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Abstract
We introduce nonlinear fractional BVPs including a generalized proportional
derivatives with nonlocal multipoint and substrip boundary conditions. The
nonlinearities are defined on the Orlicz space and depend on the unknown function
and its generalized derivative. Existence results for a nonlinear boundary value
problem involving a proportional fractional derivative by utilizing some fixed point
theorems are presented. The obtained results are new and are well illustrated with an
example.
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1 Introduction
The theory of fractional derivative first appeared in the 1690s by the correspondence be-
tween L’Hospital and Leibniz. After that, many researchers developed this area in different
directions because of its wide application in solving practical problems in the fields of vis-
coelasticity, biological science, ecology, aerodynamics, etc. The recent history of fractional
calculus can be found in [1]. During this development, a variety of initial and boundary
conditions (BCs), such as classical, nonlocal, multipoint, periodic/anti-periodic and inte-
gral boundary conditions, were investigated. Many new results were obtained recently in
fractional differential equations with nonlocal multipoint and with nonlocal multi-strip
integral boundary conditions involving Caputo derivative; for example, see [2–6] and the
references cited therein. In 2015, Caputo and Fabrizio [7] proposed a new definition of
fractional derivative with a smooth kernel involving the exponential function. Other def-
inition was introduced by Atangana and Baleanu [8] where the kernel appeared via the
Mittag-Leffler function. These generalized fractional derivatives have been studied by
many researchers. Recently, Jarad et al. [9] generated Caputo and Riemann–Liouville gen-
eralized proportional fractional (GPF) derivatives involving exponential functions in their
kernels, thus the newly defined derivatives possess a semi-group property and they provide
a generalization to the Caputo and Riemann–Liouville fractional derivatives and integrals.
A variety of results can be found in the recent literature; for example, see [10–18] and the
references therein.
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In this paper, we study the following fractional problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDq,ρx(t) = f (t, x(t), Dp,ρx(t)), 1 < q ≤ 2, t ∈ [0, 1], p ∈ (0, 1),

x(0) = α1,
CDr,ρx(1) = α2

∫ η

ζ
CDr,ρx(s) ds + α3

∑m–2
i=1 βC

i Dr,ρx(γi),

0 < ζ < η < γ1 < γ2 < · · · < γm–2 < 1, r ∈ (0, 1),

(1)

where αi (i = 1, 2, 3) are positive real constants, f is defined on an Orlicz space LF ([0, 1])
and CDq,ρ denotes the generalized proportional fractional derivative of Caputo type. It is
imperative to mention that the nonlocal multipoint and substrip BC (1) can be explained
in the sense that the linear combinations of values of the GPFD of Caputo type of the
unknown function at the right end point t = 1 of the interval under consideration is pro-
portional to the sum of the values of the GPFD of the unknown function on the strip (ζ ,η)
and scalar multiplies of discrete values of the unknown function at γi (i = 1, 2, . . . , m – 2).

This kind of BC plays a key role in formulating chemical, physical, or other processes
involving some peculiarities occurring inside the domain. On the other hand, distinct ap-
plications of applied sciences such as population dynamics, chemical engineering, blood
flow problems, can be represented by an integral BC. For more details, for example, see
[19, 20].

In another direction, in 1931, Birnbaum and Orlicz [21] introduced a generalization
of the classical Lebesgue spaces Lp, 1 < p < +∞. This generalization is called an Orlicz
space and is found by replacing the function xp in the definition of Lp by a more general
convex function F , which is called the N-function. Recently, the existence of solutions of
differential equations was investigated; see, for example, [22, 23].

In the present paper, we study Caputo type fractional differential equations with non-
local multipoint and substrips boundary conditions (1) involving the generalized propor-
tional derivative and let f be a function in an Orlicz space. We discuss the existence of a
solution for a nonlinear boundary value problem using some fixed point theorems. Finally,
we present an example for illustration of the main result.

2 Preliminaries
We recall some basic concepts needed throughout this paper including Orlicz spaces and
fractional calculus. For more details as regards Orlicz space, the reader can refer to [24]
and for fractional calculus one can see [9, 25–27].

Definition 1 Let ϕ : [0,∞) → [0,∞) be right continuous, monotone, increasing function
with

(i) ϕ(0) = 0,
(ii) limt→∞ ϕ(t) = ∞,

(iii) ϕ(t) > 0 whenever t > 0.
Then the function defined by

F(x) =
∫ x

0
ϕ(t) dt, x ≥ 0,

is called the N-function. Alternatively, the function F is an N-function iff F is continuous,
even, and convex with
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(i) limx→0
F(x)

x = 0,
(ii) limx→∞ F(x)

x = ∞,
(iii) F(x) > 0 if x > 0.

