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Abstract
In this paper, an efficient finite element scheme is presented for a class of fourth-order
nonlinear parabolic problems with variable coefficient. To deal with second-order
term in weak formulation, we choose the cubic B-spline function as a trial function.
Rigorous error estimates are derived for both semi-discrete and fully-discrete
schemes. We provide a numerical example to confirm our theoretical results.

Keywords: Cubic B-spline; Finite element method; Nonlinear parabolic equation;
Variable coefficient; Error estimate

1 Introduction
Molecular beam epitaxy (MBE) is a widely practiced technique for depositing atoms from
a vapor phase onto a surface. The technique is very important in growing thin films [1, 2].
Crystal surface growth has recently received increasing interest in materials science [3, 4].
A reason is that it could be used in the design of semi-conductors.

In the analysis of MBE, H(x, t) is the hight of the surface above the substrate plane, and
H(x, t) satisfies the current continuity equation

Ht + ∇ · Jsurface{H} = F , (1)

where F is the incident mass flux out of the molecular beam. Jsurface, which depends on the
whole surface configuration, is the systematic current. Keeping only the most important
terms in a gradient expansion, subtracting the mean height H = Fu, and using appropri-
ately rescaled units of height, distance, and time [5], one can get

ut = –γ�2u – μ∇ · [f
(∇u2)∇u

]
, (2)

where γ and μ are two positive constants. In equation (2), the linear term models relax-
ation through adatom diffusion driven by the surface free energy [6], while the nonlinear
term simulates the nonequilibrium current [7]. A Burton–Cabrera–Frank type theory [8,
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9] indicates the formula f (s2) = 1
1+s2 [5]. Hence, we attain the following form:

ut + γ�2u + μ∇ ·
( ∇u

1 + |∇u|2
)

= 0, (x, t) ∈ Ω × (0, T), (3)

where Ω ⊂R
2 is a bounded domain with smooth boundary.

In [10], Grasselli et al. showed that equation (3) endowed with no-flux boundary con-
ditions generates a dissipative dynamical system under very general assumptions on ∂Ω

on a phase-space of L2 type. In the limit of weak desorption, Pierre-Louis et al. derived a
1D case of equation (3) for vicinal surface growing in the step flow mode [11]. This limit
turned out to be singular, and nonlinearities of arbitrary order need to be taken into ac-
count. For 1D case of equation (3), Zhao et al. proved that the Hermite finite element
method has the convergence rate of O(�t + h3) (see [12]).

The finite element method (FEM) [13–18], as a type of an important numerical tool for
solving differential equations, has a long history. For 1D Cahn–Hilliard equation, Zhang
derived the error estimates of FEM [19]. Elliott and French [20] studied a continuous
in-time finite-element Galerkin approximation for two-dimensional Cahn–Hilliard equa-
tion. In [21], Barrett et al. discussed the FEM for a fourth-order nonlinear degenerate
parabolic equation. An iterative scheme, which solves the resulting nonlinear discrete sys-
tem, is analyzed. In [22], Kästner et al. considered a numerical convergence study of the
Cahn–Hilliard phase-field model within an isogeometric finite element analysis frame-
work.

We also want to introduce the development history of the B-spline method. In 1946, the
B-spline method was first presented in Schoenberg’s paper [23]. Curry and Schoenberg in-
troduced one element B-spline functions in 1966 (see [24]). In 1976, de Boor extended B-
spline to multiple situations [25]. Box-splines [26], simple splines [27], and conical splines
[28], which were presented by de Boor, Micchelli, and Dahmen respectively, are the ele-
gant forms of different functional forms of the multivariate B-splines. B-splines have been
widely used in various fields of numerical analysis [29–31]. Hall studied the cubic B-spline
interpolation [32, 33]. There are several papers which study the B-spline FEM [34–39].

B-splines have better smoothness than the Hermite type elements, for example, quadrat-
ic B-splines are in C1(–∞, +∞). Unfortunately, the convergence order of the FEM using
quadratic B-splines is lower. Besides, Hermite type elements have two types of different
basis functions, but the B-spline finite element only has one type of basis functions. So
we consider the cubic B-spline FEM for a fourth-order nonlinear parabolic equation with
variable coefficient. The convergence order of the B-spline FEM is equal to that of the
Hermite FEM in paper [12].

The outline of this paper is as follows. In the next section, some basic definitions and
results are introduced. In Sect. 3, we study the semi-discrete approximation and derive its
convergence rate. In Sect. 4, the error estimate of the fully-discrete scheme is discussed.
In Sect. 5, some numerical experiments are presented to confirm our theoretical results.

