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Abstract
In the present paper, the potential Kadomtsev–Petviashvili equation and
(3 + 1)-dimensional potential-YTSF equation are investigated, which can be used to
describe many mathematical and physical backgrounds, e.g., fluid dynamics and
communications. Based on Hirota bilinear method, the bilinear equation for the
(3 + 1)-dimensional potential-YTSF equation is obtained by applying an appropriate
dependent variable transformation. Then N-soliton solutions of nonlinear evolution
equation are derived by the perturbation technique, and the periodic wave solutions
for potential Kadomtsev–Petviashvili equation and (3 + 1)-dimensional potential-YTSF
equation are constructed by employing the Riemann theta function. Furthermore,
the asymptotic properties of periodic wave solutions show that soliton solutions can
be derived from periodic wave solutions.
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1 Introduction
The construction of analytic solutions for nonlinear evolution equations (NLEEs) is a
key topic in the study of nonlinear phenomena [1–7]. Analytic solutions can help one
to well understand the mechanism of physical phenomena modeled by a nonlinear evo-
lution equation. With the development of soliton theory and computer algebraic system
like Maple, much attention has been paid to finding analytic solutions of nonlinear evolu-
tion equations, including soliton solutions, periodic wave solutions, shock wave solutions,
and so on. Up to now, many powerful methods of searching for exact solutions to NLEEs
have been proposed and developed. For example, Biswas and Bhrawy [8] employed the ex-
tended Jacobi elliptic function expansion method to study the Zakharov equation and the
Davey–Stewartson equation and obtained cnoidal and snoidal wavesolutions. Ma and Lee
et al. [9] investigated a 3 + 1 dimensional Jimbo–Miwa equation via a transformed rational
function method and obtained exact solutions. Other methods, such as Bäcklund transfor-
mation [10, 11], Darboux transformation [12, 13], Hirota bilinear method [14], the inverse
scattering transform, the variable separation method [15], the sine–cosine method, the
tanh-function method [16], the auxiliary equation method [17], the trial function method
[18], etc., were also employed. Based on these methods, a variety of nonlinear equations
have been investigated and solved.
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Among them, the Hirota method is one of the most effective methods of construct-
ing multiple soliton solutions of NLEEs. It can transform the given nonlinear evolution
equations to the corresponding bilinear forms through the dependent variable transfor-
mation. Then employing the perturbation expansion method, multi-soliton solutions with
exponential function are derived. Also through the bilinear Bäcklund transformation, Lax
pairs are obtained. In recent years, the Hirota method has been developed to construct
the Wronskian solutions, Pfaffian solutions, and periodic wave solutions by use of the
Riemann theta functions [19–24]. By means of this method, Tian et al. have investigated
the HS equation for shallow water waves and BLMP equation [19]. And Ma, Zhang et al.
have constructed periodic wave solutions of (2 + 1)-dimensional Hirota bilinear equations
and Ito equation [20, 21]. The advantage of this method lies in the fact that we obtain the
periodic wave solutions in a direct method without algebraic-geometric theory. Further-
more, the soliton solutions can be derived from the periodic wave solutions via asymptotic
analysis.

With a motivation to further expand the area of applications of this method, in the
present paper, we study the potential Kadomtsev–Petviashvili equation and (3 + 1)-
dimensional potential-YTSF equation to illustrate the efficiency of using the combination
of the Hirota method and the Riemann theta function. To the best of our knowledge, these
results are up to date and have not been reported.

The rest of the paper is organized as follows. In Sect. 2, the bilinear form of (3 + 1)-
dimensional potential-YTSF equation is given by applying the Hirota bilinear method. In
Sect. 3, N-soliton solutions are presented by using the perturbation approach. In Sect. 4,
by virtue of the Riemann theta function, periodic wave solutions are derived successfully,
and the asymptotic properties of periodic wave solutions show that periodic wave solution
degenerate to soliton solution. Finally, the concluding remarks are presented in Sect. 5.

