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Abstract
We consider the multiplicity of positive solutions (PSs) for a coupled system involving
nonlinear impulsive fractional differential equations with parameters. By employing
the classical Guo–Krasnosel’skii fixed point theorem, some sufficient criteria for the
existence of multiple PSs in terms of different values of parameters are derived. As an
application, an example is given to illustrate the theoretical results.
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1 Introduction
The fractional calculus is an extension of the traditional integer calculus, which has the
properties of an infinity memory and is hereditary. In recent decades, fractional calculus
has aroused much attention and has been extensively applied to establish mathematical
models in the fields of signals, viscoelastic theory, fluid dynamics, computer networking,
electrical circuits, control theory and so on [1–9]. As a consequence, the subject of frac-
tional differential equations (FDEs) is very popular and of importance. Especially, the in-
vestigation of the existence of the solution for FDEs has received considerable attention,
the reader may refer to [10–22] and the references therein.

Though the theory of positive solutions (PSs) for ordinary differential equations with
parameters is mature, not much has been done for FDEs with parameters [12, 13, 17, 20].
By using the Guo–Krasnosel’skii fixed point theorem on cones, some sufficient conditions
for the existence of multiple PSs and eigenvalue intervals are established in [17] for the
following FDEs with parameter:

⎧
⎨

⎩

cDα
0+ u(t) = λf (u(t)), t ∈ (0, 1),α ∈ (1, 2),

u(0) + u′(0) = 0, u(1) + u′(1) = 0.

It should be emphasized that much work focuses on the BVPs of nonlinear FDEs with
impulses [11, 16, 18, 19, 21, 22]. The authors in [21] consider the following generalized
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antiperiodic BVPs for impulsive FDEs:

⎧
⎪⎪⎨

⎪⎪⎩

cDq
0+ u(t) = f (t, u(t)), t ∈ J = [0, 1], t �= tk ,

�u(tk) = Ik , �u′(tk) = Jk , k = 1, . . . , m,

au(0) + bu(1) = 0, au′(0) + bu′(1) = 0,

where q ∈ (1, 2) and a ≥ b > 0. Some new existence theorems of at least one solution are
established via fixed point methods.

For the BVPs of a nonlinear coupled fractional differential system with parameters, the
existence of PSs is considered in [20]. Some multiplicity theorems of PSs for nonlinear
impulsive FDEs are presented in [16]. However, as far as we know, there is no paper to in-
vestigate the multiplicity of PSs for impulsive fractional differential coupled system with
parameters. The above-mentioned work and observation inspire us to address the follow-
ing coupled system of nonlinear impulsive FDEs with parameters (abbreviated by BVPs
(1)):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
0+ u(t) + λf (t, u(t), v(t)) = 0, t ∈ J = [0, 1], t �= tk ,

cDβ

0+ v(t) + μg(t, u(t), v(t)) = 0, t ∈ J = [0, 1], t �= tk ,

�u(tk) = Ik(u(tk)), �u′(tk) = Jk(u(tk)),

�v(tk) = Pk(v(tk)), �v′(tk) = Qk(v(tk)), k = 1, . . . , m,

u(0) = au(1), u′(1) = bu′(0), v(0) = cv(1), v′(1) = dv′(0),

(1)

where α,β ∈ (1, 2], a, b, c, d ∈ (1, +∞), λ,μ ∈ (0, +∞) are parameters, cDα
0+ (cDβ

0+ ) is the
standard Caputo fractional derivative of order α(β), f , g : J × R+ × R+ → R+ are jointly
continuous, Ik , Jk , Pk , Qk ∈ C(R+, R–), R+ = [0, +∞), R– = (–∞, 0], �u(tk) = u(t+

k ) – u(t–
k ), in

which u(t–
k ) = limθ→0– u(tk + θ ) and u(t+

k ) = limθ→0+ u(tk + θ ) indicate the left and right lim-
its of u(t) at t = tk , respectively, and the impulsive point set {tk}m

k=1 satisfies 0 < t1 < · · · <
tm < tm+1 = 1. Let us set J0 = [0, t1] and Jk = (tk , tk+1], where k = 1, . . . , m. So J =

⋃m
k=0 Jk .

Due to the existence of impulsiveness in the nonlinear coupled system (1), it is chal-
lenging to deal with the existence of multiple PSs for BVPs (1). We first give the natural
formulas of PSs for the nonlinear coupled system by constructing the associated Green’s
function. Based on the properties of the Green’s function and some assumptions on the
nonlinear functions, some sufficient criteria for the multiplicity of PSs are obtained. Mean-
while, the ranges of the parameters λ and μ of the existence for PSs are also given. The
multiplicity theorems of this paper are established by applying the Guo–Krasnosel’skii
fixed point theorem. Finally, an example is provided to illustrate the validity of our main
results.

2 Preliminaries
Definition 2.1 ([1, 23]) The Riemann–Liouville fractional integral of the function f (t) ∈
Cn([0,∞), R) is defined as

Iα
0+ f (t) = Iα

[
f (·)](t) =

∫ t

0

(t – τ )α–1

Γ (α)
f (τ ) dτ ,
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where n – 1 < α ≤ n, n ∈ {1, 2, . . .} and Γ (·) is the well-known Gamma function, defined as
Γ (z) =

∫ ∞
0 tz–1e–t dt.

Definition 2.2 ([1, 23]) The Caputo fractional derivative of the function f (t) ∈
Cn([0,∞), R) is defined as

cDα
0+ f (t) = In–αf (n)(t) =

∫ t

0

(t – τ )n–α–1

Γ (n – α)
f (n)(τ ) dτ ,

where n – 1 < α ≤ n, n ∈ {1, 2, . . .}.