Throughout this paper, the letters C and C′ denote generic constants independent of
the division size not necessarily the same at different occurrences. On the other hand, we
denote L2, L∞, Hk norms in I by ‖ · ‖, | · |∞, and ‖ · ‖k , respectively.
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2 Preliminaries
For a 1D case of equation (3), considering the fourth-order term with the variable co-
efficient and the suitable initial and boundary value conditions, we obtain the following
problem:

⎧
⎪⎪⎨

⎪⎪⎩

ut + (α(x, t)uxx)xx + μ( ux
1+|ux|2 )x = 0, (x, t) ∈ I × (0, T),

u(x, t) = ux(x, t) = 0, (x, t) ∈ ∂I × (0, T),

u(x, 0) = u0(x), x ∈ I,

(4)

where I = [0, 1]. The variable coefficient α(x, t) satisfies the assumption

α(x, t),
∂α

∂t
(x, t) ∈ C

(
I × [0, T]

)
, (5)

and there exist three positive constants s, S, and M such that

0 < s ≤ α(x, t) ≤ S < +∞, (x, t) ∈ I × [0, T],
∣∣
∣∣
∂α

∂t

∣∣
∣∣ ≤ M, (x, t) ∈ I × [0, T].

(6)

Remark 2.1 Notice that the essential boundary conditions are u(0, t) = u(1, t) = ux(0, t) =
ux(1, t) = 0. Then we define the following space:

H2
0 (I) =

{
w; w ∈ H2(I), w(0, t) = w(1, t) = wx(0, t) = wx(1, t) = 0

}
.

Let k be any positive integer and ϕk(x) denote the kth-order B-spline with knots at the
set Z of integers such that supp(ϕk) = [0, k]. More precisely, ϕk(x) is defined recursively by

Nk(x) = (Nk–1 ∗ N1)(x) =
∫ 1

0
Nk–1(x – t) dt

with

N1(x) = χ[0,1] =

⎧
⎨

⎩
1, x ∈ [0, 1],

0, else.

N4(x) is obviously the cubic B-spline and can be expressed as

N4(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
6 x3, x ∈ [0, 1],

– 1
2 x3 + 2x2 – 2x + 2

3 , x ∈ [1, 2],
1
2 x3 – 4x2 + 10x – 22

3 , x ∈ [2, 3],

– 1
6 (x – 4)3, x ∈ [3, 4],

0, else.

(7)

It is known that the B-spline Nk(x) is in Ck–2(–∞,∞).
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The variational problem related to (4) is: Find u = u(·, t) ∈ H2
0 (I) (0 ≤ t ≤ T ) such that

⎧
⎨

⎩
(ut , v) + (α(x, t)D2u, D2v) = μ( Du

1+|Du|2 , Dv), ∀v ∈ H2
0 (I),

u(x, 0) = u0(x), x ∈ I,
(8)

where Du = ∂u
∂x . We give the existence of the solution of problem (8) in the following the-

orem (see [12]).

Theorem 2.1 Suppose that u0 ∈ H2
0 (I). Then there exists a unique global solution u(x, t)

for problem (8) such that

u ∈ L∞(
0, T ; H2

0 (I)
) ∩ L2(0, T ; H4(I)

)
, ut ∈ L2(0, T ; L2(I)

)
.

3 Semi-discrete scheme
The interval 0 = x0 < x1 < · · · < xL = 1 is divided into L equal finite elements by h = 1/L.
Considering that the approximate solution must satisfy the boundary conditions, we in-
troduce extended virtual nodes x–3, x–2, x–1, xL+1, xL+2, xL+3. If ϕi(x) = N4( x–xi

h ), thus ϕi(x)
are the cubic B-spline functions with knots at the points xi.

Actually, B-spline basis functions are constructed as follows:
{
ϕ̃–3(x), ϕ̃–2(x), ϕ̃–1(x),ϕ0(x), . . . ,ϕL–4(x), ϕ̃L–3(x), ϕ̃L–2(x), ϕ̃L–1(x)

}
,

where

ϕ̃–3(x) = 6ϕ–3(x),

ϕ̃–2(x) = ϕ–2(x) – 4ϕ–3(x),

ϕ̃–1(x) = ϕ–1(x) –
1
2
ϕ–2(x) + ϕ–3(x),

ϕ̃L–3(x) = ϕL–3(x) –
1
2
ϕL–2(x) + ϕL–1(x),

ϕ̃L–2(x) = ϕL–2(x) – 4ϕL–1(x),

ϕ̃L–1(x) = 6ϕL–1(x).

For convenience, we still denote the basis functions as {ϕi(x)}. The basis functions satisfy
the following properties:

ϕ–3(0) = 1, ϕi(0) = 0 (i �= –3), ϕ′
i(0) = 0 (i �= –3, –2),

ϕL–1(1) = 1, ϕi(1) = 0 (i �= L – 1), ϕ′
i(1) = 0 (i �= L – 1, L – 2).

