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Abstract
In this article, multiple positive solutions are considered for nonlinear mixed fractional
differential equations with a p-Laplacian operator. Using the Avery–Peterson fixed
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1 Introduction
The differential equation arises in the modeling of different physical and natural phe-
nomena: nonlinear flow laws, control systems and many other branches of engineering.
In these years, integer order differential equations and fractional differential equations
have found wide applications. There are many papers concerning integer order differen-
tial equations [1–8], Caputo fractional differential equations [9–14], Riemann–Liouville
fractional differential equations [15–20] and mixed fractional differential equations [21].

By means of the Avery–Peterson fixed point theorem, Shen et al. [1] established the
existence result of at least triple positive solutions for the following problems:

–u′′(t) = f
(
t, u(t), u′(t)

)
, t ∈ (0, 1),

u′(0) = 0, βu′(1) + u(η) = 0,

or

u(0) = 0, βu′(1) + u(η) = 0,

where f ∈ C([0, 1] × [0,∞) × (∞, +∞), (0, +∞)), η ∈ (0, 1), β > 0, with β + η > 1.
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In [21], Liu et al. discussed the four-point problem for a class of fractional differential
equations with mixed fractional derivative and with a p-Laplacian operator,

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ (ϕp(cDβ

0+ u(t))) = f (t, u(t),c Dβ

0+ u(t)), t ∈ (0, 1),
cDβ

0+ u(0) = u′(0) = 0,

u(1) = r1u(η), cDβ

0+ u(1) = rc
2Dβ

0+ u(ξ ).

Here 1 < α, β ≤ 2, r1, r2 ≥ 0, f ∈ C([0, 1]× [0,∞)× (–∞, 0], [0, +∞)). Based on the method
of lower and upper solutions, they studied the existence of positive solutions of the above
boundary problem.

Motivated by the aforementioned work, this work discusses the existence of positive
solutions for fractional differential equation:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDβ

0+ [φp(Dα
0+ u(t))] + f (t, u(t)) = 0, t ∈ (0, 1),

[φp(Dα
0+ u(0))](i) = 0, i = 1, 2, . . . , m,

φp(Dα
0+ u(0)) =

∑l–2
i=1 bi[φp(Dα

0+ u(ξi))],

(u(0))(j) = 0, j = 0, 1, 2, . . . , n – 1,

Dα–1
0+ u(1) =

∑l–2
i=1 aiDα

0+ u(ξi),

(1.1)

where 2 ≤ n < α ≤ n+1, 1 ≤ m < β ≤ m+1 and m+n+1 < α+β ≤ m+n+2, φp(u) = |u|p–2u,
p > 1, Dα

0+ is the Riemann–Liouville fractional derivatives and cDβ

0+ is the Caputo fractional
derivatives. Using the Avery–Peterson fixed point theorem, we obtain the existence of
positive solutions for the fractional boundary value problem. A function u(t) is a positive
solution of the boundary value problem (1.1) if and only if u(t) satisfies the boundary value
problem (1.1), and u(t) ≥ 0 for t ∈ [0, 1].

We will always suppose the following conditions are satisfied:
(H1) 0 < ξ1 < ξ2 < · · · < ξl–2 < 1, ai > 0, bi > 0, i = 1, 2, . . . , l – 2 are constants and

∑l–2
i=1 ai < 1,

∑l–2
i=1 bi < 1;

(H2) f (t, u) : [0, 1] × [0,∞) → [0,∞) is continuous.

2 Preliminaries
To show the main result of this work, we give the following basic definitions, which can
be found in [22, 23].

Definition 2.1 The fractional integral of order α > 0 of a function y : (0, +∞) →R is given
by

Iα
0+y(t) =

1
Γ (α)

∫ t

0
(t – s)α–1y(s) ds,

provided that the right side is pointwise defined on (0, +∞), where

Γ (α) =
∫ +∞

0
e–xxα–1 dx.
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Definition 2.2 For a continuous function y : (0, +∞) → R, the Caputo derivative of frac-
tional order α > 0 is defined as

Dα
0+y(t) =

1
Γ (n – α)

∫ t

0
(t – s)n–α–1y(n)(s) ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0, +∞).