Definition 2 For an N-function, we define

F∗(x) =
∫ x

0
ϕ–1(t) dt, x ≥ 0,

where ϕ–1 is the right inverse of the right derivative of F , is called the complementary of
F and it satisfies the condition

F∗(x) = sup
{

tx – F(t) : t ≥ 0
}

, ∀x ≥ 0.

(i) The function F∗ is also N-function.
(ii) The complementary pairs F and F∗ satisfy the following Young inequality:

xt ≤ F(x) + F∗(t), ∀x, t ≥ 0.

Definition 3 A function F : [0,∞) → [0,∞) is called a Young function if it is convex and
satisfies the conditions

F(0) = lim
x→0+

F(x) = 0 and lim
x→∞ F(x) = ∞.

Remark 4 If a Young function F satisfies ϕ(0) = 0 ⇐⇒ x = 0, then the conditions
limx→0

F(x)
x = 0 and limx→∞ F(x)

x = ∞ hold; then F is called an N-function.

Definition 5 Let F be an N-function and let F∗ be its complement. Then F is said to
satisfy the �2-condition if

lim sup
x→→∞

F(2x)
F(x)

< ∞,

that is, there is a k > 0 such that F(2x) ≤ kF(x) for large values of x.

Definition 6 (Orlicz space) For an N-function F , the Orlicz space LF ([0, 1]) is the space
of measurable functions u : [0, 1] → R such that

∫ 1
0 F(|u(x)|) dx < ∞. This space endowed

with the Luxemburg norm, i.e.,

‖u‖F = inf

{

λ > 0 :
∫ 1

0
F
( |u(x)|

λ

)

dx ≤ 1
}

,

and the pair (LF ([0, 1]),‖u‖F ) is a Banach space.

For an Orlicz space, the Hölder inequality holds, that is,

∫ 1

0
uv dx ≤ 2‖u‖F‖v‖F∗ ,

where u ∈ LF ([0, 1]) and v ∈ LF∗ ([0, 1]).
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Definition 7
1. For an at least n-times continuously differentiable function u : [0,∞) →R, the

Caputo derivative of fractional order q is defined by

cDqu(x) =
1

Γ (n – q)

∫ x

0
(x – t)n–1–qu(n)(t) dt, n – 1 < q < n, n = [q] + 1, q > 0,

where [q] denotes the integer part of the real number q and Γ denotes the gamma
function.

2. The Riemann–Liouville fractional integral of order q for the continuous function u
is defined by

Iqu(x) =
1

Γ (q)

∫ x

0
(x – t)q–1u(t) dt, q > 0,

provided the right-hand side is pointwise defined on (0,∞).

Definition 8 (The GPF integral [9]) For ρ ∈ (0, 1] and α ∈C with (α) > 0, we define the
left generalized proportional fractional integral of f starting by a,

(

aIα,ρ f
)
(x) =

1
ραΓ (α)

∫ x

a
e

ρ–1
ρ (x–t)(x – t)α–1f (t) dt.

Definition 9 (The GPF dervative of Caputo type) For ρ ∈ (0, 1] and α ∈ C with (α) > 0,
we define the left generalized proportional fractional derivative of Capotu type starting
by a,

(C
a Dα,ρ f

)
(x) =a In–α,ρ(Dn,ρ f

)
(x)

=
1

ρn–αΓ (n – α)

∫ x

a
e

ρ–1
ρ (x–t)(x – t)n–α–1(Dn,ρ f

)
(t) dt,

where n = [(α)] + 1.

Theorem 10 ([9]) For ρ ∈ (0, 1] and n = [(α)] + 1, we have

aIn–α,ρ(Dn,ρ f
)
(x) = f (x) –

n–1∑

k=0

(Dk,ρ f )(t)
ρkk!

(x – t)ke
ρ–1
ρ (x–t).

We base our considerations on the following fixed point theorems in our main results.

Theorem 11 (Krasnoselskii’s fixed point theorem [28]) LetP be a closed, convex, bounded
and nonempty subset of a Banach space X. Let T1, T2 be operators such that

(i) T1(u1) + T2(u2) belong to P whenever u1, u2 ∈ P.
(ii) T1 is a compact and continuous and T2 is a contraction mapping.
Then there exists u0 ∈ P such that u0 = T1(u0) + T2(u0).

Theorem 12 (Schaefer’s fixed point theorem [28]) Let X be a Banach space. Assume that
T : X → X is a completely continuous operator and the set V = {u ∈ X : u = εTu, 0 < ε < 1}
is bounded. Then T has a fixed point in X.
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For convenience, we denote

A1 =
(1 – ρ)e

ρ–1
ρ

ρ1–rΓ (2 – r)
–

α2(1 – ρ)
ρ1–rΓ (2 – r)

∫ η

ζ

e
ρ–1
ρ ss2–r ds

– α3

m–2∑

i=1

βi
(1 – ρ)e

ρ–1
ρ γi

ρ1–rΓ (2 – r)
(γi)2–r ,

A2 =
α1α2(1 – ρ)
ρ1–rΓ (3 – r)

[
e

ρ–1
ρ η

η2–r – e
ρ–1
ρ ζ

ζ 2–r] +
α1α2(1 – ρ)2

ρ2–rΓ (3 – r)

+ α3

m–2∑

i=1

βi
α1(1 – ρ)

ρ1–rΓ (2 – r)
e

ρ–1
ρ γi (γi)1–r –

α1(1 – ρ)e
ρ–1
ρ

ρ1–rΓ (2 – r)
,

A∗ =
A2

A1
.