The B-spline parametrization is generally defined in the domain [0, 1]. In this paper, we
use N4(x) to define the shape functions, which is convenient in computing integrals.

Let Uh be the cubic B-spline space, thus Uh ⊂ H2
0 (I). The approximation solution

uh(x, t) ∈ Uh satisfies

uh(x, t) =
L–3∑

i=–1

δi(t)ϕi(x),

where δi(t) are time-dependent quantities.
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The semi-discrete finite element scheme based on B-splines for problem (8) is: Find
uh = uh(·, t) ∈ Uh (0 < t ≤ T ) such that

⎧
⎨

⎩
(uh,t , vh) + (α(x, t)D2uh, D2vh) = μ( Duh

1+|Duh|2 , Dvh), ∀vh ∈ Uh,

(uh(0) – u0, vh) = 0, ∀vh ∈ Uh.
(9)

In order to deduce the error estimates of the B-spline FEM, we introduce the following
lemma.

Lemma 3.1 The elliptic projection Rh : u → Rhu ∈ Uh is defined by

a(u – Rhu, vh) ≡ (
α(x, t)D2(u – Rhu), D2vh

)
= 0, ∀vh ∈ Uh. (10)

It then follows from (6) and (10) that

a(u, u) = a
(
α(x, t)u, u

) ≥ C‖u‖2
2, ∀u ∈ H2

0 (I), (11)

where C is a positive constant depending on α(x, t). Hence, a(u, v) is a symmetrical positive
definite bilinear form, and (see [13])

‖u – Rhu‖ + h‖u – Rhu‖1 + h2‖u – Rhu‖2 ≤ Ch4‖u‖4. (12)

Firstly, we analyze the boundedness of the semi-discrete scheme.

Theorem 3.1 For uh(0) ∈ H2
0 (I), there exists a unique solution uh(t) ∈ Uh for problem (8)

such that

∥∥uh(t)
∥∥

2 ≤ C
∥∥uh(0)

∥∥
2, 0 ≤ t ≤ T , (13)

where C is a positive constant depending on α(x, t), μ, and T , but independent of mesh
size h.

Proof According to ordinary differential equation theory, there exists a unique local solu-
tion to problem (9) in the interval [0, tn). If we have (13), then according to the extension
theorem, we can obtain the existence of unique global solution. So, we only need to prove
(13).

Setting vh = uh in (9) and based on (6), we get

1
2

d
dt

‖uh‖2 + s
∥
∥D2uh

∥
∥2 ≤ μ

(
Duh

1 + |Duh|2 , Duh

)
≤ μ‖Duh‖2

= – μ
(
D2uh, uh

) ≤ s
2
∥
∥D2uh

∥
∥2 +

μ2

2s
‖uh‖2.

Therefore

d
dt

‖uh‖2 + s
∥
∥D2uh

∥
∥2 ≤ μ2

s
‖uh‖2. (14)
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Then

e– μ2
s t d

dt
‖uh‖2 –

μ2

s
e– μ2

s t μ
2

s
‖uh‖2 ≤ 0.

We obtain

d
dt

(
e– μ2

s t‖uh‖2) ≤ 0. (15)

Integrating (15) with respect to t, we have

∥
∥uh(t)

∥
∥2 ≤ e

μ2
s t∥∥uh(0)

∥
∥2 ≤ e

μ2
s T∥

∥uh(0)
∥
∥2, 0 ≤ t ≤ T . (16)

Letting vh = uh,t in (9), one can get

‖uh,t‖2 +
(
α(x, t)D2uh, D2uh,t

)
= μ

(
Duh

1 + |Duh|2 , Duh,t

)
. (17)

A direct calculation gives

(
α(x, t)D2uh, D2uh,t

)
=

1
2

d
dt

(
α(x, t)D2uh, D2uh

)
–

1
2

(
∂α

∂t
D2uh, D2uh

)
.

By ε-inequality, we have

μ

(
Duh

1 + |Duh|2 , Duh,t

)
= – μ

(
1 – |Duh|2

(1 + |Duh|2)2 D2uh, uh,t

)

≤ μ

∣
∣∣∣

1 – |Duh|2
(1 + |Duh|2)2

∣
∣∣∣∞

∥∥D2uh
∥∥‖uh,t‖ ≤ 5μ

4
∥∥D2uh

∥∥‖uh,t‖

≤ 1
2
‖uh,t‖2 +

25μ2

32
∥∥D2uh

∥∥2.