Definition 2.3 For a continuous function y : (0, +∞) →R, the Riemann–Liouville deriva-
tive of fractional order α > 0 is defined as

Dα
0+y(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α–1y(s) ds,

where n = [α] + 1, provided that the right side is pointwise defined on (0, +∞).

Let P be a cone in real Banach space E; γ , θ be nonnegative continuous convex func-
tionals on P; ω be nonnegative continuous concave functionals on P and ψ be nonnegative
continuous functionals on P. Then, for positive real numbers h, r, c and d, we define the
following sets:

P(γ , d) =
{

x ∈ P|γ (x) < d
}

,

P(γ ,ω, r, d) =
{

x ∈ P|r ≤ ω(x),γ (x) ≤ d
}

,

P(γ , θ ,ω, r, c, d) =
{

x ∈ P|r ≤ ω(x), θ (x) ≤ c,γ (x) ≤ d
}

,

Q(γ ,ψ , h, d) =
{

x ∈ P|h ≤ ψ(x),γ (x) ≤ d
}

.

Theorem 2.1 ([24]) Let P be a cone in real Banach space E. Let γ and θ be nonnegative
continuous convex functionals on P, ω be a nonnegative continuous concave functionals
on P, and ψ be a nonnegative continuous functionals on P satisfying ψ(λx) ≤ λψ(x) for
0 ≤ λ ≤ 1 such that, for some positive numbers d and M,

ω(x) ≤ ψ(x), and ‖x‖ ≤ Mγ (x), for all x ∈ P(γ , d).

Suppose further that T : P(γ , d) → P(γ , d) is completely continuous and there exist positive
numbers h, r and c with h < r such that:

(C1) {x ∈ P(γ , θ ,ω, r, c, d)|ω(x) > r} 	= ∅ and ω(Tx) > r for x ∈ P(γ , θ ,ω, r, c, d);
(C2) ω(Tx) > r for x ∈ P(γ ,ω, r, d) with θ (Tx) > c;
(C3) 0 /∈ Q(γ ,ψ , h, d) and ψ(Tx) < h for x ∈ Q(γ ,ψ , h, d) with ψ(x) = h.

Then T has at least three fixed points x1, x2, x3 ∈ P(γ , d) such that

γ (xi) ≤ d, i = 1, 2, 3;

r < ω(x1);

h < ψ(x2) with ω(x2) < r,

and

ω(x3) < h.
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3 Useful lemmas
Lemma 3.1 The boundary value problem (1.1) is equivalent to the following equation:

u(t) = c1tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds, (3.1)

where

c1 =
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξi

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

, (3.2)

w(s) = φq

(
–d0 +

∫ s
0 (s – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)

= φq

(∑l–2
i=1 bi

∫ ξi
0 (ξi – τ )β–1f (τ , u(τ )) dτ

(1 –
∑l–2

i=1 bi)Γ (β)
+

∫ s
0 (s – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)
, (3.3)

φq(u) is the inverse function of φp(u), i.e. 1
p + 1

q = 1.

Proof In view of cDβ

0+ [φp(Dα
0+ u(t))] + f (t, u(t)) = 0, we have

φp
(
Dα

0+ u(t)
)

= d0 + d1t + · · · + dmtm –
1

Γ (β)

∫ t

0
(t – τ )β–1f

(
τ , u(τ )

)
dτ .

In view of [φp(Dα
0+ u(0))](i) = 0, i = 1, 2, . . . , m, we obtain

d1 = d2 = · · · = dm = 0,

that is,

φp
(
Dα

0+ u(t)
)

= d0 –
∫ t

0 (t – τ )β–1f (τ , u(τ )) dτ

Γ (β)
. (3.4)

In view of φp(Dα
0+ u(0)) =

∑l–2
i=1 bi[φp(Dα

0+ u(ξi))], we get

d0 = –
∑l–2

i=1 bi
∫ ξi

0 (ξi – τ )β–1f (τ , u(τ )) dτ

(1 –
∑l–2

i=1 bi)Γ (β)
.