Lemma 2.1 ([1, 23]) If u ∈ Cn(J) and cDα
0+ u ∈ L1(J) with a Caputo fractional derivative of

order α > 0, then

Iα
0+

cDα
0+ u(t) = u(t) +

n–1∑

k=0

cktk , t ∈ J ,

where ck ∈ R and n is the smallest integer not less than α.

Lemma 2.2 (Guo–Krasnosel’skii fixed point theorem [24]) Let P ⊆ E be a cone, K1 and
K2 be two bounded open balls of the Banach space E centered at the origin with 0 ∈ K1 and
K1 ⊂ K2. Assume that T : P ∩ (K2 \ K1) → P is a completely continuous operator such that
either

(i) ‖Tv‖ ≤ ‖v‖, v ∈ P ∩ ∂K1 and ‖Tv‖ ≥ ‖v‖, v ∈ P ∩ ∂K2, or
(ii) ‖Tv‖ ≥ ‖v‖, v ∈ P ∩ ∂K1 and ‖Tv‖ ≤ ‖v‖, v ∈ P ∩ ∂K2 hold.

Then T has at least one fixed point in P ∩ (K2 \ K1).

Lemma 2.3 Given h ∈ C(J) and α ∈ (1, 2], the unique solution of

⎧
⎪⎪⎨

⎪⎪⎩

cDα
0+ u(t) + h(t) = 0, t ∈ J , t �= tk ,

�u(tk) = Ik(u), �u′(tk) = Jk(u), k = 1, . . . , m,

u(0) = au(1), u′(1) = bu′(0), a, b > 1,

(2)

is u(t) =
∫ 1

0 Gα(t, s)h(s) ds –
∑m

i=1 Ga,b(t, ti)Ji(u) –
∑m

i=1 Ga(t, ti)Ii(u), t ∈ J , where

Gα(t, s) =

⎧
⎨

⎩

– (t–s)α–1

Γ (α) + a(1–s)α–1

(a–1)Γ (α) + (a+(1–a)t)(1–s)α–2

(a–1)(b–1)Γ (α–1) , 0 ≤ s ≤ t ≤ 1,
a(1–s)α–1

(a–1)Γ (α) + (a+(1–a)t)(1–s)α–2

(a–1)(b–1)Γ (α–1) , 0 ≤ t ≤ s ≤ 1,
(3)

Ga,b(t, ti) =

⎧
⎨

⎩

ab+(1–b)ti+(1–a)bt
(a–1)(b–1) , 0 ≤ ti < t ≤ 1, i = 1, . . . , m,

ab+a(1–b)ti+(1–a)t
(a–1)(b–1) , 0 ≤ t ≤ ti ≤ 1, i = 1, . . . , m,

(4)

Ga(t, ti) =

⎧
⎨

⎩

1
a–1 , 0 ≤ ti < t ≤ 1, i = 1, . . . , m,

a
a–1 , 0 ≤ t ≤ ti ≤ 1, i = 1, . . . , m

(5)

Proof By applying Lemma 2.1, the solution of impulsive BVPs (2) can be uniquely ex-
pressed as

u(t) = –Iα
0+ h(t) – ck – dkt, t ∈ Jk , k = 0, 1, . . . , m. (6)
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From (6), one has

u′(t) = –Iα–1
0+ h(t) – dk , t ∈ Jk , k = 0, 1, . . . , m. (7)

Applying the boundary value conditions of BVPs (2), we can see from (6) and (7) that

–aIα
0+ h(1) + c0 – acm – adm = 0, (8)

–Iα–1
0+ h(1) + bd0 – dm = 0. (9)

It can be derived from the impulsive condition of BVPs (2) that

ck–1 – ck + Jk(u)tk = Ik(u), (10)

dk–1 – dk = Jk(u), k = 1, . . . , m. (11)

It thus follows from (9) and (11) that

d0 =
1

b – 1
Iα–1

0+ h(1) –
1

b – 1

m∑

i=1

Ji(u), (12)

dm =
1

b – 1
Iα–1

0+ h(1) –
b

b – 1

m∑

i=1

Ji(u). (13)

In the light of (11) and (12), we have

dk = d0 –
k∑

i=1

Ji(u)

=
1

b – 1
Iα–1

0+ h(1) –
1

b – 1

m∑

i=1

Ji(u) –
k∑

i=1

Ji(u). (14)

We can see from (8), (10) and (13) that

c0 =
a

a – 1

(

–Iα
0+ h(1) – dm +

m∑

i=1

(
Ii(u) – Ji(u)ti

)
)

=
a

a – 1

(

–Iα
0+ h(1) –

Iα–1
0+ h(1)
b – 1

+
b

b – 1

m∑

i=1

Ji(u) +
m∑

i=1

(
Ii(u) – Ji(u)ti

)
)

, (15)

this together with (10) implies that

ck =
a

a – 1

(

–Iα
0+ h(1) –

Iα–1
0+ h(1)
b – 1

+
b

b – 1

m∑

i=1

Ji(u) +
m∑

i=1

(
Ii(u) – Ji(u)ti

)
)

–
k∑

i=1

(
Ii(u) – Ji(u)ti

)
, (16)
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where k = 1, 2, . . . , m. It thus follows from (14) and (16) that

ck + dkt

=
a

a – 1

(

–Iα
0+ h(1) –

Iα–1
0+ h(1)
b – 1

+
b

b – 1

m∑

i=1

Ji(u) +
m∑

i=1

(
Ii(u) – Ji(u)ti

)
)