It is easy to see that

‖uh,t‖2 + s
d
dt

∥
∥D2uh

∥
∥2 ≤

(
M +

25μ2

16

)∥
∥D2uh

∥
∥2. (18)

Integrating (18) with respect to t, we obtain

∥∥D2uh(t)
∥∥2 ≤ e

16M+25μ2
16s T∥∥D2uh(0)

∥∥2, 0 ≤ t ≤ T . (19)

Notice that

‖Duh‖2 = –
(
D2uh, uh

) ≤ 1
2
∥
∥D2uh

∥
∥2 +

1
2
‖uh‖2,

which gives (13). �

Now, we give the error estimates of the finite element scheme (9).
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Theorem 3.2 Let u be the solution to (8), uh be the solution to (9). Assume that u(0) ∈
H4(I), ut ∈ L2(0, T ; H4(I)), and the initial value satisfies

∥
∥u(0) – uh(0)

∥
∥ ≤ Ch4∥∥u(0)

∥
∥

4. (20)

Then, for 0 < t ≤ T , we have the following error estimate:

∥∥u(t) – uh(t)
∥∥ ≤ Ch3

[
h
∥∥u(0)

∥∥
4 +

(∫ t

0

(∥∥u(τ )
∥∥2

4 + h2∥∥ut(τ )
∥∥2

4

)
dτ

) 1
2
]

. (21)

Proof Let θ (t) = Rhu – uh, ρ(t) = u – Rhu, then we have

u – uh = u – Rhu + Rhu – uh = θ (t) + ρ(t).

It follows from (8)–(9) that

(θt , vh) +
(
α(x, t)D2θ , D2vh

)

= –(ρt , vh) + μ

(
Du

1 + |Du|2 –
Duh

1 + |Duh|2 , Dvh

)
.

(22)

Setting vh = θ in (22), we have

(θt , θ ) +
(
α(x, t)D2θ , D2θ

)
= –(ρt , θ ) + μ

(
Du

1 + |Du|2 –
Duh

1 + |Duh|2 , Dθ

)
. (23)

Using (6) and ε-inequality, we can deduce that

1
2

d
dt

‖θ‖2 + s
∥∥D2θ

∥∥2

≤ ∣∣–(ρt , θ )
∣∣ + μ

∥
∥∥
∥

Du
1 + |Du|2 –

Duh

1 + |Duh|2
∥
∥∥
∥‖Dθ‖

≤ 1
2
(‖ρt‖2 + ‖θ‖2) + μ

∥
∥∥∥

Du
1 + |Du|2 –

Duh

1 + |Duh|2
∥
∥∥∥

2

+
μ

4
‖Dθ‖2. (24)

Note that

∥∥
∥∥

Du
1 + |Du|2 –

Duh

1 + |Duh|2
∥∥
∥∥

2

≤
∥∥
∥∥

1 – DuDuh

(1 + |Du|2)(1 + |Duh|2)
(Du – Duh)

∥∥
∥∥

2

≤
∣∣
∣∣

1 – DuDuh

(1 + |Du|2)(1 + |Duh|2)

∣∣
∣∣

2

∞
‖Du – Duh‖2

≤ 25
8

(‖Dθ‖2 + ‖Dρ‖2). (25)
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Hence

1
2

d
dt

‖θ‖2 + s
∥∥D2θ

∥∥2

≤ 1
2
‖ρt‖2 +

25μ

8
‖Dρ‖2 +

1
2
‖θ‖2 +

27μ

8
‖Dθ‖2

≤ 1
2
‖ρt‖2 +

25μ

8
‖Dρ‖2 +

s
2
∥∥D2θ

∥∥2 +
(

1
2

+
729μ2

128s

)
‖θ‖2. (26)

Therefore we have

d
dt

‖θ‖2 + s
∥∥D2θ

∥∥2 ≤ ‖ρt‖2 +
25μ

4
‖Dρ‖2 +

(
1 +

729μ2

64s

)
‖θ‖2. (27)

By Gronwall’s inequality, we get

‖θ‖2 ≤ C
[∥
∥θ (0)

∥
∥2 +

∫ t

0

(‖ρt‖2 + ‖Dρ‖2)dτ

]
. (28)

Using (12) and (20), it is easy to see that

∥
∥θ (0)

∥
∥ =

∥
∥u(0) – uh(0) + Rhu(0) – u(0)

∥
∥ ≤ ∥

∥u(0) – uh(0)
∥
∥ +

∥
∥ρ(0)

∥
∥

≤ ∥
∥u(0) – uh(0)

∥
∥ + Ch4∥∥u(0)

∥
∥

4 ≤ C′h4∥∥u(0)
∥
∥

4, (29)

and

‖Dρ‖ =
∥∥D(uh – Rhu)

∥∥ ≤ Ch3‖u‖4,

‖ρt‖ = ‖ut – Rhut‖ ≤ Ch4‖ut‖4.
(30)

Finally, for 0 < t ≤ T , it follows from (28)–(30) that the proof of the theorem is com-
pleted. �

Next, we deal with the H2-estimate.