By (3.4), we have

Dα
0+ u(t) = φq

(
d0 –

∫ t
0 (t – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)
.

For t ∈ [0, 1], integrating from 0 to t, we get

u(t) = c1tα–1 + c2tα–2 + · · · + cn+1tα–n–1

+
1

Γ (α)

∫ t

0
(t – s)α–1φq

(
d0 –

∫ s
0 (s – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)
ds.
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In view of (Dα
0+ u(0))(j) = 0, j = 0, 1, 2, . . . , n – 1, we obtain

c2 = c3 = · · · = cn+1 = 0,

that is,

u(t) = c1tα–1 +
1

Γ (α)

∫ t

0
(t – s)α–1φq

(
d0 –

∫ s
0 (s – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)
ds

= c1tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds.

By a straightforward calculation, we get

Dα–1
0+ u(t) = c1Γ (α) –

∫ t

0
w(s) ds.

By use of Dα–1
0+ u(1) =

∑l–2
i=1 aiDα

0+ u(ξi), we obtain

c1 =
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξi

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

.

The proof is complete. �

Lemma 3.2 Suppose that the conditions (H1) and (H2) hold, then u(t) defined by (3.1) is a
nonnegative nondecreasing function.

Proof In view of the conditions (H1) and (H2), we get

w(s) = φq

(∑l–2
i=1 bi

∫ ξi
0 (ξi – τ )β–1f (τ , u(τ )) dτ

(1 –
∑l–2

i=1 bi)Γ (β)
+

∫ s
0 (s – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)

≥ φq

(∑l–2
i=1 bi

∫ ξi
0 (ξi – τ )β–1f (τ , u(τ )) dτ

(1 –
∑l–2

i=1 bi)Γ (β)

)

≥ 0.

So

u(t) = c1tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds

=
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξi

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

tα–1 –
∫ t

0 (t – s)α–1w(s) ds
Γ (α)

≥
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ 1

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

tα–1 –
∫ t

0 w(s) ds
Γ (α)

tα–1

=
∫ 1

0 w(s) ds
Γ (α)

tα–1 –
∫ t

0 w(s) ds
Γ (α)

tα–1

≥ 0.

Therefore, we see that u(t) is nonnegative.
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It is similar to the proof of u(t) ≥ 0, we can obtain u′(t) ≥ 0, so u(t) is nondecreasing.
The proof is complete. �

4 Main result
Let the Banach space E = C[0, 1] be endowed with the norm ‖u‖ = maxt∈[0,1] |u(t)|. Define
the cone P by

P =
{

u ∈ E, u(t) is nonnegative and nondecreasing for t ∈ [0, 1]
}

.

Define the operator T : P → E,

Tu(t) = c1tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds,

where c1 and w(s) are defined by (3.2) and (3.3). Obviously, u(t) is a solution of problem
(1.1) if and only if u(t) is a fixed point of T . Now we introduce the following notations for
convenience.

Let

M1 =

(

1 –
l–2∑

i=1

ai

)

Γ (α)

[(

1 –
l–2∑

i=1

bi

)

Γ (β + 1)

]q–1

,

M2 =
(1 –

∑l–2
i=1 ai)Γ (α)[(1 –

∑l–2
i=1 bi)Γ (β + 1)]q–1

[
∑l–2

i=1 biξ
β

i ]q–1(1 – ξl–2)ξα–1
l–2

.

The following theorem is the main result in this paper.

Theorem 4.1 Suppose that the conditions (H1) and (H2) hold. In addition, assume that
there exist positive numbers h, r, c and d such that h < r < r

ξα–1
l–2

≤ c < d, and that f (t, u)
satisfies the following growth conditions:

(H3) f (t, u) ≤ (dM1)p–1, for (t, u) ∈ [0, 1] × [0, d],
(H4) f (t, u) > (rM2)p–1, for (t, u) ∈ [0, 1] × [r, c],
(H5) f (t, u) < (hM1)p–1, for (t, u) ∈ [0, 1] × [0, h].