+
t

b – 1
Iα–1

0+ h(1) –
t

b – 1

m∑

i=1

Ji(u) –
k∑

i=1

[
Ii(u) + Ji(u)(t – ti)

]
. (17)

For t ∈ Jk = (tk , tk+1], k = 1, . . . , m, by substituting (17) into (6), we obtain

u(t) = – Iα
0+ h(t) +

aIα
0+ h(1)
a – 1

+
aIα–1

0+ h(1)
(a – 1)(b – 1)

–
t

b – 1
Iα–1

0+ h(1)

–
ab

(a – 1)(b – 1)

m∑

i=1

Ji(u) –
a

a – 1

m∑

i=1

[
Ii(u) – Ji(u)ti

]

+
t

b – 1

m∑

i=1

Ji(u) +
k∑

i=1

Ii(u) +
k∑

i=1

(t – ti)Ji(u)

= –
∫ t

0

(t – s)α–1

Γ (α)
h(s) ds +

a
a – 1

∫ 1

0

(1 – s)α–1

Γ (α)
h(s) ds

+
a + (1 – a)t

(a – 1)(b – 1)

∫ 1

0

(1 – s)α–2

Γ (α – 1)
h(s) ds –

a
a – 1

m∑

i=1

Ii(u)

–
m∑

i=1

ab + a(1 – b)ti + (1 – a)t
(a – 1)(b – 1)

Ji(u) +
k∑

i=1

[
Ii(u) + (t – ti)Ji(u)

]

=
∫ t

0

[

–
(t – s)α–1

Γ (α)
+

a(1 – s)α–1

(a – 1)Γ (α)
+

(a + (1 – a)t)(1 – s)α–2

(a – 1)(b – 1)Γ (α – 1)

]

h(s) ds

+
∫ 1

t

[
a(1 – s)α–1

(a – 1)Γ (α)
+

(a + (1 – a)t)(1 – s)α–2

(a – 1)(b – 1)Γ (α – 1)

]

h(s) ds

–
k∑

i=1

ab + (1 – b)ti + (1 – a)bt
(a – 1)(b – 1)

Ji(u)

–
m∑

i=k+1

ab + a(1 – b)ti + (1 – a)t
(a – 1)(b – 1)

Ji(u)

–
1

a – 1

k∑

i=1

Ii(u) –
a

a – 1

m∑

i=k+1

Ii(u)

=
∫ 1

0
Gα(t, s)h(s) ds –

m∑

i=1

Ga,b(t, ti)Ji(u) –
m∑

i=1

Ga(t, ti)Ii(u),

in which Gα(t, s), Ga,b(t, ti) and Ga(t, ti) are defined by (3), (4) and (5), respectively.
For t ∈ J0 = [0, t1], substituting (12) and (15) into (6) yields

u(t) = – Iα
0+ h(t) – c0 – d0t

= – Iα
0+ h(t) +

a
a – 1

Iα
0+ h(1) +

aIα–1
0+ h(1)

(a – 1)(b – 1)
–

t
b – 1

Iα–1
0+ h(1)
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–
ab

∑m
i=1 Ji(u)

(a – 1)(b – 1)
–

a
a – 1

m∑

i=1

[
Ii(u) – Ji(u)ti

]
+

t
b – 1

m∑

i=1

Ji(u)

= –
∫ t

0

(t – s)α–1

Γ (α)
h(s) ds +

a
a – 1

∫ 1

0

(1 – s)α–1

Γ (α)
h(s) ds

+
a + (1 – a)t

(a – 1)(b – 1)

∫ 1

0

(1 – s)α–2

Γ (α – 1)
h(s) ds

–
m∑

i=1

ab + a(1 – b)ti + (1 – a)t
(a – 1)(b – 1)

Ji(u) –
a

a – 1

m∑

i=1

Ii(u)

=
∫ 1

0
Gα(t, s)h(s) ds –

m∑

i=1

Ga,b(t, ti)Ji(u) –
m∑

i=1

Ga(t, ti)Ii(u),

in which Gα(t, s), Ga,b(t, ti) and Ga(t, ti) are defined by (3), (4) and (5), respectively. The
proof is thus completed. �

Lemma 2.4 Let a, b > 1, the functions Gα(t, s), Ga,b(t, ti) and Ga(t, ti) are continuous and
satisfy the following properties:

Gα(1, s) ≤ Gα(t, s) ≤ aGα(1, s), ∀t, s ∈ J ,

1
(a – 1)(b – 1)

≤ Ga,b(t, ti) ≤ ab
(a – 1)(b – 1)

, ∀t, ti ∈ J ,

1
a – 1

≤ Ga(t, ti) ≤ a
a – 1

, ∀t, ti ∈ J .

Proof We can see from the expressions of Gα(t, s), Ga,b(t, ti) and Ga(t, ti) that Gα(t, s),
Ga,b(t, ti), Ga(t, ti) ∈ C(J × J). For t, s ∈ J , using (3) yields

∂

∂t
Gα(t, s) =

⎧
⎨

⎩

– (t–s)α–2

Γ (α–1) – (1–s)α–2

(b–1)Γ (α–1) , 0 ≤ s ≤ t ≤ 1,

– (1–s)α–2

(b–1)Γ (α–1) , 0 ≤ t ≤ s ≤ 1.
(18)

Clearly, for t ∈ J , Gα(t, s) is decreasing with respect to t. Therefore,

Gα(1, s) ≤ Gα(t, s) ≤ Gα(0, s) = aGα(1, s).

