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Abstract
A higher-order blended compact difference (BCD) scheme is proposed to solve the
general two-dimensional (2D) linear second-order partial differential equation. The
distinguishing feature of the present method is that methodologies of explicit
compact difference and implicit compact difference are blended together.
Sixth-order accuracy approximations for the first- and second-order derivatives are
employed, and the original equation is also discretized based on a 9-point stencil,
which is different from the work of Lee et al. (J. Comput. Appl. Math. 264:23–37, 2014).
A truncation error analysis is performed to show that the scheme is of sixth-order
accuracy for the interior grid points. Simultaneously, sixth-order accuracy schemes are
proposed to compute the grid points on the boundaries for the first- and
second-order derivatives. Numerical experiments are conducted to demonstrate the
accuracy and efficiency of the present method.
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1 Introduction
In this paper, we consider the general two-dimensional (2D) linear partial differential
equation in the form

a(x, y)uxx + b(x, y)uyy + c(x, y)uxy + p(x, y)ux + q(x, y)uy + r(x, y)u = f (x, y). (1)

Here the unknown function u, the variable coefficient functions a, b, c, p, q, r, and the
forcing function f are assumed to be continuously differentiable and have the required
partial derivatives on Ω . Ω is a continuous rectangular domain. A suitable Dirichlet con-
dition is prescribed on the boundary (∂Ω) in this paper.

Equation (1) is widely used in the fields of porous media flow [2, 3] and when coordi-
nate transformations are applied to a convection-diffusion equation on non-rectangular
domains [4], which also generate Eq. (1). So it is both theoretically and practically im-
portant to investigate their accurate, stable and efficient numerical methods. In the past
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decades, high-order compact (HOC) difference methods have attracted increasing inter-
ests for solving such equations [1, 5–8]. The main feature of HOC methods is that they
have higher-order accuracy (usually fourth-order, even higher) and higher spectral resolu-
tion with relatively few grid points (compact grid stencil) than the conventional difference
methods. There are two kinds of compact difference methods. One is called the explicit
compact difference method and the other is called the implicit compact difference method.
For the explicit compact difference method, all the derivatives in partial differential equa-
tions are explicitly approximated by the nodal values of the target function. Usually, 9 grid
points are used for solving the 2D problems and no more than 27 grid points (usually 19
points) for solving the three-dimensional (3D) problems. For instance, in Ref. [9], Gupta
et al. derived a fourth-order compact finite-difference scheme for the 2D convection-
diffusion equation. Then they extended the method to the 2D elliptic equation without the
mixed derivative term [5]. Karaa extended the work of Gupta et al. to the 2D elliptic and
parabolic problems with mixed derivatives [8]. The basic idea of their methods lies in uti-
lizing the Taylor expansions by 2D power series of all the functions involved in the differ-
ential equation at the reference grid point (i, j), substituting these expansions into the orig-
inal equation and comparing the coefficients of xiyj to get the linear constraints on the un-
known coefficients. In Ref. [8], the author considered the model equations with the mixed
derivative terms, but the coefficients of the second derivatives uxx and uyy were equiva-
lent to constants. In other words, if they are functions and a(x, y) �= b(x, y), and c(x, y) �= 0
in Eq. (1), there do not exist any explicit fourth-order compact difference schemes with
9-point grid stencil as was declared in Ref. [6]. And the authors of [6] also pointed out that
explicit sixth-order compact difference schemes exist only if a(x, y) = b(x, y) = 1, c(x, y) = 0,
and p(x, y) = q(x, y). Special cases are the Poisson equation and the Helmholtz equation.
Some fourth- and sixth-order compact difference schemes are reported in Refs. [10–16].
Additionally, some fourth-order compact difference schemes for the convection-diffusion
equations and the steady incompressible Navier–Stokes equations are reported in Refs.
[17–25].

Different from the explicit compact difference method, the implicit compact difference
method is to treat the derivatives and the target function as unknowns simultaneously,
with all derivatives involved in computation. The advantage of the method is that they are
easier to attain higher-order accuracy by using additional information of the derivatives
that are possibly unnecessary for reality use than the explicit compact difference method.
In the 1970s, Kreiss [26], Hirsh [27], and Adam [28] have proposed Hermitian compact
techniques using fewer grid nodes (three instead of five) at each coordinate direction to
solve partial differential equations (PDEs). Later on, Lele [29] proposed a class of compact
finite-difference schemes with a range of spatial scales (spectral-like resolution). Chu and
Fan [30] proposed a combined compact difference (CCD) scheme, which can be regarded
as an extension of the standard Padé schemes discussed by Lele [29]. In [30], the CCD
scheme is derived by using local Hermitian polynomials and is sixth-order accuracy with
3 points for one dimension (see Appendix 1). Fourier analysis shows that the CCD scheme
has better spectral resolution than many other existing compact or non-compact high-
order schemes. Fu et al. [31] developed an upwind fifth-order compact scheme. Deng and
Zhang [32] developed a high-order accurate weighted compact nonlinear scheme. More
recently, implicit compact difference schemes were used to solve hyperbolic equations and
various kinds of fluid dynamics and engineering problems [33–43].
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As we discussed above, for the general 2D linear second-order equations with variable
coefficients and the mixed derivative term like (1), it is impossible to get an explicit fourth-
order compact difference scheme with 9 grid points except under certain conditions men-
tioned above. But it is possible to get an implicit fourth-order, even sixth-order compact
difference scheme for such equations with no more than 9 grid points. Very recently, Lee
et al. [1] extended the work in [30] and proposed a combined compact difference (CCD2)
scheme to solve Eq. (1). The highlight of this work is a sixth-order accurate difference
scheme for the mixed derivative with a 9-point compact stencil at the interior region. It
is a pity that just the fourth-order accuracy schemes on the boundaries are proposed in
[1], which results in the convergence order of the CCD2 scheme is less than six for some
problems. So, in this paper, we are aiming at developing a new sixth-order compact differ-
ence scheme for solving the general 2D linear partial differential equation (1). Our method
makes use of the explicit compact difference scheme in which the derivatives of the orig-
inal differential equation are discretized and the implicit compact difference scheme in
which all derivatives with their own schemes are involved in computation independently,
which is named the blended compact difference (BCD) scheme. Namely, the original gov-
erning equation is discretized with the 9-point compact stencil (like the explicit compact
difference scheme) and a sixth-order compact difference scheme is proposed, but it still
includes the representations of the first- and second-order derivatives (like the implicit
compact difference scheme), which are computed by the sixth-order CCD schemes [30].
This scheme differs from the explicit compact difference method because the computa-
tions of the first- and second-order derivatives are also needed in the scheme. And it also
differs from the implicit CCD2 scheme [1] because the governing equation is required to
be discretized simultaneously in the present method. Although the computational cost in-
creases, it is more accurate and more convenient to conduct computation than the method
described in [1, 30]. We will illustrate this conclusion in the following sections.

