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Abstract
We analyze the stability of positive equilibrium in a predator-prey model with time
delay τ and subsidies. The sufficient conditions of the local Hopf bifurcations at the
positive equilibrium are obtained. By center manifold theorem and normal form
theory, we analyze the direction of Hopf bifurcations and stability of the bifurcating
periodic solution. Using the global Hopf bifurcation theorem, we find that each
connected component is unbounded. High-dimensional Bendixson theorem is used
to prove that the system has no nonconstant periodic solutions of τ -period, then we
obtain the global existence of periodic solutions. Finally, a numerical example is
performed to support the theoretical results, and the effect of the food subsidy is
discussed. We find that the food subsidy will make the stable interval [0,τ0) of positive
equilibrium larger with τ0 the first Hopf bifurcation value.
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1 Introduction
Predator-prey mechanism has been analyzed for almost a century since Lotka and Volterra
[1, 2] established the first predator-prey model on the basis of population dynamics. Re-
garding the subject, many scholars are still working on different kinds of the mathemat-
ical model. For example, the authors in [3] analyzed the multiple bifurcation problem of
a predator-prey model with nonmonotonic functional reaction function. The authors in
[4] investigated the population relation between prey and predator in ecology. In the year
2012, Nevai et al. established a model about prey, predator, and subsidies [5] and discussed
the dynamical behavior of such systems. Recently, time delay effect has been proved to
significantly affect the dynamics of predator-prey models [6, 7]. Thus, in this paper, we
consider the effect of time delay τ on the model given in [5], which leads to the delay
differential equation model

⎧
⎪⎪⎨

⎪⎪⎩

dx(t)
dt = rx(t)(1 – x(t)

K ) – θx(t)
x(t)+s(t)+e y(t),

ds(t)
dt = i – γ s(t) – ψs(t)

x(t)+s(t)+e y(t),
dy(t)

dt = [ εθx(t–τ )+ηψs(t–τ )
x(t–τ )+s(t–τ )+e ]y(t) – δy(t),

(1)

where x(t), y(t) stand for the density of prey and predator species at time t, respectively. s(t)
represents resource subsidies, r is the inherent growth rate of the prey, K is its carrying
capacity, θ represents the maximum rate at which predators can consume prey, i is the
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rate at which the subsidy appears, γ is its vanishing rate or inedibility, ψ is the maximum
rate at which predators can consume subsidies, ε and η are conversion factors, e is a half-
saturation constant, δ is the mortality rate of the predator, and τ is conversion time delay.
We assume that all constants are positive and εθ > δ, ηψ > δ, which means that the natural
death rate of the predator is not very high compared with the conversion rate. Otherwise,
the predator’s per-capita growth rate is always negative.

In this paper, we first investigate the effect of time delay on the stability of the positive
equilibrium by analyzing the roots’ distribution of the associated characteristic equation.
We find that time delay will destabilize the equilibrium and induce Hopf bifurcation at a
sequence of critical values. The direction of Hopf bifurcation and the stability of Hopf bi-
furcating periodic solutions are investigated on the center manifold of the equilibrium by
deriving the simplest normal form. The method is based on the framework introduced by
Hassard et al. [8], where explicit formulas determining the properties of Hopf bifurcation
are given. In fact, these results are obtained locally near the bifurcation points. To study the
global continuation of Hopf bifurcating periodic solutions, we also investigate the prop-
erties of Hopf branches by using the global Hopf bifurcation theorem established by [9]
which has also been widely used by many scholars such as in [10]. One key step in proving
the global existence is to rule out the existence of nonconstant τ -period solutions by using
the high-dimensional Bendixson’s theorem established by [11]. Finally, some simulations
are performed by numerically solving system (1) and the simulation package DDE-Biftool
[12, 13].

This paper is organized as follows: in Sect. 2, we investigate the existence and stability
of positive equilibria and obtain sufficient conditions for local Hopf bifurcations at the
positive equilibrium. Then, by using the center manifold theorem and normal form theory,
we obtain the properties of Hopf bifurcations. In Sect. 3, by using global Hopf bifurcation
theory, we analyze the global Hopf bifurcation, and we give some simulations in Sect. 4.
Finally, some conclusions complete this paper.

2 Stability and local Hopf bifurcation
In this section, we mainly investigate the stability of the unique equilibrium of system (1)
by analyzing the corresponding characteristic equation and prove that there exist local
Hopf bifurcations when increasing the time delay. By the center manifold theorem and
normal form theory provided by [8], we obtain the properties of Hopf bifurcation, includ-
ing the direction of Hopf bifurcation and stability of the bifurcating periodic solution.

2.1 Positive equilibria
First, we give the existence of equilibria of system (1). Obviously, E1 = (0, i

γ
, 0) and E2 =

(K , i
γ

, 0) are two boundary equilibria of system (1). When i > γ l̄, E3 = (0, l̄, η(i–γ l̄)
δ

) is also a
boundary equilibrium of system (1), where l̄ = eδ

ηψ–δ
. In fact, what we are interested in is

the existence of positive equilibria of system (1). Suppose that E∗ = (x∗, s∗, y∗) is a positive
equilibrium of system (1) with x∗, s∗, y∗ > 0, then (x∗, s∗, y∗) must satisfy

x∗ = K
[

1 +
θ

rψ

(

γ –
i

s∗

)]

,

y∗ = –
K
ψ

(

γ –
i

s∗

)[

1 +
θ

rψ

(

γ –
i

s∗

)]

.
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Due to x∗, y∗ > 0, we can obtain s∗ satisfies

i
γ + (rψ/θ )

< s∗ <
i
γ

and

1
l̄
(
s∗)2 +

[
K
K̄

(

1 +
θγ

rψ

)

– 1
]

s∗ –
K
K̄

θ i
rψ

= 0,

where l̄ = eδ/(ηψ – δ) and K̄ = eδ/(εθ – δ). According to the results given in [5], we have
the following result about the existence of positive equilibrium.

Theorem 1 System (1) has a unique positive equilibrium E∗ when one of the following two
conditions is satisfied:

(i) K < K̄ and i∗(K) < i < i∗;
(ii) K > K̄ and i < i∗,

where K̄ = eδ
εθ–δ

, i∗ = (γ + rψ
θ

)l̄, i∗(K) = (1 – K
K̄ )γ l̄, and l̄ = eδ

ηψ–δ
.

2.2 Stability and existence of Hopf bifurcation
In this section we shall study the stability of the positive equilibrium E∗. For convenience,
let u1(t) = x(t) – x∗, u2(t) = s(t) – s∗, u3(t) = y(t) – y∗, then we have the linearized equation

⎧
⎪⎪⎨

⎪⎪⎩

u̇1(t) = a11u1(t) + a12u2(t) + a13u3(t),

u̇2(t) = a21u1(t) + a22u2(t) + a23u3(t),

u̇3(t) = a31u1(t – τ ) + a32u2(t – τ ),

(2)

where a11 = r(1 – 2x∗
K ) – θ (s∗+e)y∗

ν2 , a12 = θx∗y∗
ν2 , a13 = – θx∗

ν
, a21 = ψs∗y∗

ν2 , a22 = –γ – ψy∗(x∗+e)
ν2 ,

a23 = – ψs∗
ν

, a31 = εθ (s∗+e)–ηψs∗
ν2 y∗, a32 = ηψ(x∗+e)–εθx∗

ν2 y∗, and ν = x∗ + s∗ + e.
The characteristic equation of system (2) is

h(λ, τ ) := λ3 + Aλ2 + Bλ + (Cλ + D)e–λτ = 0, (3)

where A = –(a11 + a22), B = (a11a22 – a21a12), C = –(a23a32 + a31a12), and D = a11a23a32 –
a21a13a32 – a31a12a23 – a31a13a22.

