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Abstract
Under the assumption that stochastic white noise perturbations are directly
proportional to the deviation of the state from the equilibrium states of a continuous
mutualistic model, we use the Euler–Maruyama discretization method to obtain a
two-species stochastic discrete mutualism model. For this stochastic model, we
establish conditions on the asymptotic mean square stability of the positive
equilibrium state and the almost sure asymptotic stability of the three boundary
equilibrium states. The theoretical results are supported with numerical simulations.
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1 Introduction
Any species in nature is not isolated, always related to other species in the community.
The relationships among them are generally divided into four types: mutualism, para-
sitism, competition, and predation. Mutualism is one of the ubiquitous interactions among
species, which is beneficial for all the species involved [1]. Therefore mutualism plays an
important role in all ecosystems; in theoretical biology, it has received much attention of
many scholars (see, e.g., [2–10]).

The simplest mutualistic model was proposed by May [11]. May’s equations for two
species can be written as

du1

dt
= r1u1

(
1 –

u1

K1

)
+ r1u1β12

u2

K1
,

du2

dt
= r2u2

(
1 –

u2

K2

)
+ r2u2β21

u1

K2
,

(1)

where ui, ri, and Ki are respectively the density, intrinsic growth rate, and carrying capacity
of species i (= 1, 2), β12 is the coefficient that embodies the benefit for species 1 of each
interaction with species 2, whereas β21 is the coefficient that embodies the benefit for
species 2 of each interaction with species 1. Lots of modifications of May’s model have
been proposed to better understand mutualism.

Denote

a11 =
r1

K1
, a12 =

r1β12

K1
, a21 =

r2

K2
, a12 =

r2β21

K2
.
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Then (1) can be rewritten as

du1(t) = u1(t)
(
r1 – a11u1(t) + a12u2(t)

)
dt,

du2(t) = u2(t)
(
r2 + a21u1(t) – a22u2(t)

)
dt.

(2)

It is well known that, in a species ecosystem, the disturbance of various random factors is
ubiquitous, which has a great influence on the evolution of biological species. In the study
of practical species problems, deterministic models are established, where relatively small
random disturbances are ignored in many cases. However, when there is a high demand for
the dynamic behavior of the system or strong random interference, ignoring the action of
random factors may lead to a considerable deviation, and the effect will not be satisfactory
(see, e.g., [12–15]). In fact, it is also the commonest phenomenon in nature that species
are disturbed by environmental noises. In recent decades, many scholars have established
stochastic ecological models by adding the stochastic driving force, a Brownian motion, as
a random factor to deterministic species models. Then they use the theory of stochastic
differential equations to study the stochastic dynamic behavior. As pointed out by Mao
[16], “a reasonable mathematical interpretation for the noise is the so-called white noise
Ḃ(t), which is formally regarded as the derivative of the Brownian motion B(t), that is,
Ḃ(t) = dB(t)/dt” (also see [17]).

Using the idea of Shaikhet [18, 19], we assume that system (2) is influenced by stochastic
white noise perturbations that are directly proportional to the deviation of the state of
the system (u1(t), u2(t)) from the equilibrium state (u∗

1, u∗
2), that is, if the deviation from

the equilibrium state increases, then the stochastic perturbations increase accordingly.
When the state of the system is at the equilibrium state, the stochastic perturbations are
zero. This is a common phenomenon in ecological mutualism system. Such perturbations
were first proposed by Beretta et al. [20] and now have been well accepted by many other
researchers (see [18, 19, 21] and references therein).

Based on our discussion and (2), the following stochastic Lotka–Volterra mutualism
system is obtained:

du1(t) = u1(t)
(
r1 – a11u1(t) + a12u2(t)

)
dt + σ1

(
u1(t) – u∗

1
)
dB1(t),

du2(t) = u2(t)
(
r2 + a21u1(t) – a22u2(t)

)
dt + σ2

(
u2(t) – u∗

2
)
dB2(t),

(3)

where σ 2
i (i = 1, 2) denotes the intensity of the noise Ḃi(t), and Bi(t) is a Brownian motion

defined on a complete probability space (Ω ,F , P) with filtration {Ft}t∈R+ satisfying the
usual conditions [17].