This paper is organized as follows. In Sect. 2, we present the method for deriving a sixth-
order compact difference scheme for solving Eq. (1). Simultaneously, the sixth-order ac-
curacy schemes are proposed to compute the grid points on the boundaries. In Sect. 3,
truncation error analysis is done to show that the scheme is sixth-order accuracy for the
interior grid points. Next, numerical tests are conducted in Sect. 4, and we compare the
present scheme with other existing numerical methods in the literature. Finally, we give a
brief conclusion in Sect. 5.

2 Methodology of sixth-order BCD scheme
In this section, we briefly discuss the development of BCD formulation for Eq. (1). Assume
the problem domain to be rectangular Ω = [0, Lx] × [0, Ly], and we discrete the domain
with uniform grids and set hx and hy to be the grid step-length in the x- and y-directions,
respectively. The central mesh point (xi, yj) is denoted by 0 and the other 8 mesh points
at (xi ± hx, yj), (xi, yj ± hy), (xi ± hx, yj ± hy), are denoted by numbers 1 – 8 (see Fig. 1). For
convenience, we denote the derivatives by {u, ux, uxx, uy, uyy, uxy}, respectively. We consider
the general Dirichlet boundary condition. In the following sections, we will discuss how
to implement the BCD scheme on a rectangular region.

2.1 Inner grid points
For each interior grid point (xi, yj), xi = ihx, yj = jhy, i = 1, 2, . . . , Nx – 1, j = 1, 2, . . . , Ny – 1.
There are 6 unknowns {u, ux, uy, uxx, uyy, uxy} to be determined and consequently we
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Figure 1 Labeling of the 9 grid points

should provide 6 independent difference equations. Note that the original 3-point sixth-
order CCD schemes for the first- and second-order derivatives as well as the 9-point sixth-
order scheme of the mixed derivative uxy are proposed in [30] and [1], respectively. We
simply borrow the sixth-order schemes for the five derivatives {ux, uy, uxx, uyy, uxy} that
are listed in Appendix 1.

In order to get the BCD scheme, we use the Taylor series expansions at point (x, y).

ux = δxu –
h2

x
6

uxxx –
h4

x
120

ux(5) + O
(
h6

x
)
, (2)

uy = δyu –
h2

y

6
uyyy –

h4
y

120
uy(5) + O

(
h6

y
)
. (3)

Here δx and δy (see Appendix 2) are standard central difference operators for the first-
order derivatives. Substituting (2) and (3) into (1),we obtain the following modified differ-
ential equation corresponding to Eq. (1):

auxx + buyy + cuxy + p
(

δxu –
h2

x
6

uxxx

)
+ q

(
δyu –

h2
y

6
uyyy

)
+ ru

–
1

120
(
ph4

xux(5) + qh4
yuy(5)

)
+ O

(
h6

x + h6
y
)

= f . (4)

We now replace all the third-order derivatives in Eq. (4). Differentiating Eq. (1) with
respect to x and y, respectively:

uxxx =
[

1
a

(fx – buyyx – bxuyy – cuxxy – cxuxy – puxx – pxux – quyx – qxuy – rxu – rux)

–
ax

a2 (f – buyy – cuxy – pux – quy – ru)
]

, (5)

uyyy =
[

1
b

(fy – auxxy – ayuxx – cuxyy – cyuxy – puxy – pyux – quyy – qyuy – ryu – ruy)

–
by

b2 (f – auxx – cuxy – pux – quy – ru)
]

. (6)

Substituting Eqs. (5)–(6) into Eq. (4),and rearranging it, we obtain

Āuxx + B̄uyy + C̄uxy + D̄ux + Ēuy + Ḡuxyy + H̄uxxy + (r + pδx + qδy)u
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+
(

prxh2
x

6a
+

qryh2
y

6b

)
–

1
120

(
ph4

xux(5) + qh4
yuy(5)

)
+ O

(
h6

x + h6
y
)

= F , (7)

where

Ā = a +
h2

xp2

6a
–

h2
yqbya
6β2 +

h2
yqay

6β
, (8)

B̄ = b +
h2

xpbx

6a
–

h2
xpaxb
6a2 +

h2
yq2

6b
, (9)

C̄ = c +
h2

xp
6a

(
cx + q –

axc
a

)
+

h2
yq

6b

(
cy + p –

byc
b

)
, (10)

D̄ =
h2

xp
6a

(
r + px –

axp
a

)
+

h2
yq

6b

(
py –

byp
b

)
, (11)

Ē =
h2

xp
6a

(
qx –

axq
a

)
+

h2
yq

6b

(
r + qy –

byq
b

)
, (12)

Ḡ =
h2

xpb
6a

+
h2

yqc
6b

, (13)

H̄ =
h2

xpc
6a

+
h2

yqa
6b

, (14)

F =
(

1 –
axph2

x
6a2 –

byqh2
y

6b2

)
f +

ph2
x

6a
fx +

qh2
y

6b
fy. (15)

To get a sixth-order compact scheme for Eq. (7), we use the following approximations
for all the derivatives {uxx, uyy, uxxy, uxyy, ux(5) , ux(6) , uy(5) , uy(6)}:

uxx = 2δ2
x u – δxux +

h4
x

360
ux(6) + O

(
h6

x
)
, (16)

uyy = 2δ2
y u – δyuy +

h4
y

360
uy(6) + O

(
h6

y
)
, (17)

uxxy = δ2
x uy + δ2

xδyu – δxδyux + O
(
h4

x + h4
y
)
, (18)

uxyy = δ2
y ux + δ2

y δxu – δyδxuy + O
(
h4

x + h4
y
)
, (19)

ux(5) =
360
7h4

x

(
ux – δxu +

h2
x

6
δxuxx

)
+ O

(
h2

x
)
, (20)

ux(6) =
240
h4

x

(
uxx – δ2

x u +
h2

x
12

δ2
x uxx

)
+ O

(
h2

x
)
, (21)

uy(5) =
360
7h4

y

(
uy – δyu +

h2
y

6
δyuyy

)
+ O

(
h2

y
)
, (22)

uy(6) =
240
h4

y

(
uyy – δ2

y u +
h2

y

12
δ2

y uyy

)
+ O

(
h2

y
)
. (23)