In view of (4) and (5), it is obviously that

1
(a – 1)(b – 1)

= Ga,b(1, 1) ≤ Ga,b(t, ti) ≤ Ga,b(0, 0) =
ab

(a – 1)(b – 1)
,

1
a – 1

≤ Ga(t, ti) ≤ a
a – 1

, ∀t, ti ∈ J .

The proof is thus completed. �

Similar results to Lemmas 2.3 and 2.4 can be formulated for the following BVPs (19):

⎧
⎪⎪⎨

⎪⎪⎩

cDβ

0+ v(t) + ζ (t) = 0, t ∈ J\{t1, . . . , tm},
�v(tk) = Pk(v(tk)), �v′(tk) = Qk(v(tk)),

v(0) = cv(1), v′(1) = dv′(0), c, d > 1,

(19)
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where β ∈ (1, 2] and ζ (t) ∈ C(J), k = 1, . . . , m. We introduce Gβ (t, s), Gc,d(t, ti) and Gc(t, ti),
the corresponding functions for the BVPs (19) defined in a similar manner to Gα(t, s),
Ga,b(t, ti) and Ga(t, ti), respectively.

3 Main results
In this section, some sufficient criteria are derived to guarantee the multiplicity of PSs for
BVPs (1).

Let E = {(u, v) : u, v ∈ C(J)} be endowed with the norm ‖·‖ defined as ‖(u, v)‖ = ‖u‖+‖v‖
for (u, v) ∈ E, where ‖u‖ = maxt∈J |u(t)| and ‖v‖ = maxt∈J |v(t)|. Let the Banach space PC(J)
and the cone K ∈ PC(J) be, respectively, defined as

PC(J) =
{

(u, v) ∈ E : u, v ∈ C
(
J ′, R+)

, u
(
t–
k
)
, u

(
t+
k
)
, v

(
t–
k
)

and v
(
t+
k
)

exist with u
(
t–
k
)

= u(tk) and v
(
t–
k
)

= v(tk), J ′ = J\{t1, . . . , tm}}

and

K =
{

(u, v) ∈ PC(J) : u + v ≥ γ
∥
∥(u, v)

∥
∥ with γ = min

{
(ab)–1, (cd)–1}}. (20)

To begin with, we need the following assumptions to derive the main results.
(B1) a, b, c, d ∈ (1, +∞) and σ1,σ2 ∈ (0, +∞) with σ1 =

∫ 1
0 Gα(1, s) ds and σ2 =

∫ 1
0 Gβ (1, s) ds.

(B2) f (t, u, v), g(t, u, v) ∈ C(J × R+ × R+, R+).
(B3) Ik(u), Jk(u), Pk(v), Qk(v) ∈ C(R+, R–), k = 1, . . . , m.
For simplicity, some important notations and functions are introduced as follows:

η = max

{

–
ab

∑m
i=1 Ji(u)

(a – 1)(b – 1)
–

a
∑m

i=1 Ii(u)
a – 1

, –
cd

∑m
i=1 Qi(v)

(c – 1)(d – 1)
–

c
∑m

i=1 Pi(v)
c – 1

}

,

Φ(r) = max
t∈J ,u+v∈[γ r,r]

{
f (·), g(·)}, φ(r) = min

t∈J ,u+v∈[γ r,r]

{
f (·), g(·)},

fδ = lim inf
u+v→δ

min
t∈J

f (·)
u + v

, gδ = lim inf
u+v→δ

min
t∈J

g(·)
u + v

,

where f (·) = f (t, u(t), v(t)), g(·) = g(t, u(t), v(t)) and δ denotes 0 or +∞.
Define two operators Tα , Tβ : PC(J) → PC(J) as

Tα(u, v) = λ

∫ 1

0
Gα(t, s)f (·) ds –

m∑

i=1

Ga,b(t, ti)Ji(u) –
m∑

i=1

Ga(t, ti)Ii(u),

Tβ (u, v) = μ

∫ 1

0
Gβ (t, s)g(·) ds –

m∑

i=1

Gc,d(t, ti)Qi(v) –
m∑

i=1

Gc(t, ti)Pi(v),

and the operator T : PC(J) → PC(J) as

T(u, v) =
(
Tα(u, v), Tβ (u, v)

)
.

It is obvious that (u, v) is a pair of PSs of BVPs (1) if (u, v) is a fixed point of T .
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Lemma 3.1 Assume that (B1)–(B3) hold, then T : K → K is completely continuous.

Proof Due to the functions Gα , Gβ , Ga, Gb, Ga,b, Gc,d , f , g , –Ik , –Jk , –Pk and –Qk are
nonnegative and continuous, λ and μ are positive parameters. It can be concluded that
T : K → K is continuous. For every (u, v) ∈ PC(J) we have

Tα(u, v)

≥ λ

∫ 1

0
Gα(1, s)f (·) ds –

1
(a – 1)(b – 1)

m∑

i=1

Ji(u) –
1

a – 1

m∑

i=1

Ii(u)

≥ 1
ab

[

aλ

∫ 1

0
Gα(1, s)f (·) ds –

ab
(a – 1)(b – 1)

m∑

i=1

Ji(u) –
a

a – 1

m∑

i=1

Ii(u)

]

≥ 1
ab

max
t∈J

∣
∣Tα(u, v)(t)

∣
∣ =

1
ab

∥
∥Tα(u, v)

∥
∥.

