ ρ

(
znk , z∗) – φ

(
ρ
(
Sznk , Sz∗)) ≤ ρ

(
znk , z∗),
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which, on letting n → ∞ and using Lemma 2.2, gives ρ(z∗, Sz∗) ≤ 0, yielding thereby z∗ =
Sz∗. This completes the proof. �

Theorem 4.2 If we add the following assumption, in addition to the assumptions of The-
orem 4.1:

(f ) S(M) is Rs|N -connected,
then S has a unique fixed point.

Proof Theorem 4.1 ensures the existence of at least one fixed point of S. Assume that
it has two fixed points, say z, z∗ ∈ M. Then we have z = Sz and z∗ = Sz∗. Our claim is
that z = z∗. As z, z∗ ∈ S(M) ⊆ N , so condition (f ) ensures the existence of a path, say
{w0, w1, w2, . . . , wl} ⊆ M of some finite length l in Rs|N from z to z∗, where w0 = z and
wl = z∗. Henceforth,

[wi, wi+1] ∈R, for each 0 ≤ i ≤ l – 1. (4.11)

Define two constant sequences {w0
n = z} and {wl

n = z∗}, then we have Sw0
n = Sz = z and

Swl
n = Sz∗ = z∗, ∀n ∈N0. Also, put

wi
0 = wi, for each 0 ≤ i ≤ l (4.12)

and define sequences {w1
n}, {w2

n}, . . . , {wk–1
n } by

wi
n+1 = Swi

n, ∀n ∈N0 and for each 1 ≤ i ≤ l – 1.

Hence

wi
n+1 = Swi

n, ∀n ∈N0 and for each 0 ≤ i ≤ l.

Next, we prove that

[wi
n, wi+1

n ] ∈R, ∀n ∈N0 and for each 0 ≤ i ≤ l – 1.

Indeed, owing to (4.11) and (4.12), we obtain [wi
0, wi+1

0 ] ∈R and further S-closedness of R
implies

[
wi

n, wi+1
n

] ∈R, for each 0 ≤ i ≤ l – 1. (4.13)

Now, ∀n ∈N0 and for each 0 ≤ i ≤ l – 1, define αi
n = ρ(wi

n, wi+1
n ). Our claim is that

lim
n→∞αi

n = 0.

Suppose to the contrary that limn→∞ αi
n = α > 0. Since [wi

n, wi+1
n ] ∈R, either (wi

n, wi+1
n ) ∈R

or (wi+1
n , wi

n) ∈R (and are distinct) ∀n ∈N0 and for each 0 ≤ i ≤ k – 1, so (4.1) gives

ρ
(
Swi

n, Swi+1
n

) ≤ ρ
(
wi

n, wi+1
n

)
– φ

(
ρ
(
Swi

n, Swi+1
n

))
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or

ρ
(
wi

n+1, wi+1
n+1

) ≤ ρ
(
wi

n, wi+1
n

)
– φ

(
ρ
(
wi

n+1, wi+1
n+1

))
, (4.14)

which on taking the limit gives rise to

α ≤ α – lim inf
n→∞ φ

(
ρ
(
wi

n+1, wi+1
n+1

))
;

a contradiction. Hence, limn→∞ αi
n = 0.

Next, we have

ρ
(
z, z∗) = ρ

(
w0

n, wl
n
) ≤

k–1∑

i=0

ρ
(
wi

n, wi+1
n

)
–

k–1∑

i=1

ρ
(
wi

n, wi+1
n

)

≤
k–1∑

i=0

ρ
(
wi

n, wi+1
n

)

=
k–1∑

i=0

αi
n → 0 (as n → ∞).

Hence, (by ρ1 and ρ2) z = z∗ and the proof is completed. �

Corollary 4.1 The conclusion of Theorem 4.2 remains valid if condition (f ) is replaced by
any one of the following:

(f∗) R|S(M) is complete;
(f∗∗) S(M) is Rs|N -directed.

Proof If (f∗) holds true, then, for any z1, z2 ∈ S(M), we have [z1, z2] ∈ R|S(M) ⊆ R|N (by
condition (c)), i.e., {z1, z2} is a path of length 1 in Rs|N from z1 to z2. Hence, condition (f )
of Theorem 4.2 is fulfilled and the result is concluded to by Theorem 4.2.

On the other hand, if condition (f∗∗) holds, then, for each z1, z2 ∈ S(M), there exists z3 ∈
N such that [z1, z3] and [z2, z3] ∈ R|N . This amounts to saying that there exists a path of
length 2 (say {z1, z3, z2}) inRs|N from z1 to z2. Hence, again by Theorem 4.2, the conclusion
follows. �

The following example exhibits the utility of our results.

Example 4.1 Let M = [0,∞) with a partial metric ρ : M × M → [0,∞) defined by

ρ(z1, z2) = max{z1, z2}, ∀z1, z2 ∈ M.

We define the binary relation R by

(z1, z2) ∈R ⇐⇒ ρ(z1, z1) = ρ(z1, z2) ⇐⇒ z1 = max{z1, z2}.