2 Bilinear form for (3 + 1)-dimensional potential-YTSF equation
In this section, we will give the bilinear form for the (3 + 1)-dimensional potential-YTSF
equation by applying the Hirota direct method and the dependent variable transformation.

A new (3 + 1)-dimensional nonlinear evolution equation, called the potential YTSF
equation, was first introduced by Yu, Toda, Sasa and Fukuyama (YTSF) [25]. The (3 + 1)-
dimensional potential-YTSF equation can be written as

–4uxt + uxxxz + 3uxuxz + 3uxxuz + 3uyy = 0. (2.1)

Setting u = 3
4 wx, substituting it into Eq. (2.1) and integrating with respect to x yields

–4wxt + wxxxz + 3wxxwxz + 3wyy + λ = 0, (2.2)

which is transformed into the bilinear representation

[
–4DxDt + D3

xDz + 3D2
y
]
F · F + λF2 = 0, (2.3)

under the dependent variable transformation w = 2 ln F , where λ = λ(y, z, t) is an integra-
tion constant; Dx, Dy and Dt are the well-known Hirota operators defined by [21]

Dm
x Dn

t f · g = (∂x – ∂x′ )m(∂t – ∂t′ )nf (x, t) × g
(
x′, t′)|x′=x,t′=t .
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The D-operators have the following nice property when acting on exponential functions:

Dm
x Ds

yDn
t exp ξ1 · exp ξ2 = (P1 – P2)m(Q1 – Q2)s(Ω1 – Ω2)n exp(ξ1 + ξ2), (2.4)

where ξi = Pix + Qiy + Ωit + ξ 0
i (i = 1, 2).

More generally, we get

G(Dx, Dy, Dt) exp ξ1 · exp ξ2 = G(P1 – P2, Q1 – Q2,Ω1 – Ω2) exp(ξ1 + ξ2). (2.5)

Remark 1 D operates on a product of two functions like the Leibniz rule, except for a
crucial sign difference. For example,

DxG · F = GxF – GFx,

DxDtG · F = GxtF – GxFt + GFxt – GtFx,

DxxG · F = GxxF – 2GxFx + GFxx.

3 N-soliton solutions for (3 + 1)-dimensional potential-YTSF equation
In the following, we will give N-soliton solutions for the (3 + 1)-dimensional potential-
YTSF equation by virtue of the Hirota method and the perturbation expansion and trun-
cation technique, as well as property (2.5).

Expanding F into the power series with respect to a small parameter ε gives

F = 1 + εf1 + ε2f2 + ε3f3 + · · · . (3.1)

Substituting (3.1) into bilinear equation (2.3) and setting the coefficients of the same power
of ε to zero, we obtain the recursion relations for fi.

Single-soliton solution For n = 1, Eq. (3.1) becomes

f1 = exp(η1), η1 = k1x + l1y + m1z + ω1t + η0
1, (3.2)

where k1, l1, m1, ω1 are arbitrary constants, and –4k1ω1 + k3
1m1 + 3l2

1 = 0 is the dispersion
relation.

Substituting (3.2) into bilinear equation (2.3), a single-soliton solution of Eq. (2.1) is
given by

u(x, y, z, t) =
3
2
[
ln

(
1 + eη1

)]
x. (3.3)

Two-soliton solution A two-soliton solution is given by

u(x, y, z, t) =
3
2
[
ln

(
1 + eη1 + eη2 + eη1+η2+A12

)]
x, (3.4)

where –4kiωi + k3
i mi + 3l2

i = 0 (i = 1, 2) are the dispersion relations and the phase shift term
is

eA12 = –
4(k1 – k2)(ω1 – ω2) – (k1 – k2)3(m1 – m2) – 3(l1 – l2)2

4(k1 + k2)(ω1 + ω2) – (k1 + k2)3(m1 + m2) – 3(l1 + l2)2 .
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N-soliton solution Now we derive N-soliton solutions as

u(x, y, z, t) =
3
2

[
ln

∑

μ=0,1

e
∑N

i=1 μiηi+
∑(N)

i<j μiμjAij

]

x
, 1 ≤ i, j ≤ N , (3.5)

where the phase shift term is

eAij = –
4(ki – kj)(ωi – ωj) – (ki – kj)3(mi – mi) – 3(li – lj)2

4(ki + kj)(ωi + ωj) – (ki + kj)3(mi + mj) – 3(li + lj)2 .