Lemma 13 For any f ∈ LF ([0, 1]), the solution of the fractional boundary problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

CDq,ρx(t) = f (t), 1 < q ≤ 2, t ∈ [0, 1],

x(0) = α1,
CDr,ρx(1) = α2

∫ η

ζ
CDr,ρx(s) ds + α3

∑m–2
i=1 βi

CDr,ρx(γi),

0 < ζ < η < γ1 < γ2 < · · · < γm–2 < 1, r ∈ (0, 1),

(2)

is

x(t) =
1

ρqΓ (q)

∫ t

0
e

ρ–1
ρ (t–s)(t – s)q–1f

(
s, x(s), CDp,ρx(s)

)
ds

+ μ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, x(u), CDp,ρx(u)

)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), CDp,ρx(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), CDp,ρx(s)

)
ds

]

+ μ2(t), (3)

where

μ1(t) =
1

A1
te

ρ–1
ρ t , A1 �= 0, (4)

μ2(t) =
(
α1 + A∗t

)
e

ρ–1
ρ t . (5)

Proof The general solution of the fractional differential equation (2) is given by

x(t) =
(
Iq,ρy

)
(t) +

1∑

k=0

cktke
ρ–1
ρ t ,
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that is,

x(t) =
(
Iq,ρy

)
(t) + (c0 + c1t)e

ρ–1
ρ t , (6)

where c0, c1 ∈R are arbitrary constants. Using the condition x(0) = α1, we get c0 = α1. Now,
by applying the second boundary condition, we have

c1 = A∗ +
α2

A1

∫ η

ζ

(
Iq–r,ρy

)
(s) ds +

α3

A1

m–2∑

i=1

βi
(
Iq–r,ρy

)
(γi)

–
1

A1

(
Iq–r,ρy

)
(1).

Substituting from c0 and c1 in (6), we get (3). �

3 Existence results
In this section, we discuss the existence of solutions to the BVP (1). We shall assume that
f is in the Orlicz space LF [0, 1]. For 0 < p < 1, let X = {x : x, CDp,ρx ∈ C([0, 1],R)} denotes
the Banach space of all continuous functions on [0, 1] into R endowed with the norm
‖x‖ = sup{|x(t)| + |CDp,ρx(t)|, t ∈ [0, 1]}.

Now, we define an operator T : X → X associated with the problem (1) by

(Tx)(t) =
1

ρqΓ (q)

∫ t

0
e

ρ–1
ρ (t–s)(t – s)q–1f

(
s, x(s), CDp,ρx(s)

)
ds

+ μ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, x(u), CDp,ρx(u)

)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), CDp,ρx(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), CDp,ρx(s)

)
ds

]

+ μ2(t), (7)

where μ1, μ2 are given by (4) and (5). Therefore, the problem (1) has solutions if and only
if the operator T has a fixed point.

Lemma 14 Let q ∈ (1, 2] and r ∈ (0, 1). Let F be a Young function which has a Young com-
plement F∗ satisfying

∫ t

0
F∗(sq–1)ds < ∞, and

∫ t

0
F∗(sq–r–1)ds < ∞, t > 0.

Then the operator T exists and is well defined.

Proof Let q ∈ (1, 2], r ∈ (0, 1) and x ∈ X. Define a function

ψ1(s) =

⎧
⎨

⎩

sq–1 if s ∈ [0, t], t > 0,

0 otherwise.
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We show that ψ1 ∈ LF∗ [0, 1]. By using appropriate substitution and properties of the
Young functions, one obtains

∫ 1

0
F∗

( |ψ1(s)|
α

)

ds =
∫ t

0
F∗

(
(t – s)q–1

α

)

ds

=
(

1
α

) 1
q–1

∫ α
1

q–1 t

0
F∗(sq–1)ds;

by the assumption of the theorem, we get ψ1 ∈ LF∗ [0, 1]. Similarly, set

ψ2(s) =

⎧
⎨

⎩

sq–r–1 if s ∈ [0, t], t > 0,

0 otherwise;

one can get ψ2 ∈ LF∗ [0, 1]. Next, we show that T is well defined, i.e., Tx(t) ∈ C([0, 1],R).
Let 0 ≤ τ < t ≤ 1. Then

∣
∣(Tx)(t) – (Tx)(ι)

∣
∣

≤
∣
∣
∣
∣

1
ρqΓ (q)