Now, we discuss the distribution of the roots of Eq. (3) by using the method given in
[14, 15]. First we state the following lemma which is useful for analyzing the characteristic
equations.

Lemma 1 (Ruan and Wei [14]) Suppose that B ⊂ Rn is an open connected set, the char-
acteristic exponential polynomial h(λ, τ ) is continuous in (λ, τ ) ∈ C × B and analytic in
λ ∈ C; and the zeros of h(λ, τ ) in the right half plane

{λ ∈ C : Reλ ≥ 0}

are uniformly bounded. If for any τ ∈ B1 ⊂ B, where B1 is a bounded, closed, and connected
set, h(λ, τ ) has no zeros on the imaginary axis, then the sum of the orders of the zeros of
h(λ, τ ) in the open right half plane (Reλ > 0) is a fixed number for B1.
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When τ = 0, Eq. (3) becomes

λ3 + Aλ2 + (B + C)λ + D = 0. (4)

By the well-known Routh–Hurwitz criterion, the sufficient and necessary condition that
all the roots of Eq. (4) have a negative real part is

A > 0, D > 0, A(B + C) > D (H1).

When τ > 0, substituting λ = iω into Eq. (3), we have

–ω3i – Aω2 + Bωi + (Cωi + D)e–iωτ = 0.

Separating the real and imaginary parts gives
⎧
⎨

⎩

Cω sin(ωτ ) + D cos(ωτ ) = Aω2,

Cω cos(ωτ ) – D sin(ωτ ) = ω3 – Bω.
(5)

From Eq. (5), we have

ω6 +
(
A2 – 2B

)
ω4 +

(
B2 – C2)ω2 – D2 = 0. (6)

Let z = ω2, then

z3 +
(
A2 – 2B

)
z2 +

(
B2 – C2)z – D2 = 0.

Denote p = A2 – 2B, q = B2 – C2, q = B2 – C2, and r = –D2, then we have

z3 + pz2 + qz + r = 0. (7)

Let

h(z) = z3 + pz2 + qz + r. (8)

Obviously, h(0) = r < 0, limz→∞ h(z) = ∞. Thus, Eq. (7) has at least one positive root. From
(8) we have

dh(z)
dz

= 3z2 + 2pz + q.

Let

3z2 + 2pz + q = 0, (9)

then roots of Eq. (9), i.e., the local extreme values of h(z), can be written as

za,b =
–2p ± √

4p2 – 12q
6

=
–p ± √

�

3
,

with � = p2 – 3q.
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If � < 0, then Eq. (9) has no real roots and h(z) is monotonically increasing with z. Thus
Eq. (7) has only one positive solution. If � ≥ 0, then

zb =
–p +

√
�

3

is the local minimum value of h(z);

za =
–p –

√
�

3

is the local maximum value of h(z). Thus, we have the following conclusions.

Lemma 2 For Eq. (7),
(1) when � > 0, za > 0, h(za) > 0, and h(zb) < 0, Eq. (7) has three positive roots;
(2) when � > 0, za > 0, h(za) > 0, and h(zb) = 0, Eq. (7) has two positive roots;
(3) in other cases, Eq. (7) has only one positive root.

Now we suppose that Eq. (7) has three positive roots z1, z2, and z3, then Eq. (6) has three
positive roots correspondingly, ωk = √zk , k = 1, 2, 3. From Eq. (5), we have

cos(ωτ ) =
(AD – BC)ω2 + Cω4

C2ω2 + D2 ,

sin(ωτ ) =
(AC – D)ω3 + BDω

C2ω2 + D2 ,

then the critical values of τ can be expressed by

τ
(j)
k =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
ωk

[2jπ + arccos( Cω4
k +(AD–BC)ω2

k
C2ωk 2+D2 )], sin(ωτ ) > 0,

1
ωk

[(2j + 1)π + arccos(– Cω4
k +(AD–BC)ω2

k
C2ωk 2+D2 )], sin(ωτ ) < 0, cos(ωτ ) < 0,

1
ωk

[2(j + 1)π – arccos( Cω4
k +(AD–BC)ω2

k
C2ωk 2+D2 )], sin(ωτ ) < 0, cos(ωτ ) > 0,

k = 1, 2, 3, j = 0, 1, . . .. Therefore, ±iωk are a pair of imaginary roots of Eq. (3) when τ = τ
(j)
k ,

k = 1, 2, 3; j = 0, 1, . . . .
Define τ0 = τ

(0)
k0

= mink∈{1,2.3}{τ (0)
k }, and ω0 = ωk0 . Suppose that λ(τ ) = α(τ ) + iβ(τ ) is a

root of Eq. (3) satisfying α(τ0) = 0, ω(τ0) = ω0, then we have the following conclusion.

Lemma 3 If Eq. (7) has only one positive root z̄, that is, there only exists one sequence of
τk , k = 1, 2, . . . , then the following condition holds true:

sign

[
d(Reλ)

dτ

]

τ=τk

> 0.

Proof In fact, we have

dλ(τ )
dτ

=
λ(λC + D)

(3λ2 + 2Aλ + B)eλτ + C – τ (Cλ + D)
,
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thus, we have

(
dλ

dτ

)–1

=
(3λ2 + 2Aλ + B)eλτ + C

λ(Cλ + D)
–

τ

λ

and

sign

[
d(Reλ)

dτ

]

τ=τk

= sign

[

Re

(
dλ

dτ

)–1]

τ=τk

= sign

[

Re

{
(3λ2 + 2Aλ + B)eλτ + C

λ(Cλ + D)

}]

τ=τk

= sign

[

Re

{
(–3ω2 + 2Aωi + B)eiωτ + C

iω(iωC + D)

}]

= sign

[
3ω4 + 2(A2 – 2B)ω2 + B2 – C2

C2ω2 + D2

]

= sign

[
h′(z̄)

C2ω2 + D2

]

> 0. �

Now, we are in a position to state the stability and Hopf bifurcation results about system
(1) based on the fundamental Hopf bifurcation Theorem in [16, 17].

Lemma 4 (Hale and Verduyn Lunel [17]) Consider the functional differential equation
ẋ(t) = F(α, xt), where F has continuous first and second derivatives in α and φ with F(α, 0) =
0 for all α. Define L(α)ψ = DφF(α, 0)ψ . Assume that ẋ(t) = L(0)xt has a simple purely imag-
inary characteristic root λ0 = iω and all characteristic roots λ 
= ±iω satisfy λ 
= mλ0 for any
integer m. Assume further that Reλ′(0) 
= 0. Then α = 0 is a Hopf bifurcation point in the
sense described by Theorem 1.1 in [17].

In fact, condition (H1), which means the characteristic equation has no roots on the
right half plane when τ = 0, is important for the system to undergo Hopf bifurcations at the
stability boundary of the positive equilibrium. Choose the parameter interval B1 = [0, τ̂ ]
as stated in Lemma 1 with τ̂ < τ0, then we know that the characteristic equation has no
roots on the right half plane for any τ ∈ [0, τ̂ ], i.e., the equilibrium is asymptotically stable
when τ ∈ [0, τ0). When τ increases from zero, τ0 is the first critical value at which the
characteristic equation has roots on the imaginary axis. This means that all roots except
±iω have a negative real part when τ = τ0, then we have the following stability and Hopf
bifurcation results by applying the above Lemmas 1–4.