Here
∑

μ=0,1 means a summation over all possible combinations of μj = 0, 1 (j = 1, 2, . . . , N )
and

∑N
i<j is a summation over all possible pairs (i, j) (i = 1, . . . , N , j = 1, . . . , N ) with the

condition that i < j.

4 Periodic wave solutions of two equations
In this section, we will construct periodic wave solutions for the potential Kadomtsev–
Petviashvili equation and the (3 + 1)-dimensional potential-YTSF equation by employing
the Hirota method and the Riemann theta function, as well as property (2.5).

4.1 Potential Kadomtsev–Petviashvili equation
The following (2 + 1)-dimensional potential Kadomtsev–Petviashvili equation [26] is con-
sidered:

ut +
3
4

u2
x +

1
4

uxxx +
3
4
∂–1

x uyy = 0, (4.1)

which is transformed into the bilinear form

[
4DxDt + D4

x + 3D2
y
]
F · F = 0, (4.2)

under the dependent variable transformation u = 2(ln F)x.
We introduce the Riemann theta function solution of Eq. (4.1) as

F =
∞∑

n=–∞
e2π inζ+π in2τ , (4.3)

where n ∈Z , τ ∈ C , Im τ > 0 and ζ = kx + ly + ωt.
Substituting (4.3) into (4.2), we get

G(Dx, Dy, Dt)F · F

= G(Dx, Dy, Dt)
∞∑

n=–∞
e2π inζ+π in2τ

∞∑

m=–∞
e2π imζ+π im2τ

=
∞∑

n=–∞

∞∑

m=–∞
G(Dx, Dy, Dt)e2π inζ+π in2τ e2π imζ+π im2τ

=
∞∑

n=–∞

∞∑

m=–∞
G

[
2π i(n – m)k, 2π i(n – m)l, 2π i(n – m)ω

]
e2π i(n+m)ζ+π i(n2+m2)τ
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=
∞∑

p=–∞

∞∑

n=–∞
G

[
2π i(2n – p)k, 2π i(2n – p)l, 2π i(2n – p)ω

]
eπ i(n2+(p–n)2)τ e2π ipζ

=
∞∑

p=–∞
Ḡ(p)e2π ipζ ,

where n + m = p. Noting that

Ḡ(p) =
∞∑

n=–∞
G

(
2π i(2n – p)k, 2π i(2n – p)l, 2π i(2n – p)ω

]
eπ i(n2+(p–n)2)τ

=
∞∑

N=–∞
G

[
2π i

(
2N – (p – 2)

)
k, 2π i

(
2N – (p – 2)

)
l, 2π i × (

2N – (p – 2)
)
ω)

]

× eπ i((N+1)2+(p–N–1)2)τ

=
∞∑

N=–∞
G

[
2π i

(
2N – (p – 2)

)
k, 2π i

(
2N – (p – 2)

)
l, 2π i

(
2N – (p – 2)

)
ω)

]

× eπ i(N2+(p–N–2)2)τ e2π i(p–1)τ

= Ḡ(p – 2)e2π i(p–1)τ ,

which indicates that if Ḡ(0) = Ḡ(1) = 0, then

Ḡ(p) = 0, p ∈Z . (4.4)

Therefore, we may let

Ḡ(0) =
∞∑

n=–∞

[
–64π2n2kω + 256π4n4k4 – 48π2n2l2 + μ

]
e2π in2τ = 0, (4.5)