Similarly, one gets Tβ (u, v) ≥ (cd)–1‖Tβ (u, v)‖. Therefore

Tα(u, v)(t) + Tβ (u, v)(t) ≥ min
{

(ab)–1, (cd)–1}(∥∥Tα(u, v)
∥
∥ +

∥
∥Tβ (u, v)

∥
∥
)

= min
{

(ab)–1, (cd)–1}∥∥
(
Tα(u, v), Tβ (u, v)

)∥
∥

= γ
∥
∥T(u, v)

∥
∥,

namely T(K) ⊂ K . We can further see from the Ascoli–Arzela theorem that T : K → K is
completely continuous. �

Theorem 3.1 Suppose that (B1)–(B3) hold and there exist two constants ρ and δ with
ρ ≥ 4η > 0 and δ > 0 such that

Φ(ρ) <
ρ

4δ
min

{
(aσ1)–1, (cσ2)–1}. (21)

Then, for each

λ ∈ ((2γ )–1 max
{

(σ1f0)–1, (σ1f∞)–1}, δ],

μ ∈ ((2γ )–1 max
{

(σ2g0)–1, (σ2g∞)–1}, δ],

BVPs (1) have at least two pairs of PSs (ui, vi), i = 1, 2, which satisfy

0 <
∥
∥(u1, v1)

∥
∥ < ρ <

∥
∥(u2, v2)

∥
∥. (22)

Proof We first choose two constants r and R such that 0 < r < ρ < R. Considering the case
when λ > (2γ σ1f0)–1 and μ > (2γ σ2g0)–1. From the definitions of f0 and g0, we can conclude
that there exists r > 0 such that f (·) ≥ (f0 –ε1)(u+v) and g(·) ≥ (g0 –ε2)(u+v) as u+v ∈ [0, r]
and t ∈ J , where ε1 > 0 and ε2 > 0 satisfy 2λγ σ1(f0 – ε1) ≥ 1 and 2μγσ2(g0 – ε2) ≥ 1. Then
for each (u, v) ∈ ∂Kr = {(u, v) ∈ K : ‖(u, v)‖ = r} and t ∈ J , it can be derived from Lemma 2.4
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that

∥
∥T(u, v)

∥
∥ = max

t∈J

∣
∣Tα(u, v)(t)

∣
∣ + max

t∈J

∣
∣Tβ (u, v)(t)

∣
∣

≥ λ

∫ 1

0
Gα(t, s)f (·) ds –

m∑

i=1

Ga,b(t, ti)Ji(u) –
m∑

i=1

Ga(t, ti)Ii(u)

+ μ

∫ 1

0
Gβ (t, s)g(·) ds –

m∑

i=1

Gc,d(t, ti)Qi(v) –
m∑

i=1

Gc(t, ti)Pi(v)

≥ λ

∫ 1

0
Gα(1, s)f (·) ds + μ

∫ 1

0
Gβ (1, s)g(·) ds

≥ λ

∫ 1

0
Gα(1, s)(f0 – ε1)(u + v) ds

+ μ

∫ 1

0
Gβ (1, s)(g0 – ε2)(u + v) ds

≥ λ

∫ 1

0
Gα(1, s)(f0 – ε1)γ

∥
∥(u, v)

∥
∥ds

+ μ

∫ 1

0
Gβ (1, s)(g0 – ε2)γ

∥
∥(u, v)

∥
∥ds

= λγ σ1(f0 – ε1)
∥
∥(u, v)

∥
∥ + μγσ2(g0 – ε2)

∥
∥(u, v)

∥
∥ ≥ ∥

∥(u, v)
∥
∥. (23)

Next, considering the case when λ > (2γ σ1f∞)–1 and μ > (2γ σ2g∞)–1. In view of the
definitions of f∞ and g∞, we can see that there exists R > 0 such that f (·) ≥ (f∞ – ε3)(u + v)
and g(·) ≥ (g∞ –ε4)(u + v) as u + v ∈ [R,∞) and t ∈ J , where ε3, ε4 > 0 with 2λγ σ1(f∞ –ε3) ≥
1 and 2μγσ2(g∞ – ε4) ≥ 1. Then, for (u, v) ∈ ∂KR and t ∈ J , it follows from (23) that

∥
∥T(u, v)

∥
∥ ≥ λ

∫ 1

0
Gα(1, s)f (·) ds + μ

∫ 1

0
Gβ (1, s)g(·) ds

≥ λ

∫ 1

0
Gα(1, s)(f∞ – ε3)(u + v) ds

+ μ

∫ 1

0
Gβ (1, s)(g∞ – ε4)(u + v) ds

≥ λγ σ1(f∞ – ε3)
∥
∥(u, v)

∥
∥ + μγσ2(g0 – ε4)

∥
∥(u, v)

∥
∥ ≥ ∥

∥(u, v)
∥
∥. (24)

Finally, we can see from (21) that

f (·) ≤ Φ(ρ) <
ρ

4aσ1δ
, g(·) ≤ Φ(ρ) <

ρ

4cσ2δ
, u + v ∈ [γρ,ρ], t ∈ J .

Then, for each (u, v) ∈ ∂Kρ with ρ ≥ 4η, it follows from Lemma 2.4 that

∥
∥T(u, v)

∥
∥ ≤ aλ

∫ 1

0
Gα(1, s)f (·) ds –

ab
∑m

i=1 Ji(u)
(a – 1)(b – 1)

–
a

∑m
i=1 Ii(u)

a – 1

+ cμ
∫ 1

0
Gβ (1, s)g(·) ds –

cd
∑m

i=1 Qi(v)
(c – 1)(d – 1)

–
c
∑m

i=1 Pi(v)
c – 1
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< aλ

∫ 1

0
Gα(1, s)

ρ

4aσ1δ
ds + cμ

∫ 1

0
Gβ (1, s)

ρ

4cσ2δ
ds + 2η

=
(λ + μ)ρ

4δ
+ 2η ≤ ρ

2
+

ρ

2
=

∥
∥(u, v)

∥
∥.