Theorem 2 Assume that (H1) holds true, then for τ ∈ [0, τ0), the positive equilibrium E∗ of
system (1) is locally asymptotically stable; furthermore, if case (3) in Lemma 2 holds true,
then when τ > τ0, the positive equilibrium E∗ of system (1) is unstable. Moreover, when
τ = τk , system (1) undergoes a Hopf bifurcation at E∗.

Remark 1 Obviously, (H1) has extremely complicated expressions in terms of the orig-
inal parameters from system (1). Analyzing this assumption theoretically is impossible,
but instead, we will give some numerical examples to illustrate the existence of Hopf bi-
furcations. Figure 1 illustrates the region where (H1) holds true in the K – i plane and
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Figure 1 The regions where (H1) holds true (color white) in the K – i plane (left) and γ – i plane (right)

γ – i plane, respectively. The parameters are chosen from [5] as r = 0.1, θ = 5, e = 1, ψ = 5,
ε = 0.1, η = 0.1, δ = 0.1. In the left figure we use γ = 1 and in the right K = 0.2. Numerically,
we have that both large or small food subsidy i may destabilize the positive equilibrium.

2.3 Properties of Hopf bifurcation
Now we investigate the property of Hopf bifurcation by using the method given in [8].
Introduce a new perturbation parameter μ = τ – τ0 with μ ∈ R, then μ = 0 is a Hopf bi-
furcation value of system (1). Let u1(t) = x(t) – x∗, u2(t) = s(t) – s∗, u3(t) = y(t) – y∗, then
system (1) becomes an equation in the phase space C = C([–τ0, 0], R3)

u̇(t) = Lut + F(μ, ut),

where u(t) = (u1(t), u2(t), u3(t))T ∈ R3, L : C → R3, F : R3 × C → R3, with

Lϕ = B1ϕ(0) + B2ϕ(–τ0 – μ).

B1 and B2 are defined by the following form:

B1 =

⎛

⎜
⎝

a11 a12 a13

a21 a22 a23

0 0 0

⎞

⎟
⎠ , B2 =

⎛

⎜
⎝

0 0 0
0 0 0

a31 a32 0

⎞

⎟
⎠

and

F(μ,ϕ)

=

⎛

⎜
⎜
⎜
⎝

a14ϕ
2
1 (0) + a15ϕ

2
2 (0) + a16ϕ1(0)ϕ2(0) + a17ϕ1(0)ϕ3(0) + a18ϕ2(0)ϕ3(0)

a24ϕ
2
1 (0) + a25ϕ

2
2 (0) + a26ϕ1(0)ϕ2(0) + a27ϕ1(0)ϕ3(0) + a28ϕ2(0)ϕ3(0)

a34ϕ
2
1 (–τ0 – μ) + a35ϕ

2
2 (–τ0 – μ) + a36ϕ1(–τ0 – μ)ϕ2(–τ0 – μ)

+ a37ϕ1(–τ0 – μ)ϕ3(0) + a38ϕ2(–τ0 – μ)ϕ3(0)

⎞

⎟
⎟
⎟
⎠

,

where a14 = – r
K + θ (s∗+e)y∗

ν3 , a15 = – θx∗y∗
ν3 , a16 = θy∗(s∗+e–x∗)

ν3 , a17 = – θ (s∗+e)
ν2 , a18 = θx∗

ν2 , a24 =
– ψs∗y∗

ν3 , a25 = ψy∗(x∗+e)
ν3 , a26 = ψy∗(x∗+e–s∗)

ν3 , a27 = ψs∗
ν2 , a28 = – ψ(x∗+e)

ν2 , a34 = – y∗(εθ (s∗+e)–ηψs∗)
ν3 ,
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a35 = – y∗(ηψ(x∗+e)–εθx∗)
ν3 , a36 = εθy∗(x∗–s∗–e)+ηψy∗(s∗–x∗–e)

ν3 , a37 = εθ (s∗+e)–ηψs∗
ν2 , a38 = ηψ(x∗+e)–εθx∗

ν2 ,
and a11, a12, a13, a21, a22, a23, a31, a32 are given in (2).

From the Riesz representation theorem, there exists a function η(θ ,μ) of bounded vari-
ance such that

L(ϕ) =
∫ 0

–τ0

dη(θ ,μ)ϕ(θ ), ϕ ∈ C.

In fact, we can choose

η(θ ,μ) =

⎧
⎪⎪⎨

⎪⎪⎩

B1, θ = 0,

0, θ ∈ (–τ0, 0),

–B2, θ = –τ0,

and for ϕ ∈ C1([–τ0, 0], R3), define the operator A(μ):

A(μ)ϕ(θ ) =

⎧
⎨

⎩

dϕ(θ )/dθ , θ ∈ [–τ0, 0),
∫ 0

–τ0
dη(θ ,μ)ϕ(θ ), θ = 0,

and

R(μ)ϕ(θ ) =

⎧
⎨

⎩

0, θ ∈ [–τ0, 0),

F(μ,ϕ), θ = 0,

then system (1) is equivalent to the following abstract ordinary differential equation:

u̇t = A(μ)ut + R(μ)ut ,

where ut = u(t + θ ) and θ ∈ [–τ0, 0].
For ψ ∈ C1([0, τ0], R3), define A∗, the adjoint operator of A, by

A∗ψ(s) =

⎧
⎨

⎩

–dψ(s)/ds, s ∈ (0, τ0],
∫ 0

–τ0
ψ(–ξ ) dη(ξ ,μ), s = 0,

and a bilinear product

〈ψ ,ϕ〉 = ψ̄(0)ϕ(0) –
∫ 0

–τ0

∫ θ

0
ψ̄(ξ – θ ) dη(θ )ϕ(ξ ) dξ ,

where η(θ ) = η(θ , 0).
We know that ±iω0 are eigenvalues of A(0), so are the eigenvalues of A∗(0), that is,

A(0)q(θ ) = iω0q(θ ) and A∗(0)q∗(s) = –iω0q∗(s). Suppose that q(θ ) = (1,α,β)Teiω0θ and
q∗(s) = D(1,α∗,β∗)eiω0s are the corresponding eigenfunctions. By calculation we have

α =
iω0 – a11

a12
–

a13((iω0 – a22)(iω0 – a11) – a12a21)
a12(a12a23 + (iω0 – a22)a13)

,
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α∗ =
a31a12 – a32(iω0 + a11)
a32a21 – a31(iω0 + a22)

,

β =
(iω0 – a22)(iω0 – a11) – a12a21

a12a23 + (iω0 – a22)a13
,

β∗ =
ia13

ω0
+

ia23

ω0

(
a31a12 – a32(iω0 + a11)
a32a21 – a31(iω0 + a22)

)

.

From 〈q∗, q〉 = 1, we have

〈
q∗, q

〉
= D̄

[
(
1, ᾱ∗, β̄∗)(1,α,β)T

–
∫ 0

–τ0

∫ θ

0

(
1, ᾱ∗, β̄∗)e–iω0(ξ–θ) dη(θ )(1,α,β)Te–iω0ξ dξ

]

= D̄
[
1 + ᾱ∗α + β̄∗β + τ0e–iω0τ0

(
1, ᾱ∗, β̄∗)B2(1,α,β)T]

= D̄
[
1 + ᾱ∗α + β̄∗β + τ0e–iω0τ0

(
a31β̄

∗ + a32αβ̄∗)]

= 1,

then

D̄ =
[
1 + ᾱ∗α + β̄∗β + τ0e–iω0τ0

(
a31β̄

∗ + a32αβ̄∗)]–1.