∫ ι

0
e

ρ–1
ρ (t–s)(t – s)q–1f

(
s, x(s), Dp,ρx(s)

)
ds

–
1

ρqΓ (q)

∫ τ

0
e

ρ–1
ρ (ι–s)(τ – s)q–1f

(
s, x(s), Dp,ρx(s)

)
ds

∣
∣
∣
∣

+
∣
∣μ1(t) – μ1(ι)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

|e ρ–1
ρ (s–u)|(s – u)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

|e ρ–1
ρ (γi–s)|(γi – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
∫ 1

0

|e ρ–1
ρ (1–s)|(1 – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t) – μ2(ι)

∣
∣

=
1

ρqΓ (q)

∫ t

0

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
1

ρqΓ (q)

∫ t

τ

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
1

ρqΓ (q)

∫ τ

0

∣
∣e

ρ–1
ρ (τ–s)∣∣(τ – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
∣
∣μ1(t) – μ1(τ )

∣
∣

[

α2

∫ η

ζ

(∫ s

0

|e ρ–1
ρ (s–u)|(s – u)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

|e ρ–1
ρ (γi–s)|(γi – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
∫ 1

0

|e ρ–1
ρ (1–s)|(1 – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t) – μ2(τ )

∣
∣.
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Since |e ρ–1
ρ t| ≤ 1, we have

∣
∣(Tx)(t) – (Tx)(ι)

∣
∣

≤ 1
ρqΓ (q)

∫ τ

0

∣
∣(t – s)q–1 – (τ – s)q–1∣∣

∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
1

ρqΓ (q)

∫ t

τ

∣
∣(t – s)q–1∣∣

∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
∣
∣μ1(t) – μ1(τ )

∣
∣

×
[

α2

ρq–rΓ (q – r)

∫ η

ζ

(∫ s

0

∣
∣(s – u)q–r–1∣∣

∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+
α3

ρq–rΓ (q – r)

m–2∑

i=1

βi

∫ γi

0

∣
∣(γi – s)q–r–1∣∣

∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
1

ρq–rΓ (q – r)

∫ 1

0

∣
∣(1 – s)q–r–1∣∣

∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t) – μ2(τ )

∣
∣

=
1

ρqΓ (q)

∫ 1

0

[
χ1(s) + χ2(s)

]∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
∣
∣μ1(t) – μ1(τ )

∣
∣

×
[

α2

ρq–rΓ (q – r)

∫ η

ζ

(∫ s

0

∣
∣(s – u)q–r–1∣∣

∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+
α3

ρq–rΓ (q – r)

m–2∑

i=1

βi

∫ γi

0

∣
∣(γi – s)q–r–1∣∣

∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
1

ρq–rΓ (q – r)

∫ 1

0

∣
∣(1 – s)q–r–1∣∣

∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t) – μ2(τ )

∣
∣,

where

χ1(s) =

⎧
⎨

⎩

|(t – s)q–1 – (τ – s)q–1| if s ∈ [0, τ ],

0 otherwise,

and

χ2(s) =

⎧
⎨

⎩

|(t – s)q–1| if s ∈ [τ , t],

0 otherwise.

The functions χi, i = 1, 2 belong to LF∗ [0, 1] with ‖χi‖F∗ ≤ h(|t –τ |), i = 1, 2 where h : R+ →
R

+ is a continuous, increasing, function with h(0) = 0. Using the Hölder inequality, we have

∣
∣(Tx)(t) – (Tx)(τ )

∣
∣

≤ 2
ρqΓ (q)

[‖χ1‖F∗ + ‖χ2‖F∗
]‖f ‖F
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+ |t – τ |
[(

1
|A1|

[
α2

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

1
ρq–rΓ (q – r + 1)

])

‖f ‖F +
∣
∣A∗∣∣

]

;

then, for 0 < |t – τ | < δ and by the continuity of h, we see that Tx is continuous, which
completes the proof. �

Our first existence result is based on Schaefer’s fixed point theorem.

Theorem 15 Assume that there exists λ ∈ C([0, 1],R+) such that

∣
∣f

(
t, x(t), CDp,ρx(t)

)∣
∣ ≤ λ(t) for t ∈ [0, 1] with ‖λ‖ = max

t∈[0,1]

∣
∣λ(t)

∣
∣.

Then the problem (1) has at least one solution on [0, 1].