It is clear that (M,ρ) is complete as (M, dρ) is complete. Define S : M → M as

Sz =
z
2

, ∀z ∈ M.
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Then S is continuous and hence R �=-continuous. Also, conditions (a) and (b) are trivially
satisfied. Further, let us define φ : [0,∞) → [0,∞) as

φ(t) =
3t
4

, ∀t ∈ [0,∞).

For any z1, z2 ∈ M such that (z1, z2) ∈R, we have

ρ(Sz1, Sz2) =
z1

2
≤ ρ(z1, z2) – φ

(
ρ(Sz1, Sz2)

)

= z1 –
3
4

(
z1

2

)

=
5z1

8
.

Thus all the conditions of Theorem 4.1 are satisfied. Hence, S has a fixed point, namely
z = 0. Moreover,R|S(M) is complete, so, from Corollary 4.1 one deduces that 0 is the unique
fixed point.

As in [1], it can easily be seen that in a partial metric space (M,ρ), ∀(z1, z2) ∈ R �= (also
∀z1, z2 ∈ M), the condition

ρ(Sz1, Sz2) ≤ ρ(z1, z2) – φ
(
ρ(Sz1, Sz2)

)
(4.15)

is weaker than

ρ(Sz1, Sz2) ≤ ρ(z1, z2) – φ
(
ρ(z1, z2)

)
. (4.16)

But, the converse need not be true in general.
Indeed, consider M = [1,∞) with partial metric ρ(z1, z2) = max{z1, z2} and binary rela-

tion R such that (z1, z2) ∈R if and only if z1 ≤ z2. Let S : M → M be defined by

Sz =
z
2

and φ : [0,∞) → [0,∞) be defined by

φ(t) =
t + 1

3
.

Then (4.15) is satisfied for all (z1, z2) ∈R �=. But, for z1 = 1 and z2 = 5
4 in (4.16), we have

5
8

= ρ

(
S1, S

5
4

)
≤ ρ

(
1,

5
4

)
– φ

(
ρ

(
1,

5
4

))
=

5
4

–
9

12
=

1
2

;

a contradiction.
Hence, in view of the above observation and Theorems 4.1 and 4.2, the following result

is obvious.

Corollary 4.2 Let (M,ρ,R) be a partial metric space equipped with binary relation R
and S : M → M. Assume that the following conditions are satisfied:
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(a) ∃ z0 ∈ M such that (z0, Sz0) ∈R;
(b) R is S-closed and locally S-transitive;
(c) ∃ N ⊆ M such that N is R �=-precomplete and S(M) ⊆ N ;
(d) S satisfies a weak (φ,R)-contraction, i.e.,

ρ(Sz, Sw) ≤ ρ(z, w) – φ
(
ρ(z, w)

)
,

∀z, w ∈ M with (z, w) ∈R �= and φ ∈ Φ ;
(e) S is R �=-continuous or R �=|N is ρ-self closed.

Then S has a fixed point. Moreover, the fixed point is unique if S(M) is Rs|N -connected.

5 Order theoretic results in partial metric spaces
In this section, from now on, � denotes the partial order on a non-empty set M. In what
follows, (M,�) denotes a partially ordered set, (M,ρ,�) stands for a partial metric space
with partial order �, we call it an ordered partial metric space.

Definition 5.1 ([32]) A self-mapping S on (M,�) is said to be increasing (or isotone or
order preserving) if Sz1 � Sz2, for any z1, z2 ∈ M with z1 � z2.

Remark 5.1 Notice that S to be increasing coincides with the notion of � to be S-closed
in our sense.

Definition 5.2 ([32]) Let {zn} be a sequence in an ordered set (M,�). Then
(a) {zn} is increasing if ∀m, n ∈ N0,

m ≤ n �⇒ zm � zn.

(b) {zn} is decreasing if ∀m, n ∈N0,

m ≤ n �⇒ zn � zm.

(c) {zn} is monotone if it is either increasing on decreasing.

Definition 5.3 Let (M,ρ,�) be an ordered partial metric space. We say that (M,ρ,�)
has the ICU (increasing-convergence-upper bound) property if every increasing sequence
{zn} ⊆ M such that zn → z is bounded above by its limit, i.e., zn � z.

Remark 5.2 If (M,ρ,�) has the ICU property, then � is ρ-self closed.

Notice that Alam et al. [33] defined the ICU property in the setting of ordered metric
spaces.

Definition 5.4 In an ordered partial metric space (M,ρ,�), we define the following:
(a) (M,ρ,�) is said to be O-complete (respectively, O-complete, O-complete) if every

increasing (respectively, decreasing, monotone) Cauchy sequence in M converges.
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(b) A self-mapping S on M is said to be O-continuous (respectively, O-continuous,
O-continuous) at z ∈ M, if for any increasing (respectively, decreasing, monotone)
sequence {zn} ⊆ M such that {zn} → z, we have {Szn} → Sz.