Then the boundary value problem (1.1) has at least three positive solutions u1, u2 and u3

such that

γ (ui) < d, i = 1, 2, 3;

r < ω(u1);

h < ψ(u2) with ω(u2) < r;

and

ω(u3) < h.

Proof First of all, we show T : P → P is a completely continuous operator.
For u ∈ P, in view of Lemma 3.2, we see that Tu(t) is nonnegative and nondecreasing,

consequently, we have T : P → P. By using the continuity of f (t, u), we obtain the operator
T is continuous.
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Let Ω ⊂ P be bounded, that is, there exists a positive constant l for any u ∈ Ω , and let
L = max0≤t≤1,0≤u≤l f (t, u), then, for any u ∈ Ω , we have

w(s) = φq

(∑l–2
i=1 bi

∫ ξi
0 (ξi – τ )β–1f (τ , u(τ )) dτ

(1 –
∑l–2

i=1 bi)Γ (β)
+

∫ s
0 (s – τ )β–1f (τ , u(τ )) dτ

Γ (β)

)

≤ φq

(L
∑l–2

i=1 bi
∫ ξi

0 (ξi – τ )β–1 dτ

(1 –
∑l–2

i=1 bi)Γ (β)
+

L
∫ 1

0 (1 – τ )β–1 dτ

Γ (β)

)

= φq

(
L

∑l–2
i=1 biξ

β

i

(1 –
∑l–2

i=1 bi)Γ (β + 1)
+

L
Γ (β + 1)

)

≤
(

L
(1 –

∑l–2
i=1 bi)Γ (β + 1)

)q–1

. (4.1)

So we get

Tu(t) = c1tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds

≤
∫ 1

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

≤ Lq–1

(1 –
∑l–2

i=1 ai)Γ (α)[(1 –
∑l–2

i=1 bi)Γ (β + 1)]q–1
.

Hence, T(Ω) is uniformly bounded.
Now, we will prove that T(Ω) is equicontinuous. For each u ∈ Ω , 0 ≤ t1 < t2 ≤ 1, we

have

∣
∣(Tu)(t2) – (Tu)(t1)

∣
∣

=
∣
∣∣∣c1tα–1

2 –
1

Γ (α)

∫ t2

0
(t2 – s)α–1w(s) ds – c1tα–1

1 +
1

Γ (α)

∫ t1

0
(t1 – s)α–1w(s) ds

∣
∣∣∣

≤ c1
∣
∣tα–1

2 – tα–1
1

∣
∣ +

1
Γ (α)

∣∣
∣∣

∫ t2

0
(t2 – s)α–1w(s) ds –

∫ t1

0
(t1 – s)α–1w(s) ds

∣∣
∣∣

≤ 1
(1 –

∑l–2
i=1 ai)Γ (α)

(
L

(1 –
∑l–2

i=1 bi)Γ (β + 1)

)q–1(
tα–1
2 – tα–1

1
)

+
1

Γ (α + 1)

(
L

(1 –
∑l–2

i=1 bi)Γ (β + 1)

)q–1[(
tα
2 – tα

1
)

+ (t2 – t1)α
]

+
1

Γ (α + 1)

(
L

(1 –
∑l–2

i=1 bi)Γ (β + 1)

)q–1

(t2 – t1)α .

Therefore, T(Ω) is equicontinuous. Applying the Arzelá–Ascoli theorem, we conclude
that T is a completely continuous operator.

For u ∈ P, let

γ (u) = θ (u) = ψ(u) = max
t∈[0,1]

∣∣u(t)
∣∣, ω(u) = min

t∈[ξl–2,1]

∣∣u(t)
∣∣. (4.2)

Secondly, we prove T : P(γ , d) → P(γ , d).
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For u ∈ P(γ , d), in view of (4.1), we get

w(s) ≤
(

(dM1)p–1

(1 –
∑l–2

i=1 bi)Γ (β + 1)

)q–1

=
dM1

[(1 –
∑l–2

i=1 bi)Γ (β + 1)]q–1
,

then

Tu(t) = c1tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds

=
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξi

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

tα–1 –
1

Γ (α)

∫ t

0
(t – s)α–1w(s) ds

≤
∫ 1

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

≤ dM1

(1 –
∑l–2

i=1 ai)Γ (α)[(1 –
∑l–2

i=1 bi)Γ (β + 1)]q–1

= d.