Proof We shall show that the operator T is completely continuous. Let G ⊂ X be a
bounded set. Then, for all x ∈ G, we get

∣
∣(Tx)(t)

∣
∣ ≤ 1

ρqΓ (q)

∫ t

0

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
∣
∣μ1(t)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

|e ρ–1
ρ (s–u)|(s – u)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

|e ρ–1
ρ (γi–s)|(γi – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
∫ 1

0

|e ρ–1
ρ (1–s)|(1 – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t)

∣
∣; (8)

by using the condition |f (t, x(t), CDp,ρx(t))| ≤ λ(t) for t ∈ [0, 1], we obtain

∣
∣(Tx)(t)

∣
∣ ≤ 1

ρqΓ (q)

∫ t

0

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)q–1∣∣λ(s)

∣
∣ds

+
∣
∣μ1(t)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

|e ρ–1
ρ (s–u)|(s – u)q–r–1

ρq–rΓ (q – r)
∣
∣λ(u)

∣
∣du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

|e ρ–1
ρ (γi–s)|(γi – s)q–r–1

ρq–rΓ (q – r)
∣
∣λ(s)

∣
∣ds

–
∫ 1

0

|e ρ–1
ρ (1–s)|(1 – s)q–r–1

ρq–rΓ (q – r)
∣
∣λ(s)

∣
∣ds

]

+
∣
∣μ2(t)

∣
∣.
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From the above inequality, we obtain

‖Tx‖ ≤ ‖λ‖
ρqΓ (q)

∫ t

0

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)q–1 ds

+ sup
t∈[0,1]

∣
∣μ1(t)

∣
∣

[
α2‖λ‖

ρq–rΓ (q – r)

∫ η

ζ

(∫ s

0

∣
∣e

ρ–1
ρ (s–u)∣∣(s – u)q–r–1 du

)

ds

+
α3‖λ‖

ρq–rΓ (q – r)

m–2∑

i=1

βi

∫ γi

0

∣
∣e

ρ–1
ρ (γi–s)∣∣(γi – s)q–r–1 ds

–
‖λ‖

ρq–rΓ (q – r)

∫ 1

0

∣
∣e

ρ–1
ρ (1–s)∣∣(1 – s)q–r–1 ds

]

+ sup
t∈[0,1]

∣
∣μ2(t)

∣
∣

≤ ‖λ‖
ρqΓ (q + 1)

tq + μ1

[
α2‖λ‖

ρq–rΓ (q – r + 1)

∫ η

ζ

sq–r ds

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖λ‖
ρq–rΓ (q – r + 1)

]

+ μ2

≤ ‖λ‖
ρqΓ (q + 1)

+ μ1

[
α2‖λ‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖λ‖
ρq–rΓ (q – r + 1)

]

+ μ2

= M1. (9)

Now,

(CDp,ρTx
)
(t)

=
(CDp,ρ(Iq,ρ f

))
(t)

+ CDp,ρ

(

μ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, x(u), Dp,ρx(u)

)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

])

+ CDp,ρμ2(t)

=
1

ρ1–pΓ (1 – p)

∫ t

0
e

ρ–1
ρ (t–s)(t – s)–pDρ

(
Iq,ρ f

)
(s) ds

+ CDp,ρμ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, x(u), Dp,ρx(u)

)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

]

+ CDp,ρμ2(t). (10)



Shammakh and Alzumi Advances in Difference Equations         (2019) 2019:94 Page 11 of 19

Since Dp(Iq,ρ f )(s) = ‖λ‖
ρq–1Γ (q) sq–1, CDp,ρμ1(t) = t1–p

A1ρ–pΓ (2–p) and CDp,ρμ2(t) = A∗t1–pe
ρ–1
ρ t

ρ–pΓ (2–p) ,
Eq. (10) becomes

∣
∣CDp,ρTx(t)

∣
∣ ≤ ‖λ‖tq–1

ρq–pΓ (q)Γ (1 – p)

∫ t

0

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)–p ds

+
t1–p

A1ρ–pΓ (2 – p)

[
α2‖λ‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖λ‖
ρq–rΓ (q – r + 1)

]

+
A∗t1–pe

ρ–1
ρ t

ρ–pΓ (2 – p)
.

Put δ1(t) = t1–p

A1ρ–pΓ (2–p) and δ2(t) = A∗t1–pe
ρ–1
ρ t

ρ–pΓ (2–p) and set δi(t) = maxt∈[0,1]{δi(t)}, i = 1, 2. Then
we have

∥
∥CDp,ρTx(t)

∥
∥ ≤ ‖λ‖tq–p

ρq–pΓ (q)Γ (2 – p)

+ δ1(t)

[
α2‖λ‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖λ‖
ρq–rΓ (q – r + 1)

]

+ δ2(t)

= M2. (11)

Next, for 0 < t1 < t2 < 1 and for all x ∈ G, we get

∣
∣(Tx)(t2) – (Tx)(t1)

∣
∣

≤
∣
∣
∣
∣

1
ρqΓ (q)

∫ t2

0
e

ρ–1
ρ (t2–s)(t2 – s)q–1f

(
s, x(s), Dp,ρx(s)

)
ds

–
1

ρqΓ (q)

∫ t1

0
e

ρ–1
ρ (t1–s)(t1 – s)q–1f

(
s, x(s), Dp,ρx(s)