Theorem 3.3 Let u be the solution to (8), uh be the solution to (9). Assume that u(0) ∈
H4(I), u, ut ∈ L2(0, T ; H4(I)), and the initial value satisfies

∥∥u(0) – uh(0)
∥∥

2 ≤ Ch2∥∥u(0)
∥∥

4. (31)

Then we have the following error estimate:

∥∥u(t) – uh(t)
∥∥

2 ≤ Ch2
[∥∥u(0)

∥∥
4 +

(∫ t

0

(∥∥u(τ )
∥∥2

4 + h4∥∥ut(τ )
∥∥2

4

)
dτ

) 1
2
]

. (32)

Proof Letting vh = θt in (22), we get

‖θt‖2 +
(
α(x, t)D2θ , D2θt

)
= –(ρt , θt) + μ

(
Du

1 + |Du|2 –
Duh

1 + |Duh|2 , Dθt

)
, (33)
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where

(
α(x, t)D2θ , D2θt

)
=

1
2

d
dt

(
α(x, t)D2θ , D2θ

)
–

1
2

(
∂α

∂t
D2θ , D2θ

)
.

Based on (6) and ε-inequality, we have

‖θt‖2 +
s
2

d
dt

∥∥D2θ
∥∥2 ≤ M

2
∥∥D2θ

∥∥2 + ‖ρt‖2 +
1
4
‖θt‖2 +

1
4
‖θt‖2

+ μ2
∥
∥∥
∥D

(
Du

1 + |Du|2 –
Duh

1 + |Duh|2
)∥

∥∥
∥

2

. (34)

To derive the theorem, we give the following estimate:
∥∥∥
∥D

(
Du

1 + |Du|2 –
Duh

1 + |Duh|2
)∥∥∥

∥

2

=
∥∥
∥∥

(1 – |Du|2)D2u
(1 + |Du|2)2 –

(1 – |Duh|2)D2uh

(1 + |Duh|2)2

∥∥
∥∥

2

≤ 2
∥∥∥
∥

(
1 – |Du|2

(1 + |Du|2)2 –
1 – |Duh|2

(1 + |Duh|2)2

)
D2u

∥∥∥
∥

2

+ 2
∥∥
∥∥

1 – |Duh|2
(1 + |Duh|2)2

(
D2θ + D2ρ

)
∥∥
∥∥

2

≤ 2
∣∣∣
∣
(Du + Duh)(–3 – |Du|2 – |Duh|2 + |Du|2|Duh|2)

(1 + |Du|2)2(1 + |Duh|2)2

∣∣∣
∣

2

∞

∥∥D2u
∥∥2‖Dθ + Dρ‖2

+ 2
∣∣
∣∣

1 – |Duh|2
(1 + |Duh|2)2

∣∣
∣∣

2

∞

∥
∥D2θ + D2ρ

∥
∥2

≤ C
(∥∥D2θ

∥∥2 +
∥∥D2ρ

∥∥2 + ‖Dθ‖2 + ‖Dρ‖2)

≤ C′(∥∥D2θ
∥
∥2 + ‖θ‖2 + ‖ρ‖2

2
)
. (35)

Hence

‖θt‖2 + s
d
dt

∥∥D2θ
∥∥2 ≤ C

(∥∥D2θ
∥∥2 + ‖θ‖2‖ + ‖ρt‖2 + ‖ρ‖2

2
)
. (36)

Integrating (36) with respect to t, we have

∥
∥D2θ

∥
∥2 ≤ C

(∥
∥D2θ (0)

∥
∥2 +

∫ t

0

(‖θ‖2 + ‖ρt‖2 + ‖ρ‖2
2
)

dτ

)
. (37)

Combining (12) and (31), we have
∥∥D2θ (0)

∥∥ ≤ ∥∥D2u(0) – D2uh(0)
∥∥ +

∥∥D2Rhu(0) – D2u(0)
∥∥

≤ Ch2∥∥u(0)
∥∥

4. (38)

Then we obtain

∥∥D2θ
∥∥ ≤ Ch2

{∥∥u(0)
∥∥

4 +
[∫ t

0

(∥∥u(τ )
∥∥2

4 + h4∥∥ut(τ )
∥∥2

4

)
dτ

] 1
2
}

.