Define
⎧
⎨

⎩

z(t) = 〈q∗, ut〉,
w(t, θ ) = ut – 2 Re{z(t)q(θ )},

on the center manifold C0. w(t, θ ) = w(z(t), z̄(t), θ ), where w(z, z̄, θ ) can be written as a
power series form of z and z̄

w(z, z̄, θ ) = w20(θ )
z2

2
+ w11(θ )zz̄ + w02(θ )

z̄2

2
+ · · · .

Thus we have

ż(t) =
〈
q∗, ut

〉

=
〈
q∗, A(0)ut + R(0)ut

〉

=
〈
A∗q∗, ut

〉
+ q̄∗(0)F

(
w(z, z̄, θ ) + 2 Re

{
z(t)q(θ )

}
, 0

)

= iω0z(t) + q̄∗(0)f0(z, z̄),

which is denoted by

ż(t) = iω0z(t) + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

+ · · · . (10)
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Using the algorithm given in the Appendix, we have g21 and

C1(0) =
i

2ω0τ0

(

g20g11 – 2|g11|2 –
|g02|2

3

)

+
g21

2
,

μ2 = –
Re C1(0)
Reλ′(τ0)

,

β2 = 2 Re C1(0),

T2 = –
Im C1(0) + μ2 Imλ′(τ0)

ω0τ0
.

According to the fundamental results about Hopf bifurcations [8], these quantities deter-
mine the properties of Hopf bifurcation at τ0, precisely we state the main results given
in [8].

Lemma 5 (Hassard et al. [8]) There exist εH > 0 and an analytic function μH (ε̄) = μ2ε̄
2 +

· · · such that, for each ε̄ ∈ (0, εH ), there exists a periodic solution occurring for μ = μH (ε̄),
whose period is an analytic function TH (ε̄) = 2π

ω0τ0
(1 + T2ε̄

2 + · · · ). One of the Floquet expo-
nents of the periodic solution is zero and the other is an analytic function βH (ε̄) = β2ε̄

2 + · · · .

By using Lemma 5, we have the following Hopf bifurcation results about system (1).

Theorem 3 In a neighborhood of μ = 0, the following statements hold:
(1) μ2 determines the direction of Hopf bifurcation: if μ2 > 0 (< 0), then Hopf bifurcation

is forward (backward), i.e., bifurcation periodic solutions exist for τ > τ0 (τ < τ0);
(2) β2 determines the stability of Hopf bifurcating periodic solutions: if β2 < 0 (> 0), then

the Hopf bifurcating periodic solution is orbitally asymptotically stable (unstable)
restricted on the center manifold;

(3) T2 affects the period: if T2 > 0 (< 0), then the period increases (decreases).

3 Global Hopf bifurcation analysis
In this section, we shall study the global continuation of Hopf bifurcation by employing
the global Hopf bifurcation theorem given by Wu [9] and the high dimensional Bendixson
theorem established by Li and Muldowney [11]. Similar derivations can also be found
in [10].

3.1 Global Hopf bifurcation theorem
Suppose R3

+ = {(x, s, y) ∈ R3, x > 0, s > 0, y > 0}, X = C([–τ , 0], R3
+), zt = (x(t), s(t), y(t)) ∈ X.

Define zt(θ ) = (z1(t + θ ), z2(t + θ ), z3(t + θ )), t ≥ 0, θ ∈ [–τ , 0].
On R3

+, using similar notations as those in [9], we consider system (1), which can be
rewritten as the following form:

ż(t) = F(zt , τ , p), (11)

where (τ , p) ∈ R+ × R+, R+ = [0, +∞), and F : X × R+ × R+ → R3
+ is completely continuous.

If we restrict F onto the subspace of constant functions, then we have F̂ = F|R3
+×R+×R+ :

R3
+ × R+ × R+ → R3

+.



Guo et al. Advances in Difference Equations         (2019) 2019:99 Page 11 of 22

Denote the constant mapping z0 ∈ R3
+ by z̄0. If F̂(z̄0, τ0, p0) = 0, we say (z̄0, τ0, p0) is a

stationary solution of (11). Obviously, we have
(A1) F̂ ∈ C2(R3

+ × R+ × R+, R3
+).

From system (1), we know

DzF̂(z, τ , p) =

⎛

⎜
⎜
⎝

r(1 – 2x
K ) – θ (s+e)y

(x+s+e)2
θxy

(x+s+e)2 – θx
x+s+e

ψsy
(x+s+e)2 –γ – ψy(x+e)

(x+s+e)2 – ψs
x+s+e

εθ (s+e)–ηψs
(x+s+e)2 y ηψ(x+e)–εθx

(x+s+e)2 y εθx+ηψs
x+s+e – δ

⎞

⎟
⎟
⎠ .

Under assumption (H1), we obtain

det
(
DzF̂(z, τ , p)

)
= det

⎛

⎜
⎝

r(1 – 2x∗
K ) – θ (s∗+e)y∗

ν2
θx∗y∗

ν2 – θx∗
ν

ψs∗y∗
ν2 –γ – ψy∗(x∗+e)

ν2 – ψs∗
ν

εθ (s∗+e)–ηψs∗
ν2 y∗ ηψ(x∗+e)–εθx∗

ν2 y∗ 0

⎞

⎟
⎠ < 0.

Thus, about the linear operator DzF̂(z, τ , p), we have
(A2) The derivative DzF̂(z, τ , p) at equilibrium z∗ is a homomorphism on R3

+;
(A3) F(φ, τ , p) is differentiable with respect to φ.
The characteristic matrix of (11) at (z̄0, τ0, p) is

�(z̄,τ ,p)(λ) = λI – DϕF(z̄0, τ0, p0)
(
eλ·I

)
,

that is,

�(z̄,τ ,p)(λ)

=

⎛

⎜
⎜
⎜
⎝

λ + m1 – θ z̄(1) z̄(3)

(z̄(1)+z̄(2)+e)2
θ z̄(1)

z̄(1)+z̄(2)+e

– ψ z̄(2) z̄(3)

(z̄(1)+z̄(2)+e)2 λ + m2
ψ z̄(2)

z̄(1)π +z̄(2)+e

– εθ (z̄(2)+e)–ηψ z̄(2)

(z̄(1)+z̄(2)+e)2 z̄(3)e–λτ – ηψ(z̄(1)+e)–εθ z̄(1)

(z̄(1)+z̄(2)+e)2 z̄(3)e–λτ λ + m3

⎞

⎟
⎟
⎟
⎠

, (12)

where m1 = –r(1 – 2z̄(1)

K ) + θ (z̄(2)+e)z̄(3)

(z̄(1)+z̄(2)+e)2 , m2 = γ + ψ z̄(3)(z̄(1)+e)
(z̄(1)+z̄(2)+e)2 , and m3 = δ – εθ z̄(1)+ηψ z̄(2)

z̄(1)+z̄(2)+e .
The roots of det(�(z̄,τ ,p)(λ)) = 0 are called characteristic roots. (A2) indicates that 0 is not

an eigenvalue of the stationary solution.
Obviously, the characteristic matrix �(z,τ ,p)(λ) is continuous with respect to (τ , p,λ) ∈

Bξ0 (τj, 2π/ω0) × C. If the stationary solution (z̄0, τ0, p0) has eigenvalue with the form
im(2π/p0) with m an integer, we say it is a center. If in some neighborhood of (z̄0, τ0, p0) it
is the only center, then we say it is an isolated center.