)
ds

∣
∣
∣
∣

+
∣
∣μ1(t2) – μ1(t1)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

|e ρ–1
ρ (s–u)|(s – u)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

|e ρ–1
ρ (γi–s)|(γi – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
∫ 1

0

|e ρ–1
ρ (1–s)|(1 – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t2) – μ2(t1)

∣
∣

=
1

ρqΓ (q)

∫ t1

0

∣
∣e

ρ–1
ρ (t2–s)∣∣(t2 – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds
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+
1

ρqΓ (q)

∫ t2

t1

∣
∣e

ρ–1
ρ (t2–s)∣∣(t2 – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
1

ρqΓ (q)

∫ t1

0

∣
∣e

ρ–1
ρ (t1–s)∣∣(t1 – s)q–1∣∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

+
∣
∣μ1(t2) – μ1(t1)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

|e ρ–1
ρ (s–u)|(s – u)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
u, x(u), Dp,ρx(u)

)∣
∣du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

|e ρ–1
ρ (γi–s)|(γi – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

–
∫ 1

0

|e ρ–1
ρ (1–s)|(1 – s)q–r–1

ρq–rΓ (q – r)
∣
∣f

(
s, x(s), Dp,ρx(s)

)∣
∣ds

]

+
∣
∣μ2(t2) – μ2(t1)

∣
∣.

Therefore, by the hypothesis of the theorem, we obtain

∣
∣(Tx)(t2) – (Tx)(t1)

∣
∣ ≤ ‖λ‖

ρqΓ (q + 1)
{[

2(t2 – t1)q –
(
tq
2 – tq

1
)]

+ e
ρ–1
ρ (t2–t1)[(tq

2 – tq
1
)

– (t2 – t1)q]}

+
e

ρ–1
ρ t2 |t2 – t1|

|A1|

[
α2‖λ‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖λ‖
ρq–rΓ (q – r + 1)

]

+
∣
∣A∗∣∣e

ρ–1
ρ t2 |t2 – t1|. (12)

In a similar way, we can get

∣
∣
(CDp,ρTx

)
(t2) –

(CDp,ρTx
)
(t1)

∣
∣ ≤ ‖λ‖(tq–p

2 – tq–p
1 )

ρq–pΓ (q)Γ (2 – p)

+
∣
∣δ1(t2) – δ1(t1)

∣
∣

[
α2‖λ‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i

–
‖λ‖

ρq–rΓ (q – r + 1)

]

+
∣
∣δ2(t2) – δ2(t1)

∣
∣,

where

∣
∣δ1(t2) – δ1(t1)

∣
∣ =

|t1–p
2 – t1–p

1 |
|A1|ρ–pΓ (2 – p)

, (13)

∣
∣δ2(t2) – δ2(t1)

∣
∣ ≤ |A∗|e ρ–1

ρ t2 |t1–p
2 – t1–p

1 |
ρ–pΓ (2 – p)

. (14)
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Then

∣
∣
(CDp,ρTx

)
(t2) –

(CDp,ρTx
)
(t1)

∣
∣ ≤ ‖λ‖(tq–p

2 – tq–p
1 )

ρq–pΓ (q)Γ (2 – p)

+
|t1–p

2 – t1–p
1 |

|A1|ρ–pΓ (2 – p)
[

α2‖λ‖
ρq–rΓ (q – r + 2)

(
ηq–r+1 – ζ q–r+1)

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i

–
‖λ‖

ρq–rΓ (q – r + 1)

]

+
|A∗|e ρ–1

ρ t2 |t1–p
2 – t1–p

1 |
ρ–pΓ (2 – p)

. (15)

The functions tq, t, tq–p, t1–p are uniformly continuous on [0, 1] where 1 ≤ q ≤ 2,
1 – p > 0, q – p > 0. Then, by the Arzela–Ascoli theorem, the sets {T(x) : x ∈ G} and
{CDp,ρT(x) : x ∈ G} are relatively compact in C[0, 1]. Therefore, T(G) is a relatively com-
pact set in X. Next, we consider the set

K = {x ∈ X : x = εTx, 0 < ε < 1}.

Then K is bounded. Indeed, let x ∈ K . So, x = εTx, 0 < ε < 1. For any t ∈ [0, 1], it follows
from |x(t)| = ε|Tx(t)| that

‖x‖ ≤ ‖λ‖
ρqΓ (q + 1)

+ μ1

[
α2‖λ‖

ρq–rΓ (q – r + 2)
∣
∣ηq–r+1 – ζ q–r+1∣∣

+
α3‖λ‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖λ‖
ρq–rΓ (q – r + 1)

]

+ μ2,

which proves the boundedness of the set K . Thus, by Schaefer’s fixed point theorem, the
operator T has at least one fixed point. Hence, the problem (1) has at least one solution
on [0, 1], which completes the proof. �

For our purpose, we write

θ1 = θ1 –
1

ρqΓ (q + 1)
, (16)

θ2 = θ2 –
tq–p

ρq–pΓ (q)Γ (2 – p)
, (17)
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where

θ1 =
1

ρqΓ (q + 1)

(

1 + μ1(t)

[
α2Γ (q + 1)

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3Γ (q + 1)

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

Γ (q + 1)
ρq–rΓ (q – r + 1)

])

,

θ2 =
tq–p

ρq–pΓ (q)Γ (2 – p)
+ δ1(t)

[
α2

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

1
ρq–rΓ (q – r + 1)

]

.