Using the triangle inequality, we complete the proof. �
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4 Fully-discrete scheme
The fully-discrete finite element scheme for problem (8) is: Find un

h ∈ Uh (n = 1, 2, . . . , N )
such that

⎧
⎨

⎩

(∂tun
h, vh) + (α(x, tn,θ )D2un,θ

h , D2vh) = μ( Dun,θ
h

1+|Dun,ϑ
h |2 , Dvh), ∀vh ∈ Uh,

(u(0), vh) = (u0
h, vh), ∀vh ∈ Uh,

(39)

where N is a given positive integer, �t = T/N denotes the time step size, tn = n�t and

∂tun
h =

(
un

h – un–1
h

)
/�t,

tn,θ = θ tn + (1 – θ )tn–1,

un,θ
h = θun

h + (1 – θ )un–1
h ,

un,ϑ
h = ϑun

h + (1 – ϑ)un–1
h .

When θ = ϑ = 1 and θ = ϑ = 1
2 , the schemes are the backward Euler and Crank–Nicolson

finite element scheme, respectively.
In this paper, we choose θ = 1, ϑ = 0. The fully-discrete finite element scheme is

⎧
⎨

⎩

(∂tun
h, vh) + (α(x, tn)D2un

h, D2vh) = μ( Dun
h

1+|Dun–1
h |2 , Dvh), ∀vh ∈ Uh,

(u(0) – u0
h, vh) = 0, ∀vh ∈ Uh.

(40)

From the above formulation, if un–1
h is known, the fully-discrete finite element scheme is

linear. We give the next estimate.

Theorem 4.1 Let un be the solution to problem (8), un
h be the solution to the fully-discrete

scheme (40). Assume that u(0) ∈ H4(I), ut ∈ L2(0, T ; H4(I)), utt ∈ L2(0, T ; L2(I)), and u0h ∈
Uh satisfies

∥
∥u(0) – u0

h
∥
∥ ≤ Ch4∥∥u(0)

∥
∥

4. (41)

For sufficiently small �t, there exists a constant C independent of h, �t, and n such that

∥∥un – un
h
∥∥ ≤ C

(
�t + h3). (42)

Proof Let ρn = un – Rhun and θn = Rhun – un
h . Then un – un

h = ρn + θn, and

(
∂tθ

n, vh
)

+
(
αnD2θn, D2vh

)

=
(
rn, vh

)
+ μ

(
Dun

1 + |Dun|2 –
Dun

h
1 + |Dun–1

h |2 , Dvh

)
, (43)

where

∂tθ
n =

(
θn – θn–1)/�t, αn = α

(
x, tn), rn = ∂tRhu(tn) – ut(tn).
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Taking vh = θn in (43), using Lemma 3.1 and ε-inequality, we get

∥∥θn∥∥2 + s�t
∥∥D2θn∥∥2 ≤ 1

2
(∥∥θn–1∥∥2 +

∥∥θn∥∥2) +
�t
2

(∥∥rn∥∥2 +
∥∥θn∥∥2)

+ �t
∥
∥Dθn∥∥2 +

μ2�t
4

∥∥
∥∥

Dun

1 + |Dun|2 –
Dun

h
1 + |Dun–1

h |2
∥∥
∥∥

2

.

We can easily obtain

∥
∥Dθn∥∥2 = –

(
θn, D2θn) ≤ 1

2s
∥
∥θn∥∥2 +

s
2
∥
∥D2θn∥∥2. (44)

Therefore

∥∥θn∥∥2 + s�t
∥∥D2θn∥∥2 ≤ ∥∥θn–1∥∥2 + �t

(
1 +

1
s

)∥∥θn∥∥2 + �t
∥∥rn∥∥2

+
μ2�t

2

∥
∥∥
∥

Dun

1 + |Dun|2 –
Dun

h
1 + |Dun–1

h |2
∥
∥∥
∥

2

. (45)

In addition, we have

∥
∥∥
∥

Dun

1 + |Dun|2 –
Dun

h
1 + |Dun–1

h |2
∥
∥∥
∥

=
∥∥
∥∥

Dun

1 + |Dun|2 –
Dun

1 + |Dun–1|2
∥∥
∥∥ +

∥∥
∥∥

Dun

1 + |Dun–1|2 –
Dun

1 + |Dun–1
h |2

∥∥
∥∥

+
∥∥∥
∥

Dun

1 + |Dun–1
h |2 –

Dun
h

1 + |Dun–1
h |2

∥∥∥
∥

≤
∥∥
∥∥

Dun(Dun + Dun–1)(Dun – Dun–1)
(1 + |Dun|2)(1 + |Dun–1|2)

∥∥
∥∥

+
∥
∥∥
∥

Dun(Dun–1 + Dun–1
h )(Dun–1 – Dun–1

h )
(1 + |Dun–1|2)(1 + |Dun–1

h |2)