Substituting Eqs. (16)–(23) into Eq. (7) and rearranging it, we have

(
4
3

Āδ2
x +

4
3

B̄δ2
y +

10p
7

δx +
10q

7
δy + Ḡδ2

y δx + H̄δ2
xδy

)
u
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+
(

–Āδx + D̄ + Ḡδ2
y – H̄δxδy –

3p
7

)
ux

+
(

Ē – B̄δy + H̄δ2
x – Ḡδyδx –

3q
7

)
uy +

(
2Ā
3

–
ph2

x
14

δx +
Āh2

x
18

δ2
x

)
uxx

+
(

–
qh2

y

14
δy +

2B̄
3

+
B̄h2

y

18
δ2

y

)
uyy + C̄uxy + O

(
h6

x + h6
y
)

= F . (24)

Substituting the standard finite-difference operators (see Appendix 2) into (24) and
omitting the truncation error terms, we obtain the following BCD scheme:

8∑

k=0

(b̂kuk + ĉkuxk + d̂kuyk) + C̄uxy0 +
5Ā
9

uxx0 +
(

Ā
18

–
hxp0

28

)
uxx1

+
(

Ā
18

+
hxp0

28

)
uxx3 +

5B̄
9

uyy0

+
(

B̄
18

–
hyq0

28

)
uyy2 +

(
B̄
18

+
hyq0

28

)
uyy4 = F0. (25)

All the coefficients are explicitly given as follows:

b̂0 = –
8
3

(
Ā
h2

x
+

B̄
h2

y

)
+ r0 +

p0h2
xrx0

6a0
+

q0h2
yry0

6b0
,

b̂1 =
4Ā
3h2

x
+

10p0

14hx
–

Ḡ
hxh2

y
, b̂2 =

4B̄
3h2

y
+

5q0

7hy
–

H̄
h2

xhy
,

b̂3 =
4Ā
3h2

x
–

10p0

14hx
+

Ḡ
hxh2

y
, b̂4 =

4B̄
3h2

y
–

5q0

7hy
+

H̄
h2

xhy
, b̂5 =

Ḡ
2hxh2

y
+

H̄
2hyh2

x
,

b̂6 = –
Ḡ

2hxh2
y

+
H̄

2hyh2
x

, b̂7 = –
Ḡ

2hxh2
y

–
H̄

2hyh2
x

, b̂8 =
Ḡ

2hxh2
y

–
H̄

2hyh2
x

,

ĉ0 = D̄ –
2Ḡ
h2

y
–

3p0

7
+

p0h2
xr0

6a0
, ĉ1 = –ĉ3 = –

Ā
2hx

, ĉ2 = ĉ4 =
Ḡ
h2

y
,

ĉ5 = –ĉ6 = ĉ7 = –ĉ8 = –
H̄

4hxhy
, d̂0 = Ē –

2H̄
h2

x
–

3q0

7
, d̂1 = d̂3 =

H̄
h2

x
,

d̂2 = –d̂4 = –
B̄

2hy
, d̂5 = d̂7 = –d̂6 = –d̂8 = –

Ḡ
4hxhy

,

F0 =
(

1 –
ax0p0h2

x
6a2 –

by0q0h2
y

6b2

)
f0 +

p0h2
x

6a
fx0 +

q0h2
y

6b
fy0.

Equation (25) is the new BCD scheme we developed. It involves the values of the un-
known function on 9 grid points (like explicit compact difference scheme) and their
first- and second-order derivatives on 3 grid points on each coordinate direction (like
implicit compact difference scheme). All the derivatives are separately required to be
approximated up to sixth-order accuracy. Namely, the first-order derivatives ux and
uy are approximated by the sixth-order CCD interior schemes (59) and (61) in Ap-
pendix 1, respectively. The second-order derivatives uxx and uyy are approximated by
the sixth-order CCD interior schemes (60) and (62) in Appendix 1, respectively. The
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Figure 2 Grid point discretization for left boundary

mixed second-order derivative uxy is approximated by the 9-point sixth-order interior
schemes (63) in Appendix 1. We now present some remarks on the BCD and CCD
schemes.

Remark 1 The CCD scheme needs to couple all difference equations for the unknown
function and its various derivatives together and solve them simultaneously along with
complex boundary schemes. It is unavoidable to result in large scale and complicated co-
efficient matrix, which increases the complexity of algorithm design and programming.
However, the BCD scheme is decoupled by means of solving the unknown function and its
various derivatives separately with an iteration process, so the derivation of the schemes,
the algorithm design and programming are simple and convenient to operate.

Remark 2 The CCD scheme uses the original equation (1) as governing equation of the
unknown function u directly, while the BCD scheme uses the discretized equation, i.e.,
Eq. (25) to compute u. Obviously Eq. (25) is more complicated than the original equa-
tion (1), so the calculation cost correspondingly increases.

2.2 Boundary grid points

In the above section, we have developed difference equations for each interior grid point.
Many applications involve computations in domains with non-periodic boundaries. In
this section, we will introduce approximations for the first- and second-order derivatives
for the boundary nodes. For non-periodic problems, these approximations are, of neces-
sity, non-central or one-sided. Additional sixth-order expressions are needed to compute
nodes at the boundaries nodes to close the system. Consider left boundary i = 0, the
sixth-order schemes of the first-order derivative may be obtained from a relation of the
form

(ux)0,j + α(ux)1,j = (b0u0,j + b1u1,j + b2u2,j + b3u3,j + b4u4,j + b5u5,j)/hx. (26)

The coefficients b0, b1, b2, b3, b4, b5 (for the subscript see Fig. 2) and α are derived by
matching the Taylor series coefficients of various orders. By some tedious calculations, we
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are able to obtain the linear equations as shown below:

b0 + b1 + b2 + b3 + b4 + b5 = 0,

1
2!

(
b1 + 22b2 + 32b3 + 42b4 + 52b5

)
= α,

1
3!

(
b1 + 23b2 + 33b3 + 43b4 + 53b5

)
=

α

2
,

1
4!

(
b1 + 24b2 + 34b3 + 44b4 + 54b5

)
=

α

6
,

1
5!

(
b1 + 25b2 + 35b3 + 45b4 + 55b5

)
=

α

24
,

1
6!

(
b1 + 26b2 + 36b3 + 46b4 + 56b5

)
=

α

120
,

1
7!

(
b1 + 27b2 + 37b3 + 47b4 + 57b5

)
=

α

720
.

(27)

And resolving it by Matlab software, we can get the results as follows:

α = 5, b0 = –
197
60

, b1 = –
5

12
, b2 = 5,

b3 = –
5
3

, b4 =
5

12
, b5 = –

1
20

.

So, we can get the left boundary condition of ux for j = 0, 1, . . . , Ny:

(ux)0,j + 5(ux)1,j =
(

–
197
60

u0,j –
5

12
u1,j + 5u2,j –

5
3

u3,j +
5

12
u4,j –

1
20

u5,j

)/
hx. (28)

The derivation of the following boundary approximations for the first-order and second-
order derivatives is exactly analogous to the above process. The boundary schemes are
summarized now.