From (12), we have

det
(
�(z∗ ,τ ,p)(λ)

)
= λ3 – (a11 + a22)λ2 + (a11a22 – a21a12)λ

+
[
–(a23a32 + a31a12)λ + a11a23a32

– a21a13a32 – a31a12a23 + a31a13a22
]
e–λτ

= 0.
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By the discussion in the previous section, we know (z∗, τj, 2π/ω0), j = 0, 1, 2, . . . , are iso-
lated centers. There exist ξ > 0, ζ > 0, and a smooth function λ : (τj – ζ , τj + ζ ) → C such
that, for any τ ∈ [τj – ζ , τj + ζ ], det(�(z∗ ,τ ,2π/ω0)(λ(τ ))) = 0, |λ(τ ) – iω0| < ξ , λ(τj) = iω0, and
Re dλ

dτ
|τ=τj > 0.

For ξ > 0, define

Ωξ , 2π
ω0

=
{

(v, p) : 0 < v < ξ ,
∣
∣
∣
∣p –

2π

ω0

∣
∣
∣
∣ < ξ

}

,

then on

[τj – ζ , τj + ζ ] × ∂Ωξ , 2π
ω0

,

obviously we have
(A4) det(�(z∗ ,τ ,p)(v + i 2π

p )) = 0 if and only if v = 0, τ = τj, and p = 2π
ω0

, j = 0, 1, 2, . . . .
Furthermore, we define

H±
(

z∗, τj,
2π

ω0

)

(v + p) = det

(

�(z∗ ,τj±ζ , 2π
ω0

)

(

v + i
2π

ω0

))

.

From (A4), we know H+(z∗, τj, 2π
ω0

) 
= 0 on ∂Ωξ , 2π
ω0

. The first cross number is

γ

(

z∗, τj,
2π

ω0

)

= degB

(

H–
(

z∗, τj,
2π

ω0

)

,Ωξ , 2π
ω0

)

– degB

(

H+
(

z∗, τj,
2π

ω0

)

,Ωξ , 2π
ω0

)

= –1.

Write

Σ = Cl
{

(z, τ , p) ∈ X × R+ × R+ : z is T-period solution
}

and

N =
{

(z̄, τ̄ , p̄) : F(z̄, τ̄ , p̄) = 0
}

.

Denote by C(z∗, τj, 2π
ω0

) the connected component of (z∗, τj, 2π
ω0

) in Σ .
To obtain the global continuation of Hopf bifurcation, we need the following result.

Lemma 6 (Wu [9]) About the connected component C(z∗, τj, 2π
ω0

), we have that at least one
of the following two results holds true:

(a) C(z∗, τj, 2π
ω0

) is unbounded.
(b) The projection of C(z∗, τj, 2π

ω0
) onto X × R+ is finite and

Σ((z̄,τ̄ .p̄)∈C(z∗ ,τj , 2π
ω0

)∩N)γ (z̄, τ̄ , p̄) = 0.

In fact, we always have

Σ((z̄,τ̄ .p̄)∈C(z∗ ,τj , 2π
ω0

)∩N)γ (z̄, τ̄ , p̄) < 0,
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because the cross number of any center is –1. Thus, the component C(z∗, τj, 2π
ω0

) through
(z∗, τj, 2π

ω0
) is nonempty and unbounded.

Lemma 7 For every center (z∗, τj, 2π
ω0

), j = 0, 1, 2 . . . , the component C(z∗, τj, 2π
ω0

) is un-
bounded.

3.2 Global existence of periodic solution
Lemma 8 The solution of (1) through nonnegative initial functions is always nonnegative.

Proof The first equation of (1) means

x(t) = x(0)e
∫ t

0 [r(1– x(ξ )
K )– θy(ξ )

x(ξ )+s(ξ )+e ] dξ ,

which indicates x(t) ≥ 0 if x(0) ≥ 0. Similarly, we have y(t) ≥ 0. Suppose that there exists
t0 > 0 such that s(t) > 0 for t < t0 and s(t0) = 0, then

ṡ(t0) = i > 0,

which is a contradiction. �

In the coming part, we shall prove that system (1) has no nonconstant τ -period solution.
We first make the following assumptions:

(H2) max{A1, A2, A3} < λ + δ,

where

A1 = r
(

1 –
2x∗

1
K

)

–
θ (x∗

2 + e)x∗
3 + ψ(x∗

1 + e)x∗
3

(x∗
1 + x∗

2 + e)2 +
∣
∣
∣
∣

ψx∗
2

x∗
1 + x∗

2 + e

∣
∣
∣
∣ +

∣
∣
∣
∣

θx∗
1

x∗
1 + x∗

2 + e

∣
∣
∣
∣,

A2 = r
(

1 –
2x∗

1
K

)

–
θ (x∗

2 + e)x∗
3

(x∗
1 + x∗

2 + e)2 +
εθx∗

1 + ηψx∗
2

x∗
1 + x∗

2 + e
+

∣
∣
∣
∣
ηψ(x∗

1 + e) – εθx∗
1

(x∗
1 + x∗

2 + e)2 x∗
3

∣
∣
∣
∣

+
∣
∣
∣
∣

θx∗
1x∗

2
x∗

1 + x∗
2 + e

∣
∣
∣
∣

and

A3 =
εθx∗

1 + ηψx∗
2

x∗
1 + x∗

2 + e
–

ψx∗
3(x∗

1 + e)
(x∗

1 + x∗
2 + e)2 +

∣
∣
∣
∣
ηψx∗

2 – εθ (x∗
2 + e)

(x∗
1 + x∗

2 + e)2 x∗
3

∣
∣
∣
∣ +

∣
∣
∣
∣

ψx∗
2ψ

∗
3

(x∗
1 + x∗

2 + e)2

∣
∣
∣
∣.

For readers’ convenience, we state the high-dimensional Bendixson theorem [11] as fol-
lows.

Lemma 9 (Li and Muldowney [11]) Suppose that one of

μ

(
∂f [2]

∂x

)

< 0, μ

(

–
∂f [2]

∂x

)

< 0

holds on Rn where μ is a Lozinskiı̌ measure corresponding to an absolute norm | · | on RN ,
N = (n

2). Then no simple closed rectifiable curve in Rn is invariant with respect to dx/dt =
f (x).
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Lemma 10 If (H2) holds true, then system (1) has no nontrivial τ -period solution.

Proof Suppose that (1) has a nontrivial τ -period solution, which is equivalent to the fol-
lowing system having a nonconstant periodic solution:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = rx1(t)(1 – x1(t)
K ) – θx1(t)x3(t)

x1(t)+x2(t)+e ,

ẋ2(t) = i – γ x2(t) – ψx2(t)x3(t)
x1(t)+x2(t)+e ,

ẋ3(t) = εθx1(t)+ηψx2(t)
x1(t)+x2(t)+e x3(t) – δx3(t).