∥
∥∥
∥ +

∥
∥∥
∥

Dun – Dun
h

1 + |Dun–1
h |2

∥
∥∥
∥

≤ ∣
∣Dun∣∣∞

∥
∥Dun – Dun–1∥∥ +

∣
∣Dun∣∣∞

∥
∥Dun–1 – Dun–1

h
∥
∥

+
∥
∥Dun – Dun

h
∥
∥. (46)

By Sobolev’s embedding theorem, we know W 2,0(I) ↪→ W 1,∞(I), that is,

∣∣Dun∣∣∞ ≤ ∥∥un∥∥
2 ≤ C. (47)

Note that

∣∣Dun – Dun–1∣∣ =
∣
∣∣
∣

∫ tn

tn–1

Dut(t) dt
∣
∣∣
∣ ≤ �t

1
2

(∫ tn

tn–1

∥∥Dut(t)
∥∥2 dt

) 1
2

. (48)

Adding (46)–(48) together, we have

∥
∥∥
∥

Dun

1 + |Dun|2 –
Dun

h
1 + |Dun–1

h |2
∥
∥∥
∥
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≤ C
[
�t

1
2

(∫ tn

tn–1

∥∥Dut(t)
∥∥2 dt

) 1
2

+
∥∥Dρn–1 + Dθn–1∥∥ +

∥∥Dρn + Dθn∥∥
]

≤ C
[
�t

1
2

(∫ tn

tn–1

∥
∥Dut(t)

∥
∥2 dt

) 1
2

+ hk–1 +
∥
∥Dθn–1∥∥ +

∥
∥Dθn∥∥

]
. (49)

Let rn = rn
1 + rn

2 , where

rj
1 = ∂tRhu(tj) – ∂tu(tj) =

1
�t

∫ tj

tj–1

(Rh – I)ut dt,

rj
2 = ∂tu(tj) – ut(tj) = –

1
�t

∫ tj

tj–1

(t – tj–1)utt dt.

It is easy to see that

∥
∥rj

1
∥
∥ ≤ 1

�t

∫ tj

tj–1

Ch4‖ut‖k dt ≤ C(�t)– 1
2 h4

(∫ tj

tj–1

‖ut‖2
4 dt

) 1
2

and

∥∥rj
2
∥∥ ≤

∫ tj

tj–1

‖utt‖dt ≤ (�t)
1
2

(∫ tj

tj–1

‖utt‖2 dt
) 1

2
.

One can easily get

n∑

j=1

∥
∥rj∥∥2 ≤ C(�t)–1[(�t)2 + h8]

∫ tn

0

(‖ut‖2
4 + ‖utt‖2)dt. (50)

Substituting (49) and (50) into (45), we obtain

∥∥θn∥∥2 –
∥∥θn–1∥∥2 +

s�t
2

(∥∥D2θn∥∥2 –
∥∥D2θn–1∥∥2)

≤ C�t
(∥∥θn–1∥∥2 +

∥
∥θn∥∥2 + h6) + C

[
(�t)2 + h8]

∫ tn

tn–1

(‖ut‖2
4 + ‖utt‖2)dt.

Taking the sum over n, by n�t = tn ≤ T , we have

∥
∥θn∥∥2 +

s�t
2

∥
∥D2θn∥∥2

≤ (1 + C�t)
∥∥θ0∥∥2 +

s�t
2

∥∥D2θ0∥∥2 + C

(

�t
n∑

i=1

∥∥θ i∥∥2 + Th6

)

+ C
[
(�t)2 + h8]

∫ tn

t0

(‖ut‖2
4 + ‖utt‖2)dt.

Using (12) and (41), we get

∥∥θ0∥∥ ≤ ∥∥u(0) – uh(0)
∥∥ +

∥∥u(0) – Rhu(0)
∥∥ ≤ Ch4∥∥u(0)

∥∥
4. (51)
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Thus

∥
∥θn∥∥2 ≤ C�t

n–1∑

i=1

∥
∥θ i∥∥2 + C

[
(�t)2 + h6]. (52)

Using the discrete Gronwall inequality and Lemma 3.1, we get the error estimate (42). �

Although we assume that α(x, t) is a smooth function in (5), α(x, t) ∈ W 1,∞(0, T ; W 1,∞(I))
is enough.

It is difficult to estimate the nonlinear term which affects the convergence order of the
schemes. It leads to the failure of the optimal convergence.