Right boundary condition of ux for j = 0, 1, . . . , Ny:

(ux)Nx ,j + 5(ux)Nx–1,j =
(

197
60

uNx ,j +
5

12
uNx–1,j – 5uNx–2,j +

5
3

uNx–3,j

–
5

12
uNx–4,j +

1
20

uNx–5,j

)/
hx. (29)

Bottom boundary condition of uy for i = 0, 1, . . . , Nx:

(uy)i,0 + 5(uy)i,1 =
(

–
197
60

ui,0 –
5

12
ui,1 + 5ui,2 –

5
3

ui,3 +
5

12
ui,4 –

1
20

ui,5

)/
hy. (30)

Top boundary condition of uy for i = 0, 1, . . . , Nx:

(uy)i,Ny + 5(uy)i,Ny–1 =
(

197
60

ui,Ny +
5

12
ui,Ny–1 – 5ui,Ny–2 +

5
3

ui,Ny–3

–
5

12
ui,Ny–4 +

1
20

ui,Ny–5

)/
hy. (31)



Ma and Ge Advances in Difference Equations         (2019) 2019:98 Page 9 of 21

Left boundary condition of uxx for j = 0, 1, . . . , Ny:

(uxx)0,j – 6(uxx)1,j =
(

–
403
18

u0,j + 33u1,j –
21
2

u2,j –
4
9

u3,j

)/
h2

x

+
[

–
26
3

(ux)0,j – 6(ux)1,j + 3(ux)2,j

]/
hx. (32)

Right boundary condition of uxx for j = 0, 1, . . . , Ny:

(uxx)Nx ,j – 6(uxx)Nx–1,j =
(

–
403
18

uNx ,j + 33uNx–1,j –
21
2

uNx–2,j –
4
9

uNx–3,j

)/
h2

x

+
[

26
3

(ux)Nx ,j + 6(ux)Nx–1,j – 3(ux)Nx–2,j

]/
hx. (33)

Bottom boundary condition of uyy for i = 0, 1, . . . , Nx:

(uyy)i,0 – 6(uyy)i,1 =
(

–
403
18

ui,0 + 33ui,1 –
21
2

ui,2 –
4
9

ui,3

)/
h2

y

+
[

–
26
3

(uy)i,0 – 6(uy)i,1 + 3(uy)i,2

]/
hy. (34)

Top boundary condition of uyy for i = 0, 1, . . . , Nx:

(uyy)i,Ny – 6(uyy)i,Ny–1 =
(

–
403
18

ui,Ny + 33ui,Ny–1 –
21
2

ui,Ny–2 –
4
9

ui,Ny–3

)/
h2

y

+
[

26
3

(uy)i,Ny + 6(uy)i,Ny–1 – 3(uy)i,Ny–2

]/
hy. (35)

In the end, we will derive boundary conditions of the mixed derivative. We can regard
the second mixed derivative uxy as the first partial derivative of ux (or uy) with respect
to y (or x). Similar to the first-order derivative boundary scheme, by using the 2D Taylor
expansions and some tedious calculations (see Appendix 3), we are able to deduce some
difference schemes for approximating uxy for grid points on the boundaries. A group of
sixth-order accurate equations on the four boundaries can be given here.

Left boundary condition of uxy for j = 0, 1, . . . , Ny:

(uxy)0,j +
1
5

(uxy)1,j =
[

–
149
60

(uy)0,j +
1723
300

(uy)1,j – 7(uy)2,j +
19
3

(uy)3,j

–
43
12

(uy)4,j +
23
20

(uy)5,j –
4

25
(uy)6,j

]/
hx. (36)

Right boundary condition of uxy for j = 0, 1, . . . , Ny:

(uxy)Nx ,j –
1
5

(uxy)Nx–1,j =
[

29
12

(uy)Nx ,j –
1877
300

(uy)Nx–1,j + 8(uy)Nx–2,j – 7(uy)Nx–3,j

+
47
12

(uy)Nx–4,j –
5
4

(uy)Nx–5,j +
13
75

(uy)Nx–6,j

]/
hx. (37)
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Top boundary condition of uxy for i = 0, 1, . . . , Nx:

(uxy)i,Ny –
1
5

(uxy)i,Ny–1 =
[

29
12

(ux)i,Ny –
1877
300

(ux)i,Ny–1 + 8(ux)i,Ny–2 – 7(ux)i,Ny–3

+
47
12

(ux)i,Ny–4 –
5
4

(ux)i,Ny–5 +
13
75

(ux)i,Ny–6

]/
hy. (38)

Bottom boundary condition of uxy for i = 0, 1, . . . , Nx:

(uxy)i,0 +
1
5

(uxy)i,1 =
[

–
149
60

(ux)i,0 +
1723
300

(ux)i,1 – 7(ux)i,2 +
19
3

(ux)i,3

–
43
12

(ux)i,4 +
23
20

(ux)i,5 –
4

25
(ux)i,6

]/
hy. (39)

With more than 4 grid points along one direction, the above boundary difference equa-
tions are not strictly compact in the traditional sense, but they are necessary to retain the
high-order accuracy of the BCD scheme. Nevertheless, we remark that these equations
are only used for boundary grid points. The interior difference equations contribute to
the major compact structure.

Note that if the Dirichlet boundary condition is replaced by the Neumann boundary
condition, the equation (1) can also be solved because the function u is unknown at the
boundaries while the values of the first-order derivatives ux and uy at the boundaries are
known. According to Eqs. (28)–(31), the function u at the boundaries can be calculated
by the sixth-order schemes as follows:

u0,j = 60
[

–hx(ux)0,j – 5hx(ux)1,j –
5

12
u1,j + 5u2,j –

5
3

u3,j +
5

12
u4,j –

1
20

u5,j

]/
197, (40)

uNx ,j = 60
[

hx(ux)Nx ,j + 5hx(ux)Nx–1,j –
5

12
uNx–1,j + 5uNx–2,j –

5
3

uNx–3,j

+
5

12
uNx–4,j –

1
20

uNx–5,j

]/
197, (41)

ui,0 = 60
[

–hy(uy)i,0 – 5hy(uy)i,1 –
5

12
ui,1 + 5ui,2 –

5
3

ui,3 +
5

12
ui,4 –

1
20

ui,5

]/
197, (42)

ui,Ny = 60
[

hy(uy)i,Ny + 5hy(uy)i,Ny–1 –
5

12
ui,Ny–1 + 5ui,Ny–2 –

5
3

ui,Ny–3

+
5

12
ui,Ny–4 –

1
20

ui,Ny–5

]/
197. (43)

2.3 Iterative procedure
The BCD scheme is decoupled by means of solving the unknown function u and its various
derivatives ux, uy, uxx, uyy, uxy separately with an iteration process. A pseudo code of the
BCD scheme is listed as follows:

Give any initial guess u(0), u(0)
x , u(0)

y , u(0)
xx , u(0)

yy and u0
xy

For k = 1, 2, . . . do
Compute u(k)

x by Scheme (59) in Appendix 1 and Schemes (28) and (29).
Compute u(k)

y by Scheme (61) in Appendix 1 and Schemes (30) and (31).
Compute u(k)

xx by Scheme (60) in Appendix 1 and Schemes (32) and (33).
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Compute u(k)
yy by Scheme (62) in Appendix 1 and Schemes (34) and (35).