Ḡ(1) =
∞∑

n=–∞

[
–16π2(2n – 1)2kω + 16π4(2n – 1)4k4 – 12π2(2n – 1)2l2 + μ

]

× eπ i(n2+(n–1)2)τ = 0. (4.6)

Denote

�1(n) = e2π in2τ , �2(n) = eπ i(n2+(n–1)2)τ ,

A11 = –
∞∑

n=–∞
64π2n2k�1(n), A12 =

∞∑

n=–∞
�1(n),

A21 = –
∞∑

n=–∞
16π2(2n – 1)2k�2(n), A22 =

∞∑

n=–∞
�2(n),

B1 = –
∞∑

n=–∞

(
256π4n4k4 – 48π2n2l2)�1(n),

B2 = –
∞∑

n=–∞

[
16π4(2n – 1)4k4 – 12π2(2n – 1)2l2]�2(n).
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Then Eqs. (4.5) and (4.6) can be written as

A11ω + A12μ = B1, A21ω + A22μ = B2.

By solving this system, we get

ω =
B1A22 – A12B2

A11A22 – A12A21
, μ =

A11B2 – A21B1

A11A22 – A12A21
. (4.7)

Thus the periodic wave solution is given by

u = 2(ln F)x, (4.8)

where ω and F are determined by Eqs. (4.7) and (4.3), respectively.
Next, we will demonstrate that the soliton solution can be obtained as a limit of a peri-

odic wave solution. From Eq. (4.3), we rewrite F as

F = 1 + α
(
e2π iζ + e–2π iζ ) + α4(e4π iζ + e–4π iζ ) + · · · , (4.9)

where α = eπ iτ .
Setting

K = 2π ik, L = 2π il, Ω = 2π iω, ζ ′ = Kx + Ly + Ωt + π iτ ,

we get

F = 1 + α
(
e2π iζ + e–2π iζ ) + α4(e4π iζ + e–4π iζ ) + · · ·

= 1 + eζ ′
+ α2(e–ζ ′

+ e2ζ ′)
+ α6(e–2ζ ′

+ e3ζ ′)
+ · · ·

→ 1 + eζ ′
, as α → 0. (4.10)

Thus, the periodic wave solution (4.8) turns to the soliton solution

u = 2(ln F)x, F = 1 + eζ ′ , ζ ′ = Kx + Ly + Ωt + π iτ , (4.11)

if we can prove that

Ω → –
K3

4
–

3L2

4K
. (4.12)

In fact, it is easy to known that

A11 = –128π2k
(
α2 + 4α8 + · · · ), A12 = 1 + 2α2 + 2α8 + · · · ,

A21 = –32π2k
(
α + 9α5 + · · · ), A22 = 2α + 2α5 + · · · ,

B1 = 2
(
256π4k4 – 48π2l2)α2 + 2

(
256π424k4 – 48π222l2)α8 + · · · ,

B2 = –2
(
16π4k4 – 12π2l2)α + 2

(
16π434k4 – 12π232l2)α5 + · · · ,
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which lead to

B1A22 – A12B2 = 2
(
16π4k4 – 12π2l2)α + o(α),

A11A22 – A12A21 = 32π2kα + o(α),
(4.13)

According to (4.7), we get

ω → π2k3 –
3l2

4k
, as α → 0, (4.14)

which is equivalent to

Ω → –
K3

4
–

3L2

4K
, as α → 0.