Hence,

∥
∥T(u, v)

∥
∥ <

∥
∥(u, v)

∥
∥, (u, v) ∈ ∂Kρ . (25)

Thus, applying Lemma 2.2 to (23)–(25) shows that T(u, v) has the fixed point (u1, v1) ∈
K ∩ (Kρ \ Kr) and the fixed point (u2, v2) ∈ K ∩ (KR \ Kρ). In the light of (25) being a strict
inequality, ‖(u1, v1)‖ �= ρ and ‖(u2, v2)‖ �= ρ . Consequently, BVPs (1) have at least two pairs
of PSs (ui, vi), i = 1, 2, satisfying (22). The proof is thus completed. �

Theorem 3.2 Suppose that (B1)–(B3) hold and there exist three constants ξi (i = 1, 2, 3)
with 4η ≤ ξ1 < ξ2 < ξ3 such that either

(H1) ϕ

2σ1
≤ λ ≤ ξ2

4aσ1Φ(ξ2) and ϕ

2σ2
≤ μ ≤ ξ2

4cσ2Φ(ξ2) , or
(H2) ξ2

2σ1φ(ξ2) < λ ≤ ϕ

4aσ1
and ξ2

2σ2φ(ξ2) < μ ≤ ϕ

4cσ2
hold,

where ϕ = max{ξ1φ
–1(ξ1), ξ3φ

–1(ξ3)} and ϕ = min{ξ1Φ
–1(ξ1), ξ3Φ

–1(ξ3)}. Then BVPs (1)
have at least two pairs of PSs (ui, vi), i = 1, 2, which satisfy

ξ1 ≤ ∥
∥(u1, v1)

∥
∥ < ξ2 <

∥
∥(u2, v2)

∥
∥ ≤ ξ3. (26)

Proof Due to the proofs of case (H1) and case (H2) being similar, here we prove only case
(H1). We first consider the case when λ ≥ ξ1(2σ1φ(ξ1))–1 and μ ≥ ξ1(2σ2φ(ξ1))–1. Note that
f (·) ≥ φ(ξ1) and g(·) ≥ φ(ξ1) as u + v ∈ [γ ξ1, ξ1] and t ∈ J . Then, for (u, v) ∈ ∂Kξ1 and t ∈ J ,
one has

∥
∥T(u, v)

∥
∥ ≥ λ

∫ 1

0
Gα(1, s)f (·) ds + μ

∫ 1

0
Gβ (1, s)g(·) ds

≥ λφ(ξ1)
∫ 1

0
Gα(1, s) ds + μφ(ξ1)

∫ 1

0
Gβ (1, s) ds

≥ ξ1

2σ1φ(ξ1)
φ(ξ1)σ1 +

ξ1

2σ2φ(ξ1)
φ(ξ1)σ2 = ξ1 =

∥
∥(u, v)

∥
∥. (27)

For the case when λ ≤ ξ2(4aσ1Φ(ξ2))–1 and μ ≤ ξ2(4cσ2Φ(ξ2))–1, noting that f (·) ≤ Φ(ξ2)
and g(·) ≤ Φ(ξ2) as u + v ∈ [γ ξ2, ξ2] and t ∈ J . Then for (u, v) ∈ ∂Kξ2 , t ∈ J , one obtains

∥
∥T(u, v)

∥
∥ ≤ aλ

∫ 1

0
Gα(1, s)f (·) ds + cμ

∫ 1

0
Gβ (1, s)g(·) ds + 2η

≤ λaΦ(ξ2)
∫ 1

0
Gα(1, s) ds + μcΦ(ξ2)

∫ 1

0
Gβ (1, s) ds + 2η

≤ ξ2

4aσ1Φ(ξ2)
aΦ(ξ2)σ1 +

ξ2

4cσ2Φ(ξ2)
cΦ(ξ2)σ2 +

ξ1

2

<
ξ2

4
+

ξ2

4
+

ξ2

2
= ξ2 =

∥
∥(u, v)

∥
∥. (28)
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Considering λ ≥ ξ3(2σ1φ(ξ3))–1 and μ ≥ ξ3(2σ2φ(ξ3))–1, for (u, v) ∈ ∂Kξ3 , t ∈ J , we derive

∥
∥T(u, v)

∥
∥ ≥ λ

∫ 1

0
Gα(1, s)f (·) ds + μ

∫ 1

0
Gβ (1, s)g(·) ds

≥ λφ(ξ3)
∫ 1

0
Gα(1, s) ds + μφ(ξ3)

∫ 1

0
Gβ (1, s) ds

≥ ξ3

2σ1φ(ξ3)
φ(ξ3)σ1 +

ξ3

2σ2φ(ξ3)
φ(ξ3)σ2 = ξ3 =

∥
∥(u, v)

∥
∥. (29)

Thus, applying Lemma 2.2 to (27)–(29) shows that T has the fixed point (u1, v1) ∈
K ∩ (K ξ2 \ Kξ1 ) and the fixed point (u2, v2) ∈ K ∩ (K ξ3 \ Kξ2 ). In the light of (28),
one gets ‖(u1, v1)‖ �= ξ2 and ‖(u2, v2)‖ �= ξ2. Therefore (26) holds, and the proof is thus
completed. �

The following general theorem can be obtained by following a similar analysis to that of
Theorem 3.2.