Denote x = (x1, x2, x3)T and

f (x1, x2, x3) =

⎛

⎜
⎝

rx1(1 – x1
K ) – θx1x3

x1+x2+e
i – γ x2 – ψx2x3

x1+x2+e
εθx1+ηψx2

x1+x2+e x3 – δx3

⎞

⎟
⎠ ,

then we know

∂f
∂x

=

⎛

⎜
⎜
⎝

r(1 – 2x1
K ) – θ (x2+e)x3

(x1+x2+e)2
θx1x3

(x1+x2+e)2 – θx1
x1+x2+e

ψx2x3
(x1+x2+e)2 –γ – ψx3(x1+e)

(x1+x2+e)2 – ψx2
x1+x2+e

εθ (x2+e)–ηψx2
(x1+x2+e)2 x3

ηψ(x1+e)–εθx1
(x1+x2+e)2 x3

εθx1+ηψx2
x1+x2+e – δ

⎞

⎟
⎟
⎠ .

In fact, the compound matrix of ∂f /∂x is

∂f [2]

∂x
=

⎛

⎜
⎜
⎝

r(1 – 2x1
K ) – γ – L – ψx2

x1+x2+e
θx1

x1+x2+e
ηψ(x1+e)–εθx1

(x1+x2+e)2 x3 r(1 – 2x1
K ) – δ + M θx1x3

(x1+x2+e)2

– εθ (x2+e)–ηψx2
(x1+x2+e)2 x3

ψx2x3
(x1+x2+e)2 –γ – δ + N

⎞

⎟
⎟
⎠ ,

where

L =
θ (x2 + e)x3 + ψ(x1 + e)x3

(x1 + x2 + e)2 ,

M =
εθx1 + ηψx2

x1 + x2 + e
–

θ (x2 + e)x3

(x1 + x2 + e)2 ,

N =
εθx1 + ηψx2

x1 + x2 + e
–

ψ(x1 + e)x3

(x1 + x2 + e)2

and

max

{

r
(

1 –
2x∗

1
K

)

– γ – L +
∣
∣
∣
∣

ψx∗
2

x∗
1 + x∗

2 + e

∣
∣
∣
∣ +

∣
∣
∣
∣

θx∗
1

x∗
1 + x∗

2 + e

∣
∣
∣
∣,

r
(

1 –
2x∗

1
K

)

– δ + M +
∣
∣
∣
∣
ηψ(x∗

1 + e) – εθx∗
1

(x∗
1 + x∗

2 + e)2 x∗
3

∣
∣
∣
∣ +

∣
∣
∣
∣

θx∗
1x∗

2
x∗

1 + x∗
2 + e

∣
∣
∣
∣,

–γ – δ + N +
∣
∣
∣
∣
ηψx∗

2 – εθ (x∗
2 + e)

(x∗
1 + x∗

2 + e)2 x∗
3

∣
∣
∣
∣ +

∣
∣
∣
∣

ψx∗
2ψ

∗
3

(x∗
1 + x∗

2 + e)2

∣
∣
∣
∣

}

< 0.

Recalling Lemma 7, the conclusion follows from Lemma 9. �
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Theorem 4 Suppose (H1) and (H2) hold true, then we have the following conclusions:
(1) The bifurcating periodic solutions from τ0 fulfill the trichotomy

(a) they exist for all τ > τ0;
(b) they have amplitude tending to infinity;
(c) they have period tending to infinity.

(2) The bifurcating periodic solutions from τj, j = 1, 2, . . . , fulfill the dichotomy
(a) they exist for all τ > τj;
(b) they have amplitude tending to infinity.

4 Simulation
In this section, we will perform a group of simulations as an example to illustrate the theo-
retical results given in the previous sections. From [5], we first fix r = 0.1, θ = 5, e = 1, γ = 1,
ψ = 5, ε = 0.1, η = 0.1, δ = 0.1, K = 0.2, i = 0.255. Thus, the unique positive equilibrium E∗

is (0.0164, 0.2336, 0.0229). It is not difficult to verify that these parameters fulfill assump-
tions (H1) and (H2). Thus we obtain a sequence of Hopf bifurcation values τ0 = 23.1416
and τk = τ0 + 2kπ

ω0
with ω0 = 0.0232. By Theorems 2 and 3, we know that E∗ is asymptotically

stable for τ < τ0 and stable Hopf bifurcating periodic solutions exist when τ > τ0. These
results are shown in Fig. 2, where stable equilibrium and stable periodic oscillations are
simulated.

According to the global Hopf bifurcation results in Sect. 3, we give simulation by DDE-
Biftool and the results are given in Fig. 3. We find that the bifurcating periodic solutions

Figure 2 Solutions of system (1) for (a) τ = 0, (b) τ = 20, (c) τ = 30, and (d) τ = 35

Figure 3 Global Hopf bifurcation diagram obtained by
DDE-Biftool. The first two branches of Hopf bifurcating periodic
solutions are simulated



Guo et al. Advances in Difference Equations         (2019) 2019:99 Page 16 of 22

Figure 4 The first Hopf bifurcation value τ0(i)

from τ1 exist for any τ > τ1. However, the branch from τ0 has amplitude tending to infinity.
These simulations verify the unboundedness of Hopf branches established in Theorem 4.

To discuss the effect of the subsidy in model (1), we calculate the first Hopf bifurcation
point as a function of the rate at which the subsidy appears, i.e., the function τ0(i) shown
in Fig. 4. We find that increasing subsidies supplement would postpone the occurrence of
Hopf bifurcation and lead to a larger stable interval of the positive equilibrium.

5 Conclusions
In this paper, the stability of positive equilibrium in a predator-prey model with time de-
lay τ and subsidies and the existence of local Hopf bifurcations at the positive equilibrium
were obtained. By employing the center manifold theorem and normal form theory, we
obtained the properties of Hopf bifurcations including the direction of Hopf bifurcation
and the stability of bifurcating periodic solutions. We further considered the global contin-
uation of local Hopf bifurcations and obtained the global existence of periodic solutions.
Usually, the conversion delay induces Hopf bifurcation and destabilizes the equilibrium,
such as reported by [7]. Our theoretical findings suggest that incorporating food subsidy
into a prey-predator model leads to a large stable interval of the coexistence equilibrium.

Appendix
In this appendix, we give the complete calculations about gij in Eq. (10). In fact

ẇ = u̇t – żq – ˙̄zq̄

= A(0)ut + R(0)ut – (iω0z + g)q – (–iω0z̄ + ḡ)q̄

= A(0)ut + R(0)ut – 2 Re(gq)

=

⎧
⎨

⎩

A(0)w – 2 Re(q̄∗(0)f0q(θ )), θ ∈ [–τ , 0)

A(0)w – 2 Re(q̄∗(0)f0q(θ )) + f0, θ = 0

:= A(0)w + H(z, z̄, θ ),

where

H(z, z̄, θ ) = H20(θ )
z2

2
+ H11(θ )zz̄ + H02(θ )

z̄2

2
+ · · · .
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On the other hand, on the center manifold C0, w satisfies

ẇ = wzż + wz̄ ˙̄z,

and we have
⎧
⎪⎪⎨

⎪⎪⎩

(A(0) – 2iω0)w20(θ ) = –H20(θ ),

A(0)w11(θ ) = –H11(θ ),

(A(0) + 2iω0)w02(θ ) = –H02(θ ).