Compute u(k)
xy by Scheme (63) in Appendix 1 and schemes (36)–(39).

Compute u(k) by Scheme (25)
If ‖F – Lu(k)‖ < η is satisfied, then stop.

Here k is iteration number. L is the linear difference operator for representation of the
scheme (25). ‖ · ‖ is a sort of norm. η is the convergence tolerance.

3 Truncation error analysis
A brief truncation error analysis is given here. For the sake of simplicity, we suppose that
hx and hy are equal to h, using the Taylor series expansions at point (x, y).

ux = δxu –
h2

6
uxxx –

h4

120
ux(5) –

h6

5040
ux(7) + O

(
h8), (44)

uy = δyu –
h2

6
uyyy –

h4

120
uy(5) –

h6

5040
uy(7) + O

(
h8). (45)

The original equation (1) is treated as an auxiliary relation that can be differentiated to
yield expressions for the third-order derivatives,

uxxx =
[

1
a

(fx – buyyx – bxuyy – cuxxy – cxuxy – puxx – pxux – quyx – qxuy – rxu – rux)

–
ax

a2 (f – buyy – cuxy – pux – quy – ru)
]

, (46)

uyyy =
[

1
b

(fy – auxxy – ayuxx – cuxyy – cyuxy – puxy – pyux – quyy – qyuy – ryu – ruy)

–
by

b2 (f – auxx – cuxy – pux – quy – ru)
]

. (47)

Substituting Eqs. (44)–(47) into Eq. (1) and rearranging it,

Āuxx + B̄uyy + C̄uxy + D̄ux + Ēuy + Ḡuxyy + H̄uxxy + pδxu + qδyu

–
h4p
120

ux(5) –
h4q
120

uy(5) –
h6

5040
ux(7) –

h6

5040
uy(7) = F . (48)

Ā, B̄, C̄, D̄, Ē, Ḡ, H̄ and F are defined in Eqs. (8)–(15).
To obtain a sixth-order compact formulation for Eq. (48), consider the following approx-

imations for all the derivatives:

uxx = 2δ2
x u – δxux +

h4

360
ux(6) +

h6

10,080
ux(8) + O

(
h8), (49)

uyy = 2δ2
y u – δyuy +

h4

360
uy(6) +

h6

10,080
uy(8) + O

(
h8), (50)

uxxy = δ2
x uy + δ2

xδyu – δxδyux +
h4

36
ux4y3 + O

(
h6), (51)

uyyx = δ2
y ux + δ2

y δxu – δxδyuy +
h4

36
uy4x3 + O

(
h6), (52)

ux(5) =
360
7h4

(
ux – δxu +

h2

6
δxuxx

)
–

3h2

49
ux(7) + O

(
h4), (53)
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uy(5) =
360
7h4

(
uy – δyu +

h2

6
δyuyy

)
–

3h2

49
uy(7) + O

(
h4), (54)

ux(6) =
240
h4

(
uxx – δ2

x u +
h2

12
δ2

x uxx

)
–

11h2

252
ux(8) + O

(
h4), (55)

uy(6) =
240
h4

(
uyy – δ2

y u +
h2

12
δ2

y uyy

)
–

11h2

252
uy(8) + O

(
h4). (56)

Substituting Eqs. (49)–(56) into Eq. (48), we have

(
4
3

Āδ2
x +

4
3

B̄δ2
y +

10p
7

δx +
10q

7
δy + Ḡδ2

y δx + H̄δ2
xδy

)
u +

(
D̄ux – Āδxux

+ Ḡδ2
y – H̄δxδy –

3p
7

)
ux +

(
Ē – B̄δy + H̄δ2

x – Ḡδyδx –
3q
7

)
uy

+
(

2Ā
3

–
ph2

14
δx +

Āh2

18
δ2

x

)
uxx +

(
2B̄
3

–
qh2

14
δy +

B̄h2

18
δ2

y

)
uyy

+ C̄uxy +
h6p

1960
ux(7) –

11h6Ā
90,720

ux(8) +
h6q

1960
uy(7) –

11h6B̄
90,720

uy(8)

+
Āh6

10,080
ux(8) +

B̄h6

10,080
uy(8) +

H̄h6

36
ux(4)y(3) +

Ḡh6

36
ux(3)y(4)

–
h6

5040
ux(7) –

h6

5040
uy(7) = F . (57)

Notice that all the derivatives ux, uxx, uy, uyy, uxy are calculated independently by the
formulas (76)–(80) in Appendix 4. Substituting their truncation error – h6

7! ux(7) , – 2h6

8! ux(8) ,
– h6

7! uy(7) , – 2h6

8! uy(8) and h6

960 [ux(5)y(3) + ux(3)y(5) ] into Eq. (57), respectively, and rearranging it,
we have

Truncation =
h6

7!
[
(Ā – D̄ – Ḡ + H̄ + 3p – 1)ux(7) + (B̄ – Ē + H̄ – Ḡ + 3q – 1)uy(7)

]

+
2h6

8!

[(
ph2

14
–

10Ā
9

–
Āh2

18

)
ux(8) +

(
qh2

14
–

10B̄
9

–
B̄h2

18

)
uy(8)

]

+
h4

36
(H̄ux(4)y(3) + Ḡux(3)y(4) ) +

C̄h6

960
(ux(5)y(3) + ux(3)y(5) ). (58)

4 Numerical experiments
In this section, we conduct numerical experiments with three test problems chosen from
the literature to test the high-order accuracy of the BCD scheme. All problems are de-
fined on the unit square domain Ω = (0, 1) × (0, 1). For all three problems, the right-hand
functions f and the Dirichlet boundary conditions are prescribed to satisfy the given ana-
lytic solution. We select the hybrid biconjugate gradient stabilized method (BiCGStab(2))
[44] to solve the resulting linear systems in all test problems. All iterative procedures are
started with zero initial guesses and are terminated when the Euclidean norm of the resid-
ual vector is reduced by 1010. The code is written in Fortran 77 programming language
with double precision arithmetic. All computations are run on a personal computer with
an Intel (R) core (TM) i3-5005U double 2.0 GHz CPU and 4 GB memory. The error and
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Table 1 The maximum absolute error and convergence rate of different discretization for Problem 1

h CCD2 Scheme [1] BCD Scheme

Error Rate Error Rate CPU

1/8 5.97(–06) 1.64(–06) 0.84
1/16 1.56(–07) 5.26 2.04(–08) 6.33 4.38
1/32 3.14(–09) 5.63 1.96(–10) 6.70 22.40
1/64 5.75(–11) 5.77 1.82(–12) 6.75 104.80

the convergence rate of the method are computed with the following definition:

Error = max
i,j

∣∣ui,j – u(xi, yj)
∣∣; Rate =

log(Error1/Error2)
log(h1/h2)

,

where u(xi, yj) is the exact solution. Error1 and Error2 are the maximum absolute errors
estimated for the two different grid step sizes h1 and h2.