4.2 (3 + 1)-dimensional potential-YTSF equation
By a similar analysis process as in Sect. 4.1, we have

Ḡ(0) =
∞∑

n=–∞

[
64π2n2kω + 256π4n4k3m – 48π2n2l2 + λ

]
e2π in2τ = 0, (4.15)

Ḡ(1) =
∞∑

n=–∞

[
16π2(2n – 1)2kω + 16π4(2n – 1)4k3m – 12π2(2n – 1)2l2 + λ

]

× eπ i(n2+(n–1)2)τ = 0. (4.16)

Denote

�1(n) = e2π in2τ , �2(n) = eπ i(n2+(n–1)2)τ ,

A11 =
∞∑

n=–∞
64π2n2k�1(n), A12 =

∞∑

n=–∞
�1(n),

A21 =
∞∑

n=–∞
16π2(2n – 1)2k�2(n), A22 =

∞∑

n=–∞
�2(n),

B1 = –
∞∑

n=–∞

(
256π4n4k3m – 48π2n2l2)�1(n),

B2 = –
∞∑

n=–∞

[
16π4(2n – 1)4k3m – 12π2(2n – 1)2l2]�2(n).

Then Eqs. (4.15) and (4.16) can be written as

A11ω + A12λ = B1, A21ω + A22λ = B2.

By solving the system, we get

ω =
B1A22 – A12B2

A11A22 – A12A21
, λ =

A11B2 – A21B1

A11A22 – A12A21
. (4.17)
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Thus, the periodic wave solution is given by

u =
3
2

(ln F)x, (4.18)

where ω and F are determined by Eqs. (4.17) and (4.3), respectively.
From Eq. (4.3), we rewrite F as

F = 1 + δ
(
e2π iζ + e–2π iζ ) + δ4(e4π iζ + e–4π iζ ) + · · · , (4.19)

where δ = eπ iτ .
Setting

K = 2π ik, L = 2π il, M = 2π im, Ω = 2π iω,

ζ ′ = Kx + Ly + Mz + Ωt + π iτ ,

yields

F = 1 + δ
(
e2π iζ + e–2π iζ ) + δ4(e4π iζ + e–4π iζ ) + · · ·

= 1 + eζ ′
+ δ2(e–ζ ′

+ e2ζ ′)
+ δ6(e–2ζ ′

+ e3ζ ′)
+ · · ·

→ 1 + eζ ′
, as δ → 0. (4.20)

Thus, if we can prove that

Ω → K2M
4

+
3L2

4K
, as δ → 0, (4.21)

the periodic wave solution (4.18) turns to the soliton solution

u =
3
2

(ln F)x, F = 1 + eζ ′ , ζ ′ = Kx + Ly + Mz + Ωt + π iτ . (4.22)

In fact, it is easy to known that

A11 = 128π2k
(
δ2 + 4δ8 + · · · ),

A12 = 1 + 2δ2 + 2δ8 + · · · , A21 = 32π2k
(
δ + 9δ5 + · · · ), A22 = 2δ + 2δ5 + · · · ,

B1 = 2
(
256π4k3m – 48π2l2)δ2 + 2

(
256π424k3m – 48π222l2)δ8 + · · · ,

B2 = –2
(
16π4k3m – 12π2l2)δ + 2

(
16π434k3m – 12π232l2)δ5 + · · · ,

which lead to

B1A22 – A12B2 = 2
(
16π4k3m – 12π2l2)δ + o(δ),

A11A22 – A12A21 = –32π2kδ + o(δ).

According to (4.17), we get

ω → –π2k2m +
3l2

4k
, as δ → 0,
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which is equivalent to

Ω → K2M
4

+
3L2

4K
, as δ → 0.

5 Discussion and conclusion
In the present paper, we investigate the (2 + 1)-dimensional potential KP equation and (3 +
1)-dimensional potential-YTSF equation based on the Hirota method and the Riemann
theta function. As a result, we obtain the bilinear form and N-soliton solutions of the
(3 + 1)-dimensional potential-YTSF equation under constraint conditions. By virtue of
the Hirota method and the Riemann theta function, periodic wave solutions have been
presented. And via asymptotic analysis, classical soliton solutions have been derived from
their periodic wave solutions. Finally, it is worthwhile to note that the Hirota direct method
can be applied to other variable coefficient NLEEs in mathematical physics.
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