Because ut = y(t + θ ) = w(z, z̄, θ ) + zq + z̄q̄, so we have

ut =

⎛

⎜
⎝

y1(t + θ )
y2(t + θ )
y3(t + θ )

⎞

⎟
⎠ =

⎛

⎜
⎝

w(1)(t + θ )
w(2)(t + θ )
w(3)(t + θ )

⎞

⎟
⎠ + z

⎛

⎜
⎝

1
α

β

⎞

⎟
⎠ eiω0θ + z̄

⎛

⎜
⎝

1
ᾱ

β̄

⎞

⎟
⎠ e–iω0θ ,

that is,

⎧
⎪⎪⎨

⎪⎪⎩

y1(t + θ ) = zeiω0θ + z̄e–iω0θ + w(1)
20

z2

2 + w(1)
11 (θ )zz̄ + w(1)

02 (θ ) z̄2

2 + · · · ,

y2(t + θ ) = zαeiω0θ + z̄ᾱe–iω0θ + w(2)
20

z2

2 + w(2)
11 (θ )zz̄ + w(2)

02 (θ ) z̄2

2 + · · · ,

y3(t + θ ) = zβeiω0θ + z̄β̄e–iω0θ + w(3)
20

z2

2 + w(3)
11 (θ )zz̄ + w(3)

02 (θ ) z̄2

2 + · · · .

Furthermore, we have

φ1(0) = y1(t + θ )|θ=0 = z + z̄ + w(1)
20 (0)

z2

2
+ w(1)

11 (0)zz̄ + w(1)
02 (0)

z̄2

2
+ · · · ,

φ2(0) = y2(t + θ )|θ=0 = zα + z̄ᾱ + w(2)
20 (0)

z2

2
+ w(2)

11 (0)zz̄ + w(2)
02 (0)

z̄2

2
+ · · · ,

φ3(0) = y3(t + θ )|θ=0 = zβ + z̄β̄ + w(3)
20 (0)

z2

2
+ w(3)

11 (0)zz̄ + w(3)
02 (0)

z̄2

2
+ · · · ,

φ1(–τ0) = ze–iω0τ0 + z̄eiω0τ0 + w(1)
20 (0)

z2

2
+ w(1)

11 (0)zz̄ + w(1)
02 (0)

z̄2

2
+ · · · ,

φ2(–τ0) = zαe–iω0τ0 + z̄ᾱeiω0τ0 + w(2)
20 (0)

z2

2
+ w(2)

11 (0)zz̄ + w(2)
02 (0)

z̄2

2
+ · · · ,

φ3(–τ0) = zβe–iω0τ0 + z̄β̄eiω0τ0 + w(3)
20 (0)

z2

2
+ w(3)

11 (0)zz̄ + w(3)
02 (0)

z̄2

2
+ · · · ,

φ2
1 (0) = z2 + 2zz̄ + z̄2 +

[
w(1)

20 (0) + 2w(1)
11 (0)

]
z2z̄ + · · · ,

φ2
2 (0) = z2α2 + 2zz̄αᾱ + z̄2ᾱ2 +

[
2w(2)

11 (0)α + w(2)
20 (0)ᾱ

]
z2z̄ + · · · ,

φ1(0)φ2(0) = αz2 + (α + ᾱ)zz̄ + ᾱz̄2 +
[

w(2)
11 (0) + αw(1)

11 +
w(1)

20
2

ᾱ +
w(1)

20
2

]

z2z̄ + · · · ,

φ1(0)φ3(0) = βz2 + (β + β̄)zz̄ + β̄ z̄2 +
[

w(3)
11 (0) + βw(1)

11 +
w(1)

20
2

β̄ +
w(3)

20
2

]

z2z̄ + · · · ,

φ2(0)φ3(0) = αβz2 + (ᾱβ + αβ̄)zz̄ + ᾱβ̄ z̄2

+
[

βw(2)
11 (0) + αw(3)

11 +
w(2)

20
2

β̄ +
w(3)

20
2

ᾱ

]

z2z̄ + · · · ,
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φ2
1 (–τ0) = e–2iω0τ0 z2 + 2zz̄ + e2iω0τ0 z̄2 +

[
eiω0τ0 w(1)

20 (–τ0) + 2e–iω0τ0 w(1)
11 (–τ0)

]
z2z̄ + · · · ,

φ2
2 (–τ0) = e–2iω0τ0 z2α2 + 2zz̄αᾱ + e2iω0τ0 z̄2ᾱ2

+
[
2e–iω0τ0 w(2)

11 (–τ0)α + eiω0τ0 w(2)
20 (–τ0)ᾱ

]
z2z̄ + · · · ,

φ1(–τ0)φ3(0) = e–iω0τ0 z2β + zz̄
(
eiω0τ0β + e–iω0τ0 β̄

)
+ eiω0τ0 z̄2β̄

+
[

eiω0τ0
w(3)

20 (0)
2

+ e–iω0τ0 w(3)
11 (0) + w(1)

11 (–τ0)β +
w(1)

20 (–τ0)
2

β̄

]

z2z̄ + · · · ,

φ2(–τ0)φ3(0) = e–iω0τ0 z2αβ + zz̄
(
eiω0τ0 ᾱβ + e–iω0τ0αβ̄

)
+ eiω0τ0 z̄2ᾱβ̄

+
[

eiω0τ0
w(3)

20 (0)
2

ᾱ + e–iω0τ0 w(3)
11 (0)α + w(2)

11 (–τ0)β +
w(2)

20 (–τ0)
2

β̄

]

z2z̄ + · · · .

Thus f0(z, z̄) can be written as

f0(z, z̄) =

⎛

⎜
⎝

K11z2 + K12zz̄ + K13z̄2 + K14z2z̄
K21z2 + K22zz̄ + K13z̄2 + K14z2z̄
K31z2 + K32zz̄ + K33z̄2 + K34z2

⎞

⎟
⎠ + · · · ,

where

K11 = a14 + a15α
2 + a16α + a17β + a18αβ ,

K12 = 2a14 + 2a15αᾱ + a16(α + ᾱ) + a17(β + β̄) + a18(ᾱβ + αβ̄),

K13 = a14 + a15ᾱ
2 + a16ᾱ + a17β̄ + a18ᾱβ̄ ,

K14 = a14
(
w(1)

20 (0) + 2w(1)
11 (0)

)
+ a15

(
w2

20(0)ᾱ + 2w(2)
11 (0)α

)

+ a16

(

w(2)
11 (0) + w(1)

11 (0)α +
w(2)

20
2

+
w(1)

20
2

ᾱ

)

+ a17

(

w(3)
11 (0) + w(1)

11 (0)β +
w(3)

20
2

+
w(1)

20
2

β̄

)

,

K21 = a24 + a25α
2 + a26α + a27β + a28αβ ,

K22 = 2a24 + 2a25αᾱ + a26(α + ᾱ) + a27β̄ + a28(ᾱβ + αβ̄),

K23 = a24 + a25ᾱ
2 + a26ᾱ + a27β̄ + a28ᾱβ̄ ,

K24 = a24
(
w(1)

20 (0) + 2w(1)
11 (0)

)
+ a25

(
w(2)

20 (0)ᾱ + 2w(2)
11 (0)α

)

+ a26

(

w(2)
11 (0) + w(1)

11 (0)α +
w(2)

20 (0)
2

+
w(1)

20 (0)
2

ᾱ

)

+ a27

(

w(3)
11 (0) + w(1)

11 (0)β +
w(3)

20 (0)
2

+
w(1)

20 (0)
2

β̄

)

+ a28

(

w(2)
11 (0)β + w(3)

11 (0)α +
w(2)