Theorem 3.3 Suppose that (B1)–(B3) hold and there exist n + 1 constants ξi (i = 1, 2, . . . ,
n + 1) with 4η ≤ ξ1 < ξ2 < · · · < ξn+1 such that either

(H3) ξ2j–1
2σ1φ(ξ2j–1) < λ < ξ2j

4aσ1Φ(ξ2j)
and ξ2j–1

2σ2φ(ξ2j–1) < μ < ξ2j
4cσ2Φ(ξ2j)

, j = 1, 2, . . . , [ n+2
2 ], or

(H4) ξ2j
2σ1φ(ξ2j)

< λ < ξ2j–1
4aσ1Φ(ξ2j–1) and ξ2j

2σ2φ(ξ2j)
< μ < ξ2j–1

4cσ2Φ(ξ2j–1) , j = 1, 2, . . . , [ n+2
2 ] hold.

Then BVPs (1) have at least n pairs of PSs (ui, vi), i = 1, 2, . . . , n, which satisfy

ξi <
∥
∥(ui, vi)

∥
∥ < ξi+1. (30)

Proof When n = 1, we can see from the case (H3) that ξ1(2σ1φ(ξ1))–1 < λ < ξ2(4aσ1Φ(ξ2))–1

and ξ1(2σ2φ(ξ1))–1 < μ < ξ2(4cσ2Φ(ξ2))–1. Then it follows from (27) and (28) that
‖T(u, v)‖ > ‖(u, v)‖ for (u, v) ∈ ∂Kξ1 and ‖T(u, v)‖ < ‖(u, v)‖ for (u, v) ∈ ∂Kξ2 . This together
with Lemma 2.2 implies that T has a fixed point (u1, v1) satisfies ξ1 < ‖(u1, v1)‖ < ξ2. Simi-
larly, when n = 2 or n = 3, namely j = 1, 2, we can further see that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

‖T(u, v)‖ > ‖(u, v)‖, (u, v) ∈ ∂Kξ1 ,

‖T(u, v)‖ < ‖(u, v)‖, (u, v) ∈ ∂Kξ2 ,

‖T(u, v)‖ > ‖(u, v)‖, (u, v) ∈ ∂Kξ3 ,

‖T(u, v)‖ < ‖(u, v)‖, (u, v) ∈ ∂Kξ4 .

(31)

Thus, applying Lemma 2.2 to (31) shows that T has at least three fixed points (ui, vi), i =
1, 2, 3, satisfying

ξ1 <
∥
∥(u1, v1)

∥
∥ < ξ2 <

∥
∥(u2, v2)

∥
∥ < ξ3 <

∥
∥(u3, v3)

∥
∥ < ξ4. (32)

Therefore, by following the above analysis, we can see that (30) holds if (H3) or (H4) is
satisfied. The proof is thus completed. �



Wang and Gong Advances in Difference Equations        (2019) 2019:102 Page 12 of 13

4 Example
Consider the BVPs of the following nonlinear coupled system with impulses:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cD
3
2
0+ u(t) = –λf (t, u(t), v(t)), t ∈ J , t �= 1

4 ,
cD

3
2
0+ v(t) = –μg(t, u(t), v(t)), t ∈ J , t �= 1

4 ,

�u( 1
4 ) = I(u( 1

4 )), �u′( 1
4 ) = J(u( 1

4 )),

�v( 1
4 ) = P(v( 1

4 )), �v′( 1
4 ) = Q(v( 1

4 )),

u(0) = 2u(1), u′(1) = 3u′(0), v(0) = 2v(1), v′(1) = 3v′(0),

(33)

where

f =
2

1 + t

[ (1 + sin( π
2 + u + v))(u + v)
50eu+v +

(u + v)3 + 3(u + v)
(u + v)2 + 959(u + v) + 1

]

,

g = u+v
20(5+t) | ln(u + v)|, I(u) = – u

15(1+u) , J(u) = – 2u
5(1+6u) , P(v) = 2 cos(5v)–3

50 and Q(v) = sin(v)–1
10 .

Obviously, (B1)–(B3) hold. By simple calculation, one can easily obtain η = 1
2 , γ = 1

6 ,
σ1 = σ2 = 10

3
√

π
, f0 = 76

25 , f∞ = 1 and g0 = g∞ = +∞. We then further see that

1
2γ

max
{

(σ1f0)–1, (σ1f∞)–1} =
9
√

π

10
,

1
2γ

max
{

(σ2g0)–1, (σ2g∞)–1} = 0.

Choose δ = 2
√

π and ρ = 6, then, for t ∈ J and u + v ∈ [1, 6], one gets

max
t∈J ,u+v∈[1,6]

f (t, u, v) < 2 ×
(

2 × 1
50e

+
63 + 3 × 6

62 + 959 × 6 + 1

)

≈ 0.1102,

max
t∈J ,u+v∈[1,6]

g(t, u, v) <
6 ln 6

20(5 + 0)
≈ 0.1075.

Thus, one has

ρ

4δ
min

{
(aσ1)–1, (cσ2)–1} =

9
80

≈ 0.1125 > Φ(6) ≈ 0.1102.

We can see from Theorem 3.1 that, for λ ∈ ( 9
√

π

10 , 2
√

π ] and μ ∈ (0, 2
√

π ], BVPs (33) have
at least two pairs of PSs.

5 Conclusions
This paper has discussed the multiplicity of PSs of impulsive BVPs for a fractional-order
coupled system involving parameters. Some sufficient conditions have been derived to
guarantee the existence of multiple PSs for the considered fractional-order coupled sys-
tem. An example has been provided to illustrate the obtained results. Note that only a
two-point BVP is considered in this paper. Similar to the work in [25], an interesting topic
for future research is to deal with the multi-point even nonlocal BVP. Another interesting
topic is to consider the multiplicity of the solutions for impulsive FDEs on the half-line.