5 Numerical approximation
In this section, we consider the following equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut + (α(x, t)uxx)xx + ( ux
1+|ux|2 )x = f (x, t), (x, t) ∈ (0, 1) × (0, 1],

u(x, t) = ux(x, t) = 0, x = 0, 1, t ∈ (0, 1],

u(x, 0) = u0(x), x ∈ [0, 1],

(53)

where α(x, t) = 1+ xt. We take the analytical solution u(x, t) = t2(1–cos 2πx). The behavior
of the exact solution to equation (53) is shown in Fig. 1 and the profile of the solution to
the fully-discrete form is given in Fig. 2.

The numerical solution is in good accordance with the exact solution, indicating that
the numerical scheme is valid and efficient.

Then the errors and the orders of convergence are shown in Tables 1–3.

5.1 Tables
In Table 1, taking the time step �t = 1

200,000 , we find that the rate of convergence in space
is the fourth order in L2 norm and is the second order in H2 norm. Tt means that the
accuracy in space is better than the theoretical precision.

Figure 1 The exact solution to the full-discrete scheme. The figure is the profile of the exact solution to the
cubic B-spline finite element method
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Figure 2 The numerical solution to the full-discrete scheme. The figure is the profile of the numerical
solution to the cubic B-spline finite element method

Table 1 The error for different space step h at t = 1

(�t,h) ‖u – uh‖ Rate ‖u – uh‖1 Rate ‖u – uh‖2 Rate

(1/200,000, 1/10) 2.6858e–4 7.1462e–3 4.3020e–1

(1/200,000, 1/20) 1.2314e–5 4.4470 8.1328e–4 3.1354 1.0389e–1 2.0500
(1/200,000, 1/40) 7.4241e–7 4.0519 9.9745e–5 3.0274 2.5745e–2 2.0127
(1/200,000, 1/80) 4.1905e–8 4.1470 1.2399e–5 3.0080 6.4221e–3 2.0032

Table 2 The error for different time step �t at t = 1

(�t,h) ‖u – uh‖ Rate ‖u – uh‖1 Rate ‖u – uh‖2 Rate

(1/10, 1/800) 5.9048e–4 2.0970e–3 1.3459e–2

(1/20, 1/800) 2.7118e–4 1.1226 9.6223e–4 1.1239 6.1815e–3 1.1225
(1/40, 1/800) 1.3035e–4 1.0569 4.6234e–4 1.0574 2.9718e–3 1.0566
(1/80, 1/800) 6.4199e–5 1.0218 2.2765e–4 1.0221 1.4644e–3 1.0210

Table 3 The error for different time step �t and space step h at t = 1

(�t,h) ‖u – uh‖ Rate ‖u – uh‖1 Rate ‖u – uh‖2 Rate

(1/1000, 1/10) 2.6507e–4 7.1428e–3 4.3020e–1

(1/8000, 1/20) 1.2618e–5 4.3928 8.1323e–4 3.1348 1.0389e–1 2.0500
(1/64,000, 1/40) 7.1987e–7 4.1316 9.9738e–5 3.0274 2.5745e–2 2.0127
(1/512,000, 1/80) 4.1744e–8 4.1081 1.2400e–5 3.0078 6.4221e–3 2.0032

In Table 2, the space step is h = 1
800 . It is easy to see that the orders of error estimate are

O(�t) in both L2 and H2 norms.
In Table 3, we choose (�t, h) = ( 1

1000 , 1
10 ), ( 1

8000 , 1
20 ), ( 1

64,000 , 1
40 ), ( 1

512,000 , 1
80 ), respectively.

The errors are optimal order convergent in L2 and H2 norms.
The tables show the errors and convergence analysis in space and time. In L2 norm,

the convergence order is higher than the result of theoretical analysis. The reason is that
it is difficult to deal with the estimation of the nonlinear term. The numerical example
demonstrates that the cubic B-spline finite element scheme is efficient.
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6 Conclusion
In this paper, the model is a class of fourth-order nonlinear parabolic differential equa-
tions with variable coefficient α(x, t). By constructing appropriate basis functions satis-
fying the boundary conditions, we obtain the finite element schemes based on the cubic
B-spline. We analyze the boundedness of the semi-discrete scheme and discuss the er-
ror estimates in L2 norm and H2 norm. We also discrete the temporal variable, and the
fully-discrete scheme is taken as a linearized backward Euler scheme. The coefficient ma-
trix of the corresponding linear system is spare, which can be solved efficiently. For the
fully-discrete scheme, the rate of convergence is discussed. The numerical results indicate
that our method is efficient and its computational accuracy is better than the theoretical
results.

Through the above results, we know that the cubic B-splines have better smoothness
than the Hermite type elements. The B-spline finite element has only one type of basis
functions. It is clear that the B-spline FEM decreases the order of the coefficient matrix,
but it can get the same convergence order as the Hermite FEM.
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