20 (0)
2

β̄ +
w(3)

20 (0)
2

ᾱ

)

,

K31 = a34e–2iω0τ0 + a35α
2e–2iω0τ0 + a36αe–2iω0τ0 + a37βe–2iω0τ0 + a38αβe–2iω0τ0 ,
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K32 = 2a34 + 2a35αᾱ + a36(α + ᾱ) + a37
(
βeiω0τ0 + β̄e–iω0τ0

)

+ a38
(
ᾱβeiω0τ0 + αβ̄e–iω0τ0

)
,

K33 = a34e2iω0τ0 + a35ᾱ
2e2iω0τ0 + a36ᾱe2iω0τ0 + a37β̄eiω0τ0 + a38ᾱβ̄eiω0τ0 ,

K34 = a34
(
eiω0τ0 w(1)

20 (–τ0) + 2e–iω0τ0 w(1)
11 (–τ0)

)

+ a35
(
eiω0τ0 w(2)

20 (–τ0)ᾱ + 2e–iω0τ0 w(2)
11 (–τ0)α

)

+ a36

(

e–iω0τ0 w(2)
11 (–τ0) + e–iω0τ0 w(1)

11 (–τ0)α +
w(2)

20 (–τ0)
2

eiω0τ0 +
w(1)

20 (–τ0)
2

ᾱeiω0τ0

)

+ a37

(

eiω0τ0 w(3)
11 (0) + w(1)

11 (–τ0)β + eiω0τ0
w(3)

20 (0)
2

+
w(1)

20 (–τ0)
2

β̄

)

+ a38

(

w(2)
11 (–τ0)β + w(3)

11 (0)αe–iω0τ0 +
w(2)

20 (–τ0)
2

β̄ +
w(3)

20 (0)
2

ᾱeiω0τ0

)

.

Since q̄∗(0) = D̄(1, ᾱ∗, β̄∗)T, we have

g(z, z̄) = q̄∗T(0)f0(z, z̄)

= D̄
(
1, ᾱ∗, β̄∗)

⎛

⎜
⎝

K11z2 + K12zz̄ + K13z̄2 + K14z2z̄
K21z2 + K22zz̄ + K23z̄2 + K24z2z̄
K31z2 + K32zz̄ + K33z̄2 + K34z2z̄

⎞

⎟
⎠ + · · ·

= D̄
{(

K11 + ᾱ∗K21 + β̄∗K31
)
z2 +

(
K12 + ᾱ∗K22 + β̄∗K32

)
zz̄

+
(
K13 + ᾱ∗K23 + β̄∗K33

)
z̄2 +

(
K14 + ᾱ∗K24 + β̄∗K34

)
z2z̄

}
+ · · ·

with

g20 = 2D̄
(
K11 + ᾱ∗K21 + β̄∗K31

)
,

g11 = D̄
(
K12 + ᾱ∗K22 + β̄∗K32

)
,

g02 = 2D̄
(
K13 + ᾱ∗K23 + β̄∗K33

)
,

g21 = 2D̄
(
K14 + ᾱ∗K24 + β̄∗K34

)
.

To calculate g21, we need to know the center manifold functions w20(θ ) and w11(θ ) for
θ ∈ [–τ0, 0). In fact, we have

H(z, z̄, θ ) = –2 Re
(
q̄∗(0)f0q(θ )

)

= –
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

)

q(0)

–
(

ḡ20
z̄2

2
+ ḡ11zz̄ + ḡ02

z2

2
+ ḡ21

z̄2z
2

)

q̄(0)

+

⎛

⎜
⎝

K11z2 + K12zz̄ + K13z̄2 + K14z2z̄
K21z2 + K22zz̄ + K23z̄2 + K24z2z̄
K31z2 + K32zz̄ + K33z̄2 + K34z2z̄

⎞

⎟
⎠ + · · · .
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Thus

H20(θ ) = –g20q(θ ) – ḡ02q̄(θ ),

H11(θ ) = –g11q(θ ) – ḡ11q̄(θ ).

In fact

ẇ20(θ ) = Aw20(θ )

= 2iω0w20(θ ) – H20(θ )

= 2iω0w20(θ ) + g20q(θ ) + ḡ02q̄(θ )

= 2iω0w20(θ ) + g20q(0)eiω0θ + ḡ02q̄(0)e–iω0θ ,

then we obtain

w20(θ ) =
ig20q(0)

ω0
eiω0θ +

iḡ02q̄(0)
3ω0

e–iω0θ + E1e2iω0θ

and

w11(θ ) = –
ig11q(0)

ω0
eiω0θ +

iḡ11q̄(0)
ω0

e–iω0θ + E2

with E1 = (E(1)
1 , E(2)

1 , E(2)
1 )T, E2 = (E(1)

2 , E(2)
2 , E(3)

2 )T are all three-dimensional vectors. In
H(z, z̄, θ ), let θ = 0, then we have

H(z, z̄, 0) = –2 Re
(
q̄∗T(0)f0q(0)

)
+ f0(z, z̄)

= –
(

g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄
2

)

q(0)

–
(

ḡ20
z2

2
+ ḡ11zz̄ + ḡ02

z̄2

2
+ ḡ21

z2z̄
2

)

q̄(0)

+

⎛

⎜
⎝

K11z2 + K12zz̄ + K13z̄2 + K14z2z̄
K21z2 + K22zz̄ + K23z̄2 + K24z2z̄
K31z2 + K32zz̄ + K33z̄2 + K34z2z̄

⎞

⎟
⎠ + · · · .

This leads to

H20(0) = –g20q(0) – ḡ02q̄(0) + 2(K11, K21, K31)T

and

H11(0) = –g11q(0) – ḡ11q̄(0) + 2(K12, K22, K32)T.

From the definition of A, we have

∫ 0

–τ0

dη(0, θ )w20(θ ) = 2iω0w20(0) – H20(0)
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and
∫ 0

–τ0

dη(0, θ )w11(θ ) = –H11(0).

This indicates
(

iω0I –
∫ 0

–τ0

dη(0, θ )eiω0θ

)

q(0) = 0

and
(

–iω0I –
∫ 0

–τ0

dη(0, θ )e–iω0θ

)

q̄(0) = 0.

The equation

(

2iω0I –
∫ 0

–τ0

dη(0, θ )e2iω0θ

)

E1 = 2

⎛

⎜
⎝

K11

K21

K31

⎞

⎟
⎠

is actually a linear equation

⎛

⎜
⎝

2iω0 – a11 –a12 –a13

–a21 2iω0 – a22 –a23

–a31e–2iω0τ0 –a32e–2iω0τ0 2iω0

⎞

⎟
⎠E1 = 2

⎛

⎜
⎝

K11

K21

K31

⎞

⎟
⎠ .

Thus E1 can be solved by

E1 = 2

⎛

⎜
⎝

2iω0 – a11 –a12 –a13

–a21 2iω0 – a22 –a23

–a31e–2iω0τ0 –a32e–2iω0τ0 2iω0

⎞

⎟
⎠

–1 ⎛

⎜
⎝

K11

K21

K31

⎞

⎟
⎠ .

Similarly, we have

E2 = –

⎛

⎜
⎝

a11 a12 a13

a21 a22 a23

a31 a32 0

⎞

⎟
⎠

–1 ⎛

⎜
⎝

K12

K22

K32

⎞

⎟
⎠ .

So far, we have obtained the explicit formulas which determine g20, g11, g02, and g21.
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