4.1 Problem 1: With variable coefficients [1, 45]
Consider the following differential equation in the presence of a source term:

[
(x + 1)2 + y2]uxx – 2xyuxy + (x + 1)2uyy + (x + 2)ux – yuy = f (x, y).

The analytic solution is

u = x3y2 + x sin(x) cos(xy).

We notice that Problem 1 has a non-periodic boundary condition. For comparison, the
results of the CCD2 scheme [1] are also given. Firstly, we use different mesh sizes from
1/8 to 1/64 to evaluate the computed accuracy order. Table 1 gives the maximum absolute
errors and the convergence rate for Problem 1. We can clearly see that the BCD scheme
obtains sixth-order accuracy and gets a more accurate solution than the CCD2 scheme.
The CCD2 scheme cannot reach sixth-order accuracy because the fourth-order scheme
is used for the boundaries computation, which influences the whole computed accuracy.

4.2 Problem 2: With high anisotropy ratio [1]
Consider the following differential equation in the presence of a source term:

[
εx2 + y2]uxx + 2(ε – 1)xyuxy +

(
x2 + εy2)uyy + (3ε – 1)xux + (3ε – 1)yuy = f (x, y).

The analytic solution is

u = sin(πx) sin(πy).

The second model problem is an anisotropy problem. ε is chosen to reflect the mag-
nitude of the anisotropy. Note that ε = 1 gives an isotropic equation, and the degree of
anisotropy increases when ε becomes smaller. The maximum absolute errors, the conver-
gence rate and CPU time for ε = 10–1 and 10–3, using CCD2 scheme and the BCD scheme,
are given in Table 2 and Table 3, respectively. Numerical results show that the maximum
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Table 2 The maximum absolute error and convergence rate for Problem 2 with ε = 10–1

h CCD2 Scheme [1] BCD Scheme

Error Rate Error Rate CPU

1/8 1.27(–04) 4.72(–05) 0.37
1/16 1.09(–06) 6.87 5.73(–07) 6.36 1.37
1/32 8.71(–09) 6.96 5.24(–09) 6.77 7.67
1/64 6.87(–11) 6.99 4.89(–11) 6.74 40.27

Table 3 The maximum absolute error and convergence rate for Problem 2 with ε = 10–3

h CCD2 Scheme [1] BCD Scheme

Error Rate Error Rate CPU

1/8 1.67(–04) 6.67(–05) 0.87
1/16 1.12(–06) 7.21 8.67(–07) 6.27 5.63
1/32 8.80(–09) 6.99 9.64(–09) 6.49 50.90
1/64 6.90(–11) 7.00 1.36(–10) 6.15 398.46

absolute errors of the BCD scheme and the CCD2 scheme are almost identical. They are
seventh-order accurate and their excellent performances are obviously independent of the
anisotropy ratio ε = 10–1 and ε = 10–3. When ε = 10–1, the BCD scheme yields a slightly
better solution than the CCD2 scheme. However, when ε = 10–3, the CCD2 scheme gets
a slightly better solution than the BCD scheme. We notice that values on the boundaries
are zero (periodic boundary conditions), for the CCD2 scheme, the fourth-order scheme
for periodic boundary conditions does not influence the results of inner grid points.

In Table 2 and Table 3 it can be shown that the CPU time is related to the number of
grid points and anisotropy ratio. We find the same anisotropy ratio in which the number
of grid points becomes higher when the CPU time is higher and the same number of grid
points with which anisotropy ratio is higher when the CPU time is higher.

4.3 Problem 3: With large Reynold number [1, 8]
Consider the following differential equation in the presence of a source term:

uxx + cos(πx) sin(πy)uxy + uyy – Re(1 – x)(1 – 2y)ux + 4 Re xy(1 – y)uy = f (x, y).

The analytic solution is

u = sin(πx) + sin(πy) + sin(πx) sin(πy).

For comparison, we use the BCD, the FOC [8], and the CCD2 schemes [1] to compute
the numerical solutions of Problem 3.

Tables 4–6 give the maximum absolute errors, the convergence rate and CPU time, when
Re = 102, 104, 106, respectively. It is seen that the BCD and CCD2 schemes are almost not
influenced by the increase of Reynolds number, while the FOC scheme gradually loses its
fourth-order accuracy. Numerical results also show that the maximum absolute errors of
the BCD scheme and the CCD2 scheme are almost identical. With seventh-order accu-
racy their excellent performances are obviously independent of the Re numbers. The BCD
scheme yields slightly more accurate solution than the CCD2 scheme does. We can also
see that the CPU time is related to the Re numbers, which means that Re becomes bigger
when the CPU time is higher with the same number of grid points.
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Table 4 The maximum absolute error and convergence rate for Problem 3 with Re = 102

h FOC scheme [8] CCD2 scheme [1] BCD scheme

Error Rate Error Rate Error Rate CPU

1/8 8.56(–03) 3.93(–04) 9.06(–05) 0.39
1/16 6.49(–04) 3.72 3.08(–06) 7.19 1.19(–06) 6.25 1.48
1/32 4.09(–05) 3.99 2.11(–08) 7.16 1.07(–08) 6.80 7.69
1/64 2.56(–06) 4.00 1.48(–10) 6.99 8.74(–11) 6.94 47.71

Table 5 The maximum error and convergence rate for Problem 3 with Re = 104

h FOC scheme [8] CCD2 scheme [1] BCD scheme

Error Rate Error Rate Error Rate CPU

1/8 1.50(–02) 4.17(–04) 7.80(–05) 0.94
1/16 4.89(–03) 1.62 4.38(–06) 6.57 1.01(–06) 6.27 4.03
1/32 1.74(–03) 1.49 3.84(–08) 6.84 9.11(–09) 6.79 29.42
1/64 2.81(–04) 2.63 3.28(–10) 6.87 7.78(–11) 6.87 119.64