S is O-continuous (respectively, O-continuous, O-continuous) on M if it
O-continuous (respectively, O-continuous, O-continuous) at every z ∈ M.

The above notions were defined by Kutbi et al. [34] in the setting of ordered metric
spaces.

Next, we introduce the following notion.

Definition 5.5 A subset N of an ordered partial metric space (M,ρ,�) is said to be O-
precomplete (respectively, O-precomplete, O-complete) if every increasing (respectively,
decreasing, monotone) Cauchy sequence in N converges to a point of M.

Now, we are equipped to state the following result, which is a more refined and gener-
alized version of Theorem 2.1 of [7].

Theorem 5.1 Let (M,ρ,�) be an ordered partial metric space and S : M → M. Assume
that the following conditions are satisfied:

(a) ∃ z0 ∈ M such that z0 � Sz0;
(b) S is increasing;
(c) ∃ N ⊆ M such that N is Ō-precomplete and S(M) ⊆ N ;
(d) S satisfies

ρ(Sz, Sw) ≤ ρ(z, w) – φ
(
ρ(Sz, Sw)

)
,

∀z, w ∈ M with z � w and φ ∈ Φ ;
(f ) S is Ō-continuous or (N ,ρ,�) has the ICU property.

Then S has a fixed point z∗ ∈ M. Moreover, ρ(z∗, z∗) = 0.

Proof The result holds by taking R =� in Theorem 4.1. �

6 Results in metric space
By virtue of the fact that each metric is a partial metric, the following result is apparent
via Theorems 4.1 and 4.2.

Theorem 6.1 Let (M, d,R) be a metric space endowed with relation R and S : M → M.
Assume that the following conditions are satisfied:

(a) ∃ z0 ∈ M such that (z0, Sz0) ∈R;
(b) R is S-closed and locally S-transitive;
(c) ∃ N ⊆ M such that N is R �=-precomplete and S(M) ⊆ N ;
(d) S satisfies generalized weak (φ,R)-contraction, i.e.,

d(Sz, Sw) ≤ d(z, w) – φ
(
d(Sz, Sw)

)
,

∀z, w ∈ M with (z, w) ∈R �= and φ ∈ Φ ;
(e) S is R �=-continuous or R �=|N is d-self closed.

Then S has a fixed point. Moreover, the fixed point is unique if S(M) is Rs|N -connected.
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Remark 6.1 Theorem 6.1 is a version of Theorem 2.1 of [1] improved in the following way:
• In place of the usual notion of completeness of the whole set M, we have used
R �=-precompleteness of a subset N ⊆ M.

• We have dropped the continuity of the function φ and use a weaker condition (Φ1),
which is weaker than that φ is lower semicontinuous.

Indeed, if φ is lower semicontinuous, then, for a sequence {δn} such that
limn→∞ δn = δ > 0, we have lim infn→∞ φ(δn) ≥ φ(δ) > 0.

Example 6.1 Let M = [0, 4] equipped with the usual metric. Then M is a complete metric
space. Define a binary relation R on M as

R =
{

(0, 0), (0, 2), (2, 0), (2, 2), (0, 4)
}

.

Define a mapping S : M × M by

Sz =

⎧
⎨

⎩
0 if 0 ≤ z ≤ 2,

2 if 2 < z ≤ 4,

and φ : [0,∞) → [0,∞) by

φ(t) =
t
2

, ∀t ∈ [0,∞).

Then all the hypotheses of Theorem 6.1 are satisfied and we observe that 0 is the unique
fixed point of S. Observe that Theorem 2.1 of [1] cannot be applied. For x = 2 and y = 4 in
(2.1) of Theorem 2.1 [1], we have

2 = d(0, 2) = d(S2, S4) ≤ d(2, 4) – φ
(
d(0, 2)

)

= 2 – 1 = 1;

a contradiction.

Corollary 6.1 The conclusion of Theorem 6.1 holds true even if we replace the condition
(d) by the following:

(d∗) S satisfies a weak (φ,R)-contraction, i.e.,

d(Sz, Sw) ≤ d(z, w) – φ
(
d(z, w)

)
,

∀z, w ∈ M with (z, w) ∈R �= and φ ∈ Φ .

Next, putting φ(t) = (1 – h)t, h ∈ [0, 1) in Corollary 6.1, we obtain a relation theoretic
variant of the Banach contraction principle (a more sharpened version of Theorem 3.1 of
[2]), since

• instead of using completeness of M, we have used R �=-precompleteness of N ⊆ M;
• in place of continuity of S, we have used R �=-continuity and d-self-closedness of R is

replaced by d-self-closedness of R �=|N ;
• we have used Rs|N -connectedness of S(M) instead of only Rs-connectedness of M.
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Corollary 6.2 Let (M, d,R) be a metric space endowed with binary relation R and S :
M → M. Assume that the following conditions are satisfied:

(a) ∃ z0 ∈ M such that (z0, Sz0) ∈R;
(b) R is S-closed and locally S-transitive;
(c) ∃ N ⊆ M such that N is R �=-precomplete and S(M) ⊆ N ;
(d) there exists h ∈ [0, 1) such that

d(Sz, Sw) ≤ hd(z, w),

∀z, w ∈ M with (z, w) ∈R �=;
(e) S is R �=-continuous or R �=|N is increasingly d-self closed.