Next, we use Krasnoselskii’s fixed point theorem to show the existence of solutions of
the problem (1).

Theorem 16 Let f : [0, 1] × R × R → R be a continuous function such that the following
conditions hold:

(H1) |f (t, x, x̃) – f (t, y, ỹ)| < L(|x – y| + |̃x + ỹ|) for all t ∈ [0, 1], x, y, x̃, ỹ ∈R, L > 0.
(H2) |f (t, x(t), CDp,ρx(t))| ≤ c(t) for t ∈ [0, 1] and c ∈ C([0, 1],R+) with ‖c‖ =

maxt∈[0,1] |c(t)|.
(H3) Lθ < 1 where θ = max{θ1, θ2} and θ1, θ2 are given by (16) and (17).

Then there exists at least one solution for problem (1) on [0, 1].

Proof We define

Br =
{

x ∈ X : ‖x‖ ≤ r
}

,

where r ≥ ‖c‖θ + ν with

θ = max{θ1, θ2} and ν = max{μ2, δ2}. (18)

First, we split the operator T given by (7) as T = T1 + T2 on Br where

(T1x)(t) =
1

ρqΓ (q)

∫ t

0
e

ρ–1
ρ (t–s)(t – s)q–1f

(
s, x(s), CDp,ρx(s)

)
ds,

(T2x)(t) = μ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, x(u), Dp,ρx(u)

)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

]

+ μ2(t).
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For x̂, ŷ ∈ Br and using (18), we can get

∥
∥T1(̂x) – T2(̂x)

∥
∥ ≤ ‖c‖

ρqΓ (q + 1)
+ μ1

[
α2‖c‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖c‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i –

‖c‖
ρq–rΓ (q – r + 1)

]

+ μ2 (19)

and

∥
∥
(CDp,ρT1

)
(̂x) –

(CDp,ρT2
)
(̂x)

∥
∥ ≤ ‖c‖tq–p

ρq–pΓ (q)Γ (2 – p)

+ δ1(t)

[
α2‖c‖

ρq–rΓ (q – r + 2)
(
ηq–r+1 – ζ q–r+1)

+
α3‖c‖

ρq–rΓ (q – r + 1)

m–2∑

i=1

βiγ
q–r
i

–
‖c‖

ρq–rΓ (q – r + 1)

]

+ δ2(t). (20)

Then, by (11), we obtain

∥
∥T1(̂x) – T2(̂x)

∥
∥ ≤ ‖c‖θ + ν ≤ r

and

∥
∥
(CDp,ρT1

)
(̂x) –

(CDp,ρT2
)
(̂x)

∥
∥ ≤ ‖c‖δ + ν ≤ r,

which shows that T1(̂x) – T2(̂x) ∈ Br . Next, we show that T2 is a contraction. Let x, y ∈ R,
t ∈ [0, 1]. Then, by using (H1), we have

∥
∥T2(x) – T2(y)

∥
∥

= sup
t∈[0,1]

∣
∣T2(x) – T2(y)

∣
∣

= sup
t∈[0,1]

∣
∣
∣
∣
∣

(

μ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, x(u), Dp,ρx(u)

)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, x(s), Dp,ρx(s)

)
ds

]

+ μ2(t)

)

–

(

μ1(t)

[

α2

∫ η

ζ

(∫ s

0

e
ρ–1
ρ (s–u)(s – u)q–r–1

ρq–rΓ (q – r)
f
(
u, y(u), Dp,ρy(u)

)
du

)

ds
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+ α3

m–2∑

i=1

βi

∫ γi

0

e
ρ–1
ρ (γi–s)(γi – s)q–r–1

ρq–rΓ (q – r)
f
(
s, y(s), Dp,ρy(s)

)
ds

–
∫ 1

0

e
ρ–1
ρ (1–s)(1 – s)q–r–1

ρq–rΓ (q – r)
f
(
s, y(s), Dp,ρy(s)

)
ds

]

+ μ2(t)

)∣
∣
∣
∣
∣

≤ sup
t∈[0,1]

L
[∣
∣x(t) – y(t)

∣
∣ +

∣
∣CDp,ρx(t) – CDp,ρy(t)

∣
∣
]