Table 6 The maximum error and convergence rate for Problem 3 with Re = 106

h FOC scheme [8] CCD2 scheme [1] BCD scheme

Error Rate Error Rate Error Rate CPU

1/8 1.50(–02) 4.16(–04) 7.78(–05) 0.97
1/16 4.82(–03) 1.63 4.29(–06) 6.60 1.01(–06) 6.27 4.25
1/32 1.84(–03) 1.39 3.55(–08) 6.92 9.02(–09) 6.81 40.28
1/64 6.21(–04) 1.56 2.87(–10) 6.95 7.37(–11) 6.94 211.16

Table 7 The maximum error and convergence rate for Problem 1, Problem 2 with ε = 10–1 and
Problem 3 with Re = 10

hx hy Problem 1 Problem 2 Problem 3

Error Rate Error Rate Error Rate

1/16 1/8 1.84(–08) 3.85(–05) 6.15(–05)
1/32 1/16 1.87(–10) 6.62 5.14(–07) 6.23 8.95(–07) 6.10
1/64 1/32 1.88(–12) 6.63 4.80(–09) 6.74 8.56(–09) 6.71

1/8 1/16 1.76(–06) 3.85(–05) 6.27(–05)
1/16 1/32 2.09(–08) 6.40 5.14(–07) 6.23 7.47(–07) 6.39
1/32 1/64 2.97(–10) 6.14 4.59(–09) 6.81 7.85(–09) 6.57

Finally, the maximum absolute error and the convergence rate of Problem 1, Problem 2
with ε = 10–1 and Problem 3 with Re = 10 are given in Table 7 when hx is not equal to hy.
Numerical results also show that the BCD scheme can reach its theoretical sixth-order
accuracy.

5 Conclusions
In this paper, the BCD scheme is proposed to solve the general two-dimensional linear
second-order partial differential equation. A truncation error analysis is done to show that
the BCD scheme is sixth-order accuracy for the interior grid points. Besides, the sixth-
order accuracy difference schemes are also proposed to compute the first- and second-
order derivatives for grid points on the boundaries. The superiority of the present method
is that it fully exploits the merits of the explicit compact difference and implicit compact
difference methods. At least three important conclusions are obtained. (i) The present
method reaches sixth-order accuracy for smooth solution problems, even for those with
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large first derivative terms or anisotropy problems. (ii) We perform a sixth-order compu-
tation for the grid points on the boundaries, while Ref. [1] uses the fourth-order scheme,
which decreases the accuracy order of solution for those problems with non-periodic
boundary conditions. (iii) Our method is decoupled, i.e., we can solve the unknown func-
tion u and its various derivatives separately with an iteration process. Its advantage is that
the derivation of the scheme, the algorithm design and programming are simple and easy
to operate in the extension to high-dimensional problems. Especially for the problems of
complex flow and heat transfer, it is relatively easy to construct a discrete scheme with
high precision and for their boundary conditions. Numerical experiments are conducted
to demonstrate the accuracy of the present scheme. It is shown that the present method
is more accurate than those in the literature.

Appendix 1: The sixth-order schemes of the first- and second-order derivatives
as well as the mixed derivative

For the first- and second-order derivatives along the x- and y-directions [30]

7
16

ux1 + ux0 +
7

16
ux3 =

15
16hx

u1 – u3) +
hx

16
(uxx1 – uxx3) + O

(
h6

x
)
, (59)

–
1
8

uxx1 + uxx0 –
1
8

uxx3 =
3
h2

x
(u1 – 2u0 + u3) –

9
8hx

(ux1 – ux3) + O
(
h6

x
)
, (60)

7
16

uy2 + uy0 +
7

16
uy4 =

15
16hy

(u2 – u4) +
hy

16
(uyy2 – uyy4) + O

(
h6

y
)
, (61)

–
1
8

uyy2 + uyy0 –
1
8

uyy4 =
3
h2

y
(u2 – 2u0 + u4) –

9
8hy

(uy2 – uy4) + O
(
h6

y
)
. (62)

For the mixed derivative uxy [1]

(uxy)0 +
1

16

[ 4∑

i=1

(uxy)i

]

–
1

32

[ 8∑

i=5

(uxy)i

]

=
9

16hy

[
(ux)2 – (ux)4

]
+

9
16hx

[
(uy)1 – (uy)3

]

–
9

32hxhy
(u5 – u6 + u7 – u8) +

h6
x

960
ux(5)y(3) +

h6
y

960
ux(3)y(5) + O

(
h8

x + h8
y
)
. (63)

Appendix 2: Details of the central difference operators

δ2
x u0 =

u1 – 2u0 + u3

h2
x

; δxu0 =
u1 – u3

2hx
,

δ2
y u0 =

u2 – 2u0 + u4

h2
y

; δyu0 =
u2 – u4

2hy
,

δ2
xδyu0 =

u5 + u6 – u7 – u8 – 2u2 + 2u4

2h2
xhy

,

δ2
y δxu0 =

u5 – u6 – u7 + u8 – 2u1 + 2u3

2h2
yhx

,
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δxδyu0 =
u5 – u6 + u7 – u8

4hxhy
.

Appendix 3: The sixth-order schemes of the mixed derivative on the
boundaries

The sixth-order scheme of left boundary of the mixed derivative may be obtained from a
relation of the form

(uxy)0,j + α(uxy)1,j =
(

∂uy

∂x

)

0,j
+ α

(
∂uy

∂x

)

1,j

=
[
a0(uy)0,j + a1(uy)1,j + a2(uy)2,j + a3(uy)3,j

+ a4(uy)4,j + a5(uy)5,j + a6(uy)6,j
]
/hx, (64)

where j = 0, 1, . . . , Ny, the coefficients a0, a1, a2, a3, a4, a5 (for the subscript see Fig. 2) and
α are derived by matching the Taylor series coefficients of various orders. The detailed
derivation process is given here.

Using the Taylor series expansions at point (0, j)

(uy)1,j = (uy)0,j + hx

(
∂uy

∂x

)

0,j
+

h2
x

2!

(
∂2uy

∂x2

)

0,j
+

h3
x

3!

(
∂3uy

∂x3

)

0,j

+
h4

x
4!

(
∂4uy

∂x4

)

0,j
+

h5
x

5!

(
∂5uy

∂x5

)

0,j
+

h6
x

6!

(
∂6uy

∂x6

)

0,j
+ O

(
h7

x
)
, (65)

(uy)2,j = (uy)0,j + 2hx

(
∂uy

∂x

)

0,j
+

22h2
x

2!

(
∂2uy

∂x2

)

0,j
+

23h3
x

3!

(
∂3uy

∂x3

)

0,j

+
24h4

x
4!

(
∂4uy

∂x4

)

0,j
+

25h5
x

5!

(
∂5uy

∂x5

)

0,j
+

26h6
x

6!