Then S has a fixed point. Moreover, the fixed point is unique if S(M) is Rs|N -connected.

Remark 6.2 The assumption thatR is locally S-transitive is not necessary in Corollary 6.2.

In the following example, it is observed that the results of both [2] and [1] cannot be
applied, while our result is applicable.

Example 6.2 Let M = {p, q, r, s} have the binary relation

R =
{

(p, p), (q, q), (r, r), (p, q), (p, r), (r, s)
}

.

Let us define the metric d : M × M → [0,∞) as follows:

⎧
⎪⎪⎨

⎪⎪⎩

d(z, z) = 0, ∀z ∈ M and d(z, w) = d(w, z), ∀z, w ∈ M;

d(p, q) = 2; d(p, r) = d(p, s) = d(r, s) = 3;

d(q, r) = d(q, s) = 3
2 .

Also define S : M → M by

Sp = Sq = Sr = p; Ss = q,

and φ : [0,∞) → [0,∞) by

φ(t) =
t
3

, ∀t ∈ [0,∞).

Then all the conditions of Theorem 6.1 are satisfied and p is the unique fixed point of S.
But Theorem 3.1 of [2] does not hold true (as M is not Rs-connected). Indeed, for x = q

and y = s, there exists no path in R. Also, Theorem 2.1 of [1] cannot be applied. For q, s ∈
M, we have

d(Sq, Ss) = d(p, q) = 2 ≤ d(q, s) – φ
(
d(Sq, Ss)

)

=
3
2

–
2
3

;

a contradiction.
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7 Applications
7.1 Application to integral equation
In this subsection, we study the sufficient condition for the existence of solution of the
following integral equation in the framework of a partial metric space under some binary
relation:

z(t) =
∫ t

0
K

(
t, τ , z(τ )

)
dτ , t ∈ Ω = [0, T], T > 0, (7.1)

where K : Ω × Ω ×R→R is continuous.
Here, we consider the complete partial metric space M = C(Ω ,R), the space of all con-

tinuous functions from Ω to R, with partial metric ρ on M defined by

ρ(f , g) = max
{

sup
t∈Ω

f (t), sup
t∈Ω

g(t)
}

.

Also, suppose β : R×R →R is a function with β(t, s) = 0 if and only if t = s and

β(t, s) ≤ 0 and β(s, w) ≤ 0 �⇒ β(t, w) ≤ 0.

Theorem 7.1 Suppose the following conditions are satisfied:
(H1) ∃ z0 ∈ M such that

β

(
z0(t),

∫ t

0
K

(
t, τ , z0(τ )

)
dτ

)
≤ 0;

(H2) ∀z1, z2 ∈ M and t ∈ Ω ,

β
(
z1(t), z2(t)

) ≤ 0 �⇒ β

(∫ t

0
K

(
t, τ , z1(τ )

)
dτ ,

∫ t

0
K

(
t, τ , z2(τ )

)
dτ

)
≤ 0;

(H3) for each t, τ ∈ Ω and z ∈ M, there exists a number h ∈ [0, 1) such that

∫ t

0
K

(
t, τ , z(τ )

)
dτ ≤ hz(t).

Then 7.1 has a solution, say z̄ ∈ M.

Proof Define a binary relation R on M by

(z1, z2) ∈R ⇐⇒ β
(
z1(t), z2(t)

) ≤ 0, ∀t ∈ Ω .

Also, define S : M → M by

Sz(t) =
∫ t

0
K

(
t, τ , z(τ )

)
dτ .

Then, by condition (H1), there exists z0 such that (z0, Sz0) ∈R. Now, suppose (z1, z2) ∈R,
for some z1, z2 ∈ M, i.e., β(z1(t), z2(t)) ≤ 0, ∀t ∈ Ω . Then, by condition (H2), we obtain

β
(
z1(t), z2(t)

) ≤ 0 �⇒ β

(∫ t

0
K

(
t, τ , z1(τ )

)
dτ ,

∫ t

0
K

(
t, τ , z2(τ )

)
dτ

)
≤ 0
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�⇒ β
(
Sz1(t), Sz2(t)

) ≤ 0

�⇒ (Sz1, Sz2) ∈R,

i.e., R is S-closed. Also, for (z1, z2) ∈R �=, i.e., β(z1(t), z2(t)) < 0 (∀ t ∈ Ω), we have

ρ(Sz1, Sz2) = max
{

sup
t∈Ω

(Sz1)(t), sup
t∈Ω

(Sz2)(t)
}

= max

{
sup
t∈Ω

∫ t

0
K

(
t, τ , z1(τ )

)
dτ , sup

t∈Ω

∫ t

0
K

(
t, τ , z2(τ )

)
dτ

}

≤ max
{

sup
t∈Ω

hz1(t), sup
t∈Ω

hz2(t)
}(

by condition (H3)
)

= h max
{

sup
t∈Ω

z1(t), sup
t∈Ω

z2(t)
}

= hρ(z1, z2).