{
∣
∣μ1(t)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

(s – u)q–r–1

ρq–rΓ (q – r)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

(γi – s)q–r–1

ρq–rΓ (q – r)
ds –

∫ 1

0

(1 – s)q–r–1

ρq–rΓ (q – r)
ds

]}

≤ L‖x – y‖ sup
t∈[0,1]

{
∣
∣μ1(t)

∣
∣

[

α2

∫ η

ζ

(∫ s

0

(s – u)q–r–1

ρq–rΓ (q – r)
du

)

ds

+ α3

m–2∑

i=1

βi

∫ γi

0

(γi – s)q–r–1

ρq–rΓ (q – r)
ds –

∫ 1

0

(1 – s)q–r–1

ρq–rΓ (q – r)
ds

]}

≤ Lθ1‖x – y‖ ≤ Lθ‖x – y‖, (21)

where

θ1 = θ1 –
1

ρqΓ (q + 1)
.

Similarly,

∥
∥
(CDp,ρT2

)
(x) –

(CDp,ρT2
)
(y)

∥
∥ ≤ Lθ2‖x – y‖ ≤ Lθ‖x – y‖, (22)

where

θ2 = θ2 –
tq–p

ρq–pΓ (q)Γ (2 – p)
.

Therefore, by (H3), the operator T2 is a contraction. It remains to show that T1 is contin-
uous and compact. We have

(T1x)(t) =
1

ρqΓ (q)

∫ t

0
e

ρ–1
ρ (t–s)(t – s)q–1f

(
s, x(s), CDp,ρx(s)

)
ds.

Then, by the continuity of f , the operator T1 is continuous. Also,

∥
∥T1(x)

∥
∥ =

1
ρqΓ (q)

sup
t∈[0,1]

∫ t

0

∣
∣e

ρ–1
ρ (t–s)∣∣(t – s)q–1∣∣f

(
s, x(s), CDp,ρx(s)

)∣
∣ds

≤ ‖c‖
ρqΓ (q + 1)

. (23)
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Further,

∥
∥
(CDp,ρT1

)
(x)

∥
∥ = sup

t∈[0,1]

( ‖c‖tq–p

ρq–pΓ (q)Γ (2 – p)

)

≤ ‖c‖
ρq–pΓ (q)Γ (2 – p)

. (24)

Now, for t1 < t2 and t1, t2 ∈ (0, 1] with sup(t,x,y)∈[0,1]×Br×Br |f (t, x, y)| = w, we have

∣
∣(T1x)(t2) – (T1x)(t1)

∣
∣ ≤ w

ρqΓ (q + 1)
{[

2(t2 – t1)q –
(
tq
2 – tq

1
)]

+ e
ρ–1
ρ (t2–t1)[(tq

2 – tq
1
)

– (t2 – t1)q]} (25)

and

∣
∣
(CDp,ρT1x

)
(t2) –

(CDp,ρT1x
)
(t1)

∣
∣ ≤ w|tq–p

2 – tq–p
1 |

ρq–pΓ (q)Γ (2 – p)
. (26)

Therefore, as (t2 – t1) → 0, the right-hand sides of (25) and (26) tend to zero independent
of x. Thus, T1 is equicontinuous and so it is relatively compact on Br according to the
Arzela–Ascoli theorem. Then the operator T1 is compact. By using Krasnoselskii’s fixed
point theorem, there exists at least one solution of (7) on [0, 1], and the proof is complete.�

The following example shows the applicability of Theorem 15.

Example Consider the problem

CDq,ρx(t) =
(
t + 1 –

∣
∣x(t)

∣
∣
)

ln
(
t + 1 –

∣
∣x(t)

∣
∣
)

+
|Dp,ρx(t)|

1 + |Dp,ρx(t)| , t ∈ [0, 1],

x(0) = α1,

CDr,ρx(1) = α2

∫ η

ζ

CDr,ρx(s) ds + α3

m–2∑

i=1

βi
CDr,ρx(γi),

where 1 < q ≤ 2, p ∈ (0, 1) and r ∈ (0, 1). Here,

f
(
t, x, Dp,ρx(t)

)
=

(
t + 1 –

∣
∣x(t)

∣
∣
)

ln
(
t + 1 –

∣
∣x(t)

∣
∣
)

+
|Dp,ρx(t)|

1 + |Dp,ρx(t)|
and then

∣
∣f

(
t, x, Dp,ρx(t)

)∣
∣ < (t + 1) ln(t + 1) + 1.

If we take F(u) = eu2 – 1, then F is an N-function satisfying

∫ 1

0
F
(∣
∣f

(
u(x)

)∣
∣
)

dx < ∞,

from which it follows that F belongs to the Orlicz space LF [0, 1]. Observe that

∣
∣f

(
t, x, Dp,ρx(t)

)∣
∣ < λ(t),
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where λ(t) = (t + 1) ln(t + 1) + 1. Therefore, Theorem 15 applies and there exists a solution
for a problem (1) on [0, 1].
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