(
∂6uy

∂x6

)

0,j
+ O

(
h7

x
)
, (66)

(uy)3,j = (uy)0,j + 3hx

(
∂uy

∂x

)

0,j
+

32h2
x

2!

(
∂2uy

∂x2

)

0,j
+

33h3
x

3!

(
∂3uy

∂x3

)

0,j

+
34h4

x
4!

(
∂4uy

∂x4

)

0,j
+

35h5
x

5!

(
∂5uy

∂x5

)

0,j
+

36h6
x

6!

(
∂6uy

∂x6

)

0,j
+ O

(
h7

x
)
, (67)

(uy)4,j = (uy)0,j + 4hx

(
∂uy

∂x

)

0,j
+

42h2
x

2!

(
∂2uy

∂x2

)

0,j
+

43h3
x

3!

(
∂3uy

∂x3

)

0,j

+
44h4

x
4!

(
∂4uy

∂x4

)

0,j
+

45h5
x

5!

(
∂5uy

∂x5

)

0,j
+

46h6
x

6!

(
∂6uy

∂x6

)

0,j
+ O

(
h7

x
)
, (68)

(uy)5,j = (uy)0,j + 5hx

(
∂uy

∂x

)

0,j
+

52h2
x

2!

(
∂2uy

∂x2

)

0,j
+

53h3
x

3!

(
∂3uy

∂x3

)

0,j

+
54h4

x
4!

(
∂4uy

∂x4

)

0,j
+

55h5
x

5!

(
∂5uy

∂x5

)

0,j
+

56h6
x

6!

(
∂6uy

∂x6

)

0,j
+ O

(
h7

x
)
, (69)

(uy)6,j = (uy)0,j + 6hx

(
∂uy

∂x

)

0,j
+

62h2
x

2!

(
∂2uy

∂x2

)

0,j
+

63h3
x

3!

(
∂3uy

∂x3

)

0,j

+
64h4

x
4!

(
∂4uy

∂x4

)

0,j
+

65h5
x

5!

(
∂5uy

∂x5

)

0,j
+

66h6
x

6!

(
∂6uy

∂x6

)

0,j
+ O

(
h7

x
)

(70)
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and substituting Eqs. (65)–(70) into Eq. (64), we are able to obtain linear equations as
shown below:

a0 + a1 + a2 + a3 + a4 + a5 + a6 = 0,

1
2!

(
a1 + 22a2 + 32a3 + 42a4 + 52a5 + 62a6

)
= α,

1
3!

(
a1 + 23a2 + 33a3 + 43a4 + 53a5 + 63a6

)
=

α

2
,

1
4!

(
a1 + 24a2 + 34a3 + 44a4 + 54a5 + 64a6

)
=

α

6
,

1
5!

(
a1 + 25a2 + 35a3 + 45a4 + 55a5 + 65a6

)
=

α

24
,

1
6!

(
a1 + 26a2 + 36a3 + 46a4 + 56a5 + 66a6

)
=

α

120
,

1
7!

(
a1 + 27a2 + 37a3 + 47a4 + 57a5 + 67a6

)
=

α

720
.

(71)

Resolving it by Matlab software, we can get the results as follows:

α =
1
5

, a0 = –
149
60

, a1 =
1723
300

, a2 = –7, a3 =
19
3

,

a4 = –
43
12

, a5 =
23
20

, a6 = –
4

25
.

So, the sixth-order scheme for the left boundary of the mixed derivative can be written
as

(uxy)0,j +
1
5

(uxy)1,j

=
[

–
149
60

(uy)0,j +
1723
300

(uy)1,j – 7(uy)2,j +
19
3

(uy)3,j –
43
12

(uy)4,j

+
23
20

(uy)5,j –
4

25
(uy)6,j

]/
hx. (72)

The derivation of right boundary scheme for the mixed derivative is exactly analogous
to the left boundary. The right boundary scheme is summarized below:

(uxy)Nx ,j –
1
5

(uxy)Nx–1,j

=
[

29
12

(uy)Nx ,j –
1877
300

(uy)Nx–1,j + 8(uy)Nx–2,j – 7(uy)Nx–3,j

+
47
12

(uy)Nx–4,j –
5
4

(uy)Nx–5,j +
13
75

(uy)Nx–6,j

]/
hx, j = 0, 1, 2, . . . , Ny. (73)

In the same way, we can get the sixth-order schemes for approximating the top and
bottom boundaries as follows:

(uxy)i,Ny –
1
5

(uxy)i,Ny–1



Ma and Ge Advances in Difference Equations         (2019) 2019:98 Page 19 of 21

=
[

29
12

(ux)i,Ny –
1877
300

(ux)i,Ny–1 + 8(ux)i,Ny–2 – 7(ux)i,Ny–3

+
47
12

(ux)i,Ny–4 –
5
4

(ux)i,Ny–5 +
13
75

(ux)i,Ny–6

]/
hx, i = 0, 1, 2, . . . , Nx, (74)

(uxy)i,0 +
1
5

(uxy)i,1

=
(

–
149
60

(ux)i,0 +
1723
300

(ux)i,1 – 7(ux)i,2 +
19
3

(ux)i,3

–
43
12

(ux)i,4 +
3

20
(ux)i,5 –

4
25

(ux)i,6

)/
hy, i = 1, 2, . . . , Nx. (75)

Appendix 4: The truncation errors of the sixth-order schemes of the first- and
second-order derivatives and the mixed derivative

7
16

ux1 + ux0 +
7

16
ux3 =

15
16h

u1 – u3) +
h
16

(uxx1 – uxx3) –
h6

7!
ux(7) + O

(
h7), (76)

–
1
8

uxx1 + uxx0 –
1
8

uxx3 =
3
h2 (u1 – 2u0 + u3) –

9
8h

(ux1 – ux3) –
2h6

8!
ux(8) + O

(
h7), (77)

7
16

uy2 + uy0 +
7

16
uy4 =

15
16hy

(u2 – u4) +
hy

16
(uyy2 – uyy4) –

h6

7!
uy(7) + O

(
h7), (78)

–
1
8

uyy2 + uyy0 –
1
8

uyy4 =
3
h2 (u2 – 2u0 + u4) –

9
8h

(uy2 – uy4) –
2h6

8!
uy(8) + O

(
h7), (79)

(uxy)0 +
1

16

[ 4∑

i=1

(uxy)i

]

–
1

32

[ 8∑

i=5

(uxy)i

]

=
9

16h
[
(ux)2 – (ux)4

]
+

9
16h

[
(uy)1 – (uy)3

]

–
9

32h2 (u5 – u6 + u7 – u8) +
h6

960
[ux(5)y(3) + ux(3)y(5) ] + O

(
h7). (80)
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