Define φ : [0,∞) → [0,∞) by φ(t) = (1 – h)t, h ∈ [0, 1). It is easily seen that φ ∈ Φ . Now,
applying it in the above inequality, we obtain

ρ(Sz1, Sz2) ≤ ρ(z1, z2) – φ
(
ρ(z1, z2)

)

≤ ρ(z1, z2) – φ
(
ρ(Sz1, Sz2)

)
.

Thus, all the hypotheses of Theorem 4.1 are satisfied, so by Theorem 4.1 one concludes
that (7.1) has a solution, z̄ ∈ M. �

7.2 Application to fuzzy partial differential equations
Before presenting the main results of this subsection, we discuss the following relevant
notions and results.

Let RF be the space of fuzzy sets on R which are non-empty, normal, fuzzy convex,
upper semicontinuous and compact-supported fuzzy sets defined over R. For α ∈ [0, 1],
the α-cut (also known as α-level set) of μ ∈RF is defined by

[μ]α =
{

z ∈R : μ(z) ≥ α
}

,

which is a non-empty, convex and compact subset of R. These properties are also enjoyed
by [μ]0 = {z ∈R : μ(z) > 0}, known as support of μ. Particularly, it is often written as [μ]α =
[μlα ,μrα], ∀α ∈ [0, 1].

The supremum metric d∞ in RF is defined by

d∞(μ,ν) = sup
0≤α≤1

{
dH

(
[μ]α , [ν]α

)}
, ∀μ,ν ∈RF ,

where dH is the Hausdorff metric in the space of all non-empty, convex and compact sub-
sets of R. (RF , d∞) is a complete metric space (see [35]). For μ,ν ∈ RF , α ∈ [0, 1] and
k ∈R, the following hold:

[μ + ν]α = [μ]α + [ν]α (Addition);
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[kμ]α = k[μ]α (Scalar Multiplication).

Suppose that there exists ω ∈ RF with μ = ν + ω, then the Hukuhara (H-) difference of μ

and ν is defined by ω = μ � ν . If it exists, then (∀α ∈ [0, 1])

[μ � ν]α = [μlα – νlα ,μrα – μrα].

A partial ordering in RF is defined by

μ ≤ ν if μlα ≤ νlα and μrα ≤ νrα , ∀α ∈ [0, 1],

where μ,ν ∈RF .

Lemma 7.1 ([36]) For μ,ν,ω, δ ∈RF , if μ � ν and ω � δ exist, then we have

d∞(μ � ν,ω � δ) ≤ d∞(μ,ω) + d∞(ν, δ).

Lemma 7.2 ([24]) For μ,ν,ω ∈ RF , if ω ≤ ν and μ � ν and μ � ω exist, then we have
μ � ν ≤ μ � ω.

For J ⊆R
2, define the mapping Hλ : C(J ,RF ) × C(J ,RF ) → [0,∞) by

Hλ(μ,ν) = sup
(z,w)∈Ω

{
d∞

(
μ(z, w),ν(z, w)

)
eλ(z+w)},

for (μ,ν) ∈ C(J ,RF ), where λ > 0. (C(J ,RF ), Hλ) is a complete metric spaces (see [35]) and
hence a complete partial metric space. We define (for μ,ν ∈ C(J ,RF ))

(μ,ν) ∈R ⇐⇒ μ ≤ ν ⇐⇒ μ(z, w) ≤ ν(z, w), ∀(z, w) ∈ J .

μ(z, w) ≤ ν(z, w) means μlα(z, w) ≤ νlα(z, w) and μrα(z, w) ≤ νrα(z, w), ∀α ∈ [0, 1] and
(z, w) ∈ J .

Lemma 7.3 ([24]) Let (RF ,≤) be the space of fuzzy numbers with partial ordering ≤. Then
every pair of elements in C(J ,RF ) has an upper bound and a lower bound in C(J ,RF ).

The generalized Hukuhara (gH-) difference of μ,ν ∈RF , denoted by μ�gH ν , is ω ∈RF ,
is defined by

μ �gH ν ⇐⇒ μ = ν + ω or ν = μ + (–1)ω.

If μ � ν exists, then μ �gH ν = μ � ν . The generalized Kukuhara (gH-p-) derivatives of a
fuzzy-valued mapping s : J ⊆ R

2 → RF are defined in Definitions 2.9 and 3.4 of [37] and
for more details, we refer the reader to [37].

Here, C2(J ,RF ) denotes the set of all mappings μ ∈ C(J ,RF ) having continuous gH-p-
derivatives on J up to order 2 on J .
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Definition 7.1 ([24]) For μ ∈ C2(J ,RF ) and (z, w) ∈ J , let μw be the gH-p-derivative at
(z0, w0) with respect to w and we do not have any switching points on J . Then μzw is in
type-1 (resp. type-2) of gH-p-derivatives if the type of gH-p-derivatives of both μ and μw

are the same (resp. different). Then for α ∈ [0, 1]

[
1Dzwμ(z0, w0)

]α =
[
δzwμlα(z0, w0), δzwμrα(z0, w0)

]
,

(
resp.