So we obtain T : P(γ , d) → P(γ , d).
Finally, we show conditions (C1)–(C3) in Theorem 2.1 are satisfied for T . To prove that

the second part of condition (C1) holds, taking u0(t) = 0.5(r + c), in view of (4.1), we obtain

γ (u0) = θ (u0) = 0.5(r + c), ω(u0) = 0.5(r + c).

So {u0 ∈ P(γ , θ ,ω, r, c, d)|ω(u0) > r}, which shows that

{
x ∈ P(γ , θ ,ω, r, c, d)|ω(x) > r

} 	= ∅

for all u ∈ P(γ , θ ,ω, r, c, d), then

ω(Tu) = min
t∈[ξl–2,1]

∣
∣Tu(t)

∣
∣ =

∣
∣Tu(ξl–2)

∣
∣

= c1ξ
α–1
l–2 –

1
Γ (α)

∫ ξl–2

0
(ξl–2 – s)α–1w(s) ds

=
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξi

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

ξα–1
l–2 –

1
Γ (α)

∫ ξl–2

0
(ξl–2 – s)α–1w(s) ds

≥
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξl–2

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

ξα–1
l–2 –

1
Γ (α)

ξα–1
l–2

∫ ξl–2

0
w(s) ds

=

∫ 1
ξl–2

w(s) ds

(1 –
∑l–2

i=1 ai)Γ (α)
ξα–1

l–2

=

∫ 1
ξl–2

φq(
∑l–2

i=1 bi
∫ ξi

0 (ξi–τ )β–1f (τ ,u(τ )) dτ

(1–
∑l–2

i=1 bi)Γ (β)
+

∫ s
0 (s–τ )β–1f (τ ,u(τ )) dτ

Γ (β) ) ds

(1 –
∑l–2

i=1 ai)Γ (α)
ξα–1

l–2

≥
∫ 1
ξl–2

φq(
∑l–2

i=1 bi
∫ ξi

0 (ξi–τ )β–1f (τ ,u(τ )) dτ

(1–
∑l–2

i=1 bi)Γ (β)
) ds

(1 –
∑l–2

i=1 ai)Γ (α)
ξα–1

l–2
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>
( (rM2)p–1 ∑l–2

i=1 biξ
β
i

(1–
∑l–2

i=1 bi)Γ (β+1)
)q–1(1 – ξl–2)

(1 –
∑l–2

i=1 ai)Γ (α)
ξα–1

l–2

=
rM2[

∑l–2
i=1 biξ

β

i ]q–1(1 – ξl–2)ξα–1
l–2

(1 –
∑l–2

i=1 ai)Γ (α)[(1 –
∑l–2

i=1 bi)Γ (β + 1)]q–1

= r.

Hence, we shall verify the condition (C2). If u ∈ P(γ ,ω, r, d) with θ (Tu) > c, in view of
(4.1), we have

ω(Tu) = min
t∈[ξl–2,1]

∣
∣Tu(t)

∣
∣ =

∣
∣Tu(ξl–2)

∣
∣

= c1ξ
α–1
l–2 –

1
Γ (α)

∫ ξl–2

0
(ξl–2 – s)α–1w(s) ds

and

θ (Tu) = max
t∈[0,1]

∣∣Tu(t)
∣∣ = Tu(1)

= c1 –
1

Γ (α)

∫ 1

0
(1 – s)α–1w(s) ds,

then

ω(Tu) – ξα–1
l–2 θ (Tu)

= c1ξ
α–1
l–2 –

1
Γ (α)

∫ ξl–2

0
(ξl–2 – s)α–1w(s) ds – c1ξ

α–1
l–2 +

ξα–1
l–2

Γ (α)

∫ 1

0
(1 – s)α–1w(s) ds

=
ξα–1

l–2
Γ (α)

∫ 1

0
(1 – s)α–1w(s) ds –

1
Γ (α)

∫ ξl–2

0
(ξl–2 – s)α–1w(s) ds

=
1

Γ (α)

∫ 1

0
(ξl–2 – sξl–2)α–1w(s) ds –

1
Γ (α)

∫ ξl–2

0
(ξl–2 – s)α–1w(s) ds

≥ 0.