Wang and Gong Advances in Difference Equations        (2019) 2019:102 Page 13 of 13

Acknowledgements
The authors would like to thank the anonymous referees for their useful and valuable suggestions.

Funding
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with the same responsibility. All authors read and
approved the final manuscript.

Author details
1School of Mathematical Sciences, Xiamen University, Xiamen, China. 2School of Mathematical Sciences, South China
Normal University, Guangzhou, China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 22 October 2018 Accepted: 1 March 2019

References
1. Kilbas, A., Srivastava, H., Trujillo, J.: Theory and Applications of Fractional Differential Equations. North-Holland

Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006)
2. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
3. Rossikhin, Y.A., Shitikova, M.V.: Application of fractional calculus for dynamic problems of solid mechanics: novel

trends and recent result. Appl. Mech. Rev. 63, 010801 (2010)
4. Tarasov, V.E.: Fractional Dynamics: Applications of Fractional Calculus to Dynamics of Particles, Fields and Media.

Springer, Berlin (2011)
5. Rahimy, M.: Applications of fractional differential equations. Appl. Math. Sci. 4(50), 2453–2461 (2010)
6. Gong, P.: Distributed consensus of non-linear fractional-order multi-agent systems with directed topologies. IET

Control Theory Appl. 10(18), 2515–2525 (2016)
7. Gong, P.: Distributed tracking of heterogeneous nonlinear fractional-order multi-agent systems with an unknown

leader. J. Franklin Inst. 354(5), 2226–2244 (2017)
8. Wu, G., Baleanu, D., Huang, L.: Novel Mittag-Leffler stability of linear fractional delay difference equations with

impulse. Appl. Math. Lett. 82, 71–78 (2018)
9. Wu, G., Baleanu, D.: Stability analysis of impulsive fractional difference equations. Fract. Calc. Appl. Anal. 21, 354–375

(2018)
10. Baleanu, D., Agarwal, R., Khan, H., Khan, R., Jafari, H.: On the existence of solution for fractional differential equations of

order 3 < δ1 ≤ 4. Adv. Differ. Equ. 2015, Article ID 362 (2015). https://doi.org/10.1186/s13662-015-0686-1
11. Anguraj, A., Karthikeyan, P., Rivero, M., Trujillo, J.: On new existence results for fractional integro-differential equations

with impulsive and integral conditions. Comput. Math. Appl. 66(12), 2587–2594 (2014)
12. Han, Z., Lu, H., Zhang, C.: Positive solutions for eigenvalue problems of fractional differential equation with

generalized p-Laplacian. Appl. Math. Comput. 257, 526–536 (2015)
13. Ma, T., Tian, Y., Huo, Q., Zhang, Y.: Boundary value problem for linear and nonlinear fractional differential equations.

Appl. Math. Lett. 86, 1–7 (2018)
14. Zhao, K., Gong, P.: Existence of positive solutions for a class of higher-order Caputo fractional differential equation.

Qual. Theory Dyn. Syst. 14(1), 157–171 (2015)
15. Zhao, K., Gong, P.: Positive solutions of Riemann–Stieltjes integral boundary problems for the nonlinear coupling

system involving fractional-order differential. Adv. Differ. Equ. 2014, Article ID 254 (2014).
https://doi.org/10.1186/1687-1847-2014-254

16. Zhao, K., Gong, P.: Positive solutions for impulsive fractional differential equations with generalized periodic boundary
value conditions. Adv. Differ. Equ. 2014, Article ID 255 (2014). https://doi.org/10.1186/1687-1847-2014-255

17. Zhao, Y., Sun, S., Han, Z., Zhang, M.: Positive solutions for boundary value problems of nonlinear fractional differential
equations. Appl. Math. Comput. 217(16), 6950–6958 (2011)

18. Zhao, Y., Chen, H., Xu, C.: Nontrivial solutions for impulsive fractional differential equations via Morse theory. Appl.
Math. Comput. 307, 170–179 (2017)

19. Lin, Z., Wang, J., Wei, W.: Multipoint BVPs for generalized impulsive fractional differential equations. Appl. Math.
Comput. 258, 608–616 (2015)

20. Zhao, K., Gong, P.: Positive solutions of nonlocal integral BVPs for the nonlinear coupled system involving high-order
fractional differential. Math. Slovaca 67, 447–466 (2017)

21. Li, X., Chen, F., Li, X.: Generalized anti-periodic boundary value problems of impulsive fractional differential equations.
Commun. Nonlinear Sci. Numer. Simul. 18(1), 28–41 (2013)

22. Tian, Y., Bai, Z.: Impulsive boundary value problem for differential equations with fractional order. Differ. Equ. Dyn.
Syst. 21, 253–260 (2013)

23. Podlubny, I., Trujillo, J.: Fractional Differential Equations. Academic Press, New York (1993)
24. Guo, D., Lakshmikantham, V., Liu, X.: Nonlinear Integral Equations in Abstract Spaces. Mathematics and Its

Applications, vol. 373. Kluwer Academic, Dordrecht (1996)
25. Zhao, K., Gong, P.: Positive solutions of m-point multi-term fractional integral BVP involving time-delay for fractional

differential equations. Bound. Value Probl. 2015, Article ID 19 (2015). https://doi.org/10.1186/s13661-014-0280-6

https://doi.org/10.1186/s13662-015-0686-1
https://doi.org/10.1186/1687-1847-2014-254
https://doi.org/10.1186/1687-1847-2014-255
https://doi.org/10.1186/s13661-014-0280-6

	Multiple positive solutions for a coupled system of nonlinear impulsive fractional differential equations with parameters
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	Example
	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