[
2Dzwμ(z0, w0)

]α =
[
δzwμrα(z0, w0), δzwμlα(z0, w0)

])
.

Lemma 7.4 ([24]) Consider μ,ν ∈ C(J ,RF ) such that μ ≤ ν , where J is a compact subset
of R2. Then

∫

J
μ(t, τ ) dt dτ ≤

∫

J
ν(t, τ ) dt dτ .

Now, we come to the main problem to be discussed here. We consider the following
problem:

kDzwμ(z, w) = s
(
z, w,ν(z, w)

)
, k = 1, 2 and (z, w) ∈ Ω = Ω1 × Ω2, (7.2)

where Ω1 = [0, a] and Ω2 = [0, b] with the condition

μ(z, 0) = ξ1(z); z ∈ Ω1 and μ(0, w) = ξ2(w); w ∈ Ω2, (7.3)

where ξ1 ∈ C(Ω1,RF ), ξ2 ∈ C(Ω2,RF ) such that ξ1(0) = ξ2(0) and μ : Ω →RF , is a fuzzy-
valued mapping and kDzw represents gH-partial derivative operators. In the following,
Izws(z, w,μ) denotes the integral

∫ w
0

∫ z
0 s(t, τ ,μ(t, τ )) dt dτ , for (z, w) ∈ Ω .

Definition 7.2 ([24]) A function μ ∈ C(Ω ,RF ) is said to be an integral solution of type-1
(resp. type-2) of the Problem corresponding to (7.2)–(7.3), if (∀(z, w) ∈ Ω)

μ(z, w) = p(z, w) + Izws(z, w,μ)
(
resp. μ(z, w) = p(z, w) � (–1)Izws(z, w,μ)

)
,

where p(z, w) = ξ1(z) + ξ2(w) � ξ1(0).

Definition 7.3 ([24]) A function μ ∈ C2(Ω ,RF ) is said to be (k)-lower (resp. (k)-upper)
solution of Problem (7.2)–(7.3) if for (z, w) ∈ Ω = Ω1 × Ω2, we have kDzwμ(z, w) ≤
s(z, w,μ(z, w); μ(z, 0) ≤ ξ1(z),μ(0, w) ≤ ξ2(w) and μ(0, 0) = ξ1(0) (resp. kDzwμ(z, w) ≤
s(z, w,μ(z, w); μ(z, 0) ≤ ξ1(z),μ(0, w) ≤ ξ2(w) and μ(0, 0) = ξ1(0)).

Now, we state and prove the result below to establish the sufficient conditions for the
existence and uniqueness of the solution of Problem (7.2)–(7.3) (with k = 1).

Theorem 7.2 Let s : Ω ×RF → RF be a continuous mapping. Assume that the following
assumptions are satisfied:

(F1) s is nondecreasing in the third variable, i.e., for μ,ν ∈RF such that

μ ≤ ν �⇒ s(z, w,μ) ≤ s(z, w,ν), ∀(z, w) ∈ Ω .
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(F2) There exists φ ∈ Φ such that ∀(z, w) ∈ Ω and μ ≤ ν (μ,ν ∈RF ), we have

d∞
(
s(z, w,μ), s(z, w,ν)

) ≤ d∞(μ,ν) – φ
(
d∞(μ,ν)

)
.

(F3) Problem (7.2)–(7.3) has a (1)-lower solution.
Then Problem (7.2)–(7.3) has a unique integral solution of type-1 on Ω .

Proof Define the mapping S1 : C(Ω ,RF ) → C(Ω ,RF ) as follows:

(S1μ)(z, w) = p(z, w) + Izws(z, w,μ), (z, w) ∈ Ω .

Also, define a relation R on C(Ω ,RF ) by (μ,ν) ∈ R ⇐⇒ μ ≤ ν . Notice that Problem
(7.2)–(7.3) has a unique solution if S1 has a unique fixed point. Now, we establish the
hypotheses of Theorem 4.1. Firstly, we claim thatR is S1-closed. To substantiate our claim,
assume that, for arbitrary μ,ν ∈ C(Ω ,RF ), (μ,ν) ∈ R, i.e., μ ≤ ν . By condition (F1), we
have

s(t, τ ,μ) ≤ s(t, τ ,ν), ∀(t, τ ) ∈ Ω .

Then, by Lemma 7.4, we have

Izws(z, w,μ) ≤ Izws(z, w,ν), ∀(z, w) ∈ Ω ,

i.e.,

(S1μ)(z, w) ≤ (S1ν)(z, w), ∀(z, w) ∈ Ω .

Hence, S1μ ≤ S1ν , i.e., (S1μ, S1ν) ∈ R and the claim is established. It can easily be seen
that R is transitive and hence, locally S1-transitive.