So we get ω(Tu) ≥ ξα–1
l–2 θ (Tu) > ξα–1

l–2 c ≥ r, that is, ω(Tu) > r. So we finished the proof of
(C2).

Lastly, we shall prove the condition (C3). It is easy to see that 0 /∈ Q(γ ,ψ , h, d), then we
shall prove for u ∈ Q(γ ,ψ , h, d) with ψ(u) = h, we get ψ(Tu) < h.

For u ∈ Q(γ ,ψ , h, d) with ψ(u) = h, in view of (4.1), we have

w(s) <
(

(hM1)p–1

(1 –
∑l–2

i=1 bi)Γ (β + 1)

)q–1

=
hM1

[(1 –
∑l–2

i=1 bi)Γ (β + 1)]q–1
,

so we get

ψ(Tu) = max
t∈[0,1]

∣∣Tu(t)
∣∣

= Tu(1) = c1 –
∫ 1

0 (1 – s)α–1w(s) ds
Γ (α)
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=
∫ 1

0 w(s) ds –
∑l–2

i=1 ai
∫ ξi

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

–
∫ 1

0 (1 – s)α–1w(s) ds
Γ (α)

≤
∫ 1

0 w(s) ds
(1 –

∑l–2
i=1 ai)Γ (α)

<
hM1

(1 –
∑l–2

i=1 ai)Γ (α)[(1 –
∑l–2

i=1 bi)Γ (β + 1)]q–1
= h.

Consequently, the boundary value problem (1.1) has at least three positive solutions u1,
u2 and u3 such that

γ (ui) < d, i = 1, 2, 3;

r < ω(u1);

h < ψ(u2) with ω(u2) < r;

and

ω(u3) < h.

The proof is complete. �

Remark 4.1 Assume that f (t, 0) 	= 0 on a compact set, then u3 is a nontrivial solution.

5 Example
In this section, we give a simple example to explain the main theorem.

Example 5.1 For the problem (1.1), let α = 2.8, β = 1.8, a1 = 0.1, a2 = 0.3, b1 = 0.1, b2 = 0.5,
ξ1 = 0.2, ξ2 = 0.4, p = 3.0 and

f (t, u) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0.5t, 0 ≤ t ≤ 1, 0 ≤ u ≤ 1,

0.5t + 246(u – 1), 0 ≤ t ≤ 1, 1 < u ≤ 2,

0.5t + 246 + 2(u – 2), 0 ≤ t ≤ 1, 2 < u ≤ 12,

0.5t + 266, 0 ≤ t ≤ 1, u > 12.

In addition, if we take h = 1, r = 2, c = 12 and d = 22, then f (t, u) satisfies the following
growth conditions:

f (t, u) ≤ (dM1)p–1 ≈ 328.408680, (t, u) ∈ [0, 1] × [0, 22],

f (t, u) > (rM2)p–1 ≈ 231.653244, (t, u) ∈ [0, 1] × [2, 12],

f (t, u) < (hM1)p–1 ≈ 0.678530, (t, u) ∈ [0, 1] × [0, 1].

Then all the conditions of Theorem 4.1 are satisfied. Hence, by Theorem 4.1, we see
that the aforementioned problem has at least three positive solutions u1, u2 and u3 such
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that

γ (ui) < 22, i = 1, 2, 3;

2 < ω(u1);

1 < ψ(u2) with ω(u2) < 2;

and

ω(u3) < 1.

6 Conclusions
The Avery–Peterson fixed point theorem is used to solve the problem of a kind of non-
linear mixed fractional differential equation with a p-Laplacian operator. Under certain
nonlinear growth conditions of the nonlinearity, we get the existence of multiple positive
solutions for the boundary value problem. Finally, an example is presented to illustrate the
effectiveness of the main result.
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