Secondly, we prove that S1 satisfies generalized weak (φ,R)-contraction. For all μ,ν ∈
C(Ω ,RF ) such that μ < ν , we have

d∞
(
S1μ(z, w), S1ν(z, w)

)
= d∞

(
p(z, w) + Izws(z, w,μ), p(z, w) + Izws(z, w,ν)

)

= d∞
(
Izws(z, w,μ), Izws(z, w,ν)

)

≤
∫ w

0

∫ z

0
d∞

(
s
(
t, τ ,μ(t, τ )

)
, s

(
t, τ ,ν(t, τ )

))
dt dτ

≤
∫ w

0

∫ z

0
d∞

(
μ(t, τ ),ν(t, τ )

)
dt dτ

≤
∫ w

0

∫ z

0
Hλ(μ,ν)eλ(t+τ ) dt dτ

=
1
λ2 Hλ(μ,ν)

(
eλz – 1

)(
eλw – 1

)
.

Then ∀(z, w) ∈ Ω , we have

d∞
(
S1μ(z, w), S1ν(z, w)

)
e–λ(z+w) ≤ 1

λ2 Hλ(μ,ν)
(
1 – e–λz)(1 – e–λw)

.
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Therefore, we have

Hλ(S1μ, S1ν) ≤ 1
λ2 Hλ(μ,ν)

(
1 – e–λa)(1 – e–λb)

or

Hλ(S1μ, S1ν) ≤ Hλ(μ,ν) –
[

Hλ(μ,ν) –
1
λ2 Hλ(μ,ν)

(
1 – e–λa)(1 – e–λb)

]
. (7.4)

Taking φ(t) = t – 1
λ2 (1 – e–λa)(1 – e–λb)t. Then on choosing 1

λ2 (1 – e–λa)(1 – e–λb) < 1, with
a routine calculation, one can show that φ ∈ Φ . So, (7.4) reduces to

Hλ(S1μ, S1ν) ≤ Hλ(μ,ν) – φ
(
Hλ(μ,ν)

)

≤ Hλ(μ,ν) – φ
(
Hλ(S1μ, S1ν)

)
.

Hence, S1 is a generalized weak (φ,R)-contraction. Now, we show that condition (a) of
Theorem 4.1 is satisfied. By assumption (F3), there exists a (1)-lower solution, say μ̄ ∈
C2(Ω ,RF ), such that (for α ∈ [0, 1] and (z, w) ∈ Ω)

μ̄lα(z, w) ≤ μ̄lα(z, 0) + μ̄lα(0, w) – μ̄lα(0, 0) +
∫ w

0

∫ z

0
slα

(
t, τ , μ̄(t, τ )

)
dt dτ

≤ (ξ1)lα(z) + (ξ2)lα(w) – (ξ1)lα(0) +
∫ w

0

∫ z

0
slα

(
t, τ , μ̄(t, τ )

)
dt dτ

and

μ̄rα(z, w) ≤ μ̄rα(z, 0) + μ̄rα(0, w) – μ̄rα(0, 0) +
∫ w

0

∫ z

0
srα

(
t, τ , μ̄(t, τ )

)
dt dτ

≤ (ξ1)rα(z) + (ξ2)rα(w) – (ξ1)rα(0) +
∫ w

0

∫ z

0
srα

(
t, τ , μ̄(t, τ )

)
dt dτ .

Therefore, we have (∀(z, w) ∈ Ω))

μ̄(z, w) ≤ ξ1(z) + ξ2(w) � ξ1(0) + Izws(z, w, μ̄) = (S1μ̄)(z, w).

Thus, we get (μ̄, S1μ̄) ∈ R and with this we observe that all the hypotheses of Theorem
4.1 are satisfied and thus, S1 has a fixed point. Moreover, the condition of Corollary 4.1 is
satisfied in view of Lemma 7.3 and hence we conclude that the fixed point of S1 is unique.
This completes the proof. �

In the next result, we investigate the existence of integral solution of type-2. Before pre-
senting our desired result, we first give the following notions:

C∗(Ω ,RF ) =
{
μ ∈ C(Ω ,RF ) : p(z, w) � (–1)Izws(z, w,μ) exists, ∀(z, w) ∈ Ω

}
. (7.5)

Lemma 7.5 ([24]) Let C∗(Ω ,RF ) �= ∅ and s in (7.5) is continuous. If (C(Ω ,RF ), d) is a
complete metric space, then C∗(Ω ,RF ) is also a complete metric space.



Perveen et al. Advances in Difference Equations         (2019) 2019:88 Page 20 of 22

Now, we are ready to embark on our result.

Theorem 7.3 Let s : Ω ×RF → RF be a continuous mapping. In addition to hypotheses
(F1) and (F2) of Theorem 7.2, assume that the following conditions are satisfied:

(F4) C∗(Ω ,RF ) �= ∅ and if μ ∈ C∗(Ω ,RF ), then μ(z, w) = p(z, w) � (–1)Izws(z, w,μ),
∀(z, w) ∈ Ω ;

(F5) Problem (7.2)–(7.3) has a (2)-lower solution;
(F6) for each fixed pair μ,ν ∈ C∗(Ω ,RF ), there exists an upper or lower bound of μ,ν , say

ω ∈ C∗(Ω ,RF ), such that the H-difference p(z, w) � (–1)Izws(z, w,ω) exists, ∀(z, w) ∈
Ω .

Then Problem (7.2)–(7.3) has a unique integral solution of type-2.

Proof By assumption (F4), we have C∗(Ω ,RF ) �= ∅ and hence, we define S2 : C∗(Ω ,RF ) →
C∗(Ω ,RF ) by

(S2μ) = p(z, w) � (–1)Izws(z, w,μ), ∀(z, w) ∈ Ω .

Notice that Problem (7.2)–(7.3) has a unique solution if S2 has a unique fixed point.
First, we prove thatR is S2-closed. For this purpose, assume that (μ,ν) ∈R, i.e., μ(t, τ ) ≤

ν(t, τ ), ∀(t, τ ) ∈ Ω . Then following the steps of Theorem 7.2, we have (∀(z, w) ∈ Ω)

Izws(z, w,μ) ≤ Izws(z, w,ν)

or

(–1)Izws(z, w,μ) ≥ (–1)Izws(z, w,ν).

Applying Lemma 7.2, we get

(S2μ)(z, w) = p(z, w) � (–1)Izws(z, w,μ)

≤ p(z, w) � (–1)Izws(z, w, v) = (S2ν)(z, w),

∀(z, w) ∈ Ω . Hence, (S2μ, S2ν) ∈ R. Next, we prove that S2 satisfies a generalized weak
(φ,R)-contraction. Following the steps of Theorem 7.2 and utilizing Lemma 7.1, ∀μ,ν ∈
C∗(Ω ,RF ) such that (μ,ν) ∈R, i.e., μ ≤ ν , we have

d∞
(
(S2μ)(z, w), (S2ν)(z, w)

)
= d∞

(
p(z, w) � (–1)Izws(z, w,μ), p(z, w)

� (–1)Izws(z, w,ν)
)

≤ d∞
(
Izws(z, w,μ), Izws(z, w,ν)

)

≤ 1
λ2 Hλ(μ,ν)

(
eλz – 1

)((
eλw – 1

))
.

Again, following the same steps as in Theorem 7.2, we find that S2 satisfies a general-
ized weak (φ,R)-contraction. Finally, to satisfy condition (a) of Theorem 4.1, we use
(F5) and find that there exists a (2)-lower solution, say μ̄ ∈ C2(Ω ,RF ) ∩ C∗(Ω ,RF ). As
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μ̄ ∈ C∗(Ω ,RF ), so (S2μ̄)(z, w) exists for all (z, w) ∈ Ω . Due to the existence of a (2)-lower
solution μ̄, we get (for α ∈ [0, 1] and (z, w) ∈ Ω)

μ̄lα(z, w) ≤ μ̄lα(z, 0) + μ̄lα(0, w) – μ̄lα(0, 0) +
∫ w

0

∫ z

0
slα

(
t, τ , μ̄(t, τ )

)
dt dτ

≤ (ξ1)lα(z) + (ξ2)lα(w) – (ξ1)lα(0) +
∫ w

0

∫ z

0
slα

(
t, τ , μ̄(t, τ )

)
dt dτ

and

μ̄rα(z, w) ≤ μ̄rα(z, 0) + μ̄rα(0, w) – μ̄rα(0, 0) +
∫ w

0

∫ z

0
srα

(
t, τ , μ̄(t, τ )

)
dt dτ

≤ (ξ1)rα(z) + (ξ2)rα(w) – (ξ1)rα(0) +
∫ w

0

∫ z

0
srα

(
t, τ , μ̄(t, τ )

)
dt dτ .

Thus, ∀(z, w) ∈ Ω , we get

μ̄(z, w) ≤ ξ1(z) + ξ2(w) � ξ1(0) � (–1)
∫ w

0

∫ z

0
s
(
t, τ , μ̄(t, τ )

)
dt dτ

= p(z, w) � (–1)Izws(z, w, μ̄)

= (S2μ̄)(z, w).

Thus, taking all this in account, we have μ̄ ≤ S2μ̄, i.e., (μ̄, S2μ̄) ∈ R so that the claim is
established.

Lemma 7.5 ensures that (C∗(Ω ,RF ), Hλ) is a complete metric space. By a routine cal-
culation, one can easily show that all other conditions of Theorem 4.1 are satisfied and
we conclude from the theorem that S2 has a fixed point in C∗(Ω ,RF ). Moreover, due to
assumption (F6), the hypothesis of Corollary 4.1 is satisfied. Hence, the fixed point of S2

is unique. This completes the proof. �

Remark 7.1 The conclusions of Theorems 7.2 and 7.3 are still valid if we consider that a
(k)-upper solution (k = 1, 2) of Problem (7.2)–(7.3) exists.
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