We should mention that most of the studies on stochastic Lotka–Volterra systems
are continuous models derived from differential equations (see [22–24] and references
therein). Moreover, many authors have argued that the discrete-time models governed
by difference equations are more appropriate than the continuous-time ones when the
populations have nonoverlapping generations. Discrete-time models can also provide ef-
ficient computational models of continuous models for numerical simulations [25, 26].
Also, there is little research on the stability of the stochastic discrete models described by
difference equations. With the Euler–Maruyama discretization method, the discretization
method mentioned in the introduction of [27] (also see 219–220 pages in [28]), we obtain
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the following stochastic discrete mutualism model:

u1(n + 1)

= u1(n) + u1(n)
(
r1 – a11u1(n) + a12u2(n)

)
h + σ1

√
h
(
u1(n) – u∗

1
)
ξ1(n + 1),

u2(n + 1)

= u2(n) + u2(n)
(
r2 + a21u1(n) – a22u2(n)

)
h + σ2

√
h
(
u2(n) – u∗

2
)
ξ2(n + 1),

n ∈ Z = {0, 1, 2, . . .}, u1(0) > 0, u2(0) > 0,

(4)

where h is the step size, ξi(n + 1) (i = 1, 2) is a mutually independent sequence of Fn-
adapted random variables satisfying Eξi(n) = 0, Eξ 2

i (n) = 1, and Eξi(n)ξj(n) = 0 (i �= j) with
E denoting the expectation (see [19] and references therein).

Note that (4) always has three boundary equilibrium states E0 = (0, 0), E1 = ( r1
a11

, 0), and
E2 = (0, r2

a22
). Furthermore, if a11a22 – a12a21 > 0, then there is another unique positive

equilibrium state E3 � (u∗
31, u∗

32) = ( r1a22+r2a12
a11a22–a12a21

, r2a11+r1a21
a11a22–a12a21

). The purpose of this paper
is to consider the stability of these equilibrium states. We first study the asymptotic mean
square stability of the positive equilibrium state in Sect. 2, followed by the asymptotic
stability of the boundary equilibrium states in Sect. 3. The paper ends with a brief conclu-
sion.

2 The asymptotic mean square stability of the positive equilibrium state
For two symmetric real number matrices P and Q, we write P > Q if the matrix P – Q is a
positive definite matrix.

For an arbitrary functional Vi = V (i, z(0), z(1), . . . , z(i)), i ∈ Z, the operator �Vi is defined
by

�Vi = V
(
i + 1, z(0), z(1), . . . , z(i + 1)

)
– V

(
i, z(0), z(1), . . . , z(i)

)
.

The linearized system of (4) at an equilibrium state E∗ = (u∗
1, u∗

2) is of the form

z(n + 1) =
(
A + Θ

(
ξ (n + 1)

))
z(n),

n ∈ Z, z(0) ∈ (0,∞)2,
(5)

where z(n) = (u1(n), u2(n))′ (the transpose of (u1(n), u2(n))), A is a 2 × 2 constant matrix,
and

Θ
(
ξ (n + 1)

)
=

(
σ1

√
hξ1(n + 1) 0

0 σ2
√

hξ2(n + 1)

)
.

Now, we adopt the concept of asymptotic mean square stability and a result on Lyapunov
functionals from Shaikhet [21].

Definition 2.1 (See [21, Definition 1.2]) The zero solution of (4) is said to be mean square
stable if, for each ε > 0, there exists δ > 0 such that E|z(n)|2 < ε, n ∈ Z, if E|z(0)|2 < δ. It is
asymptotically mean square stable if it is mean square stable and limn→∞ E|z(n)|2 = 0.
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Lemma 2.1 (See [21, Theorem 1.1]) Let Vi = V (i, z(0), z(1), . . . , z(i)) be a nonnegative func-
tional satisfying the conditions EV (0,φ) ≤ c1‖φ‖2 and E�Vi ≤ –c2E|z(i)|2, i ∈ Z, where c1

and c2 are positive constants. Then the zero solution of (5) is asymptotically mean square
stable.

Theorem 2.1 Suppose that there exists a positive definite matrix P such that the matrix
equation

A′DA – D = –P (6)

has a positive semidefinite solution

D =

(
d11 d12

d12 d22

)

satisfying

P >

(
d11σ

2
1 h 0

0 d22σ
2
2 h

)
. (7)

Then the zero solution of (5) is asymptotically mean square stable.

Proof Consider the Lyapunov functional V (φ) = φ′Dφ. We have

�V (n) = z′(n + 1)Dz(n + 1) – z′(n)Dz(n).

Then

E�V (n) = E
(
z′(n)

(
A + Θ

(
ξ (n + 1)

))′D
(
A + Θ

(
ξ (n + 1)

))
z(n) – z′(n)Dz(n)

)
= E

(
z′(n)

(
A′ + Θ ′(ξ (n + 1)

))
D

(
A + Θ

(
ξ (n + 1)

)
– D

)
z(n)

)
= E

(
z′(n)

(
A′DA – D + Θ ′(ξ (n + 1)

)
DΘ

(
ξ (n + 1)

))
z(n)

)
.

Moreover, since Eξi(n + 1) = 0, Eξ 2
i (n + 1) = 1, and Eξ1(n + 1)ξ2(n + 1) = 0, we see that

EΘ ′(ξ (n + 1)
)
DΘ

(
ξ (n + 1)

)

= E

(
σ1

√
hξ1(n + 1) 0

0 σ2
√

hξ2(n + 1)

)

×
(

d11 d12

d12 d22

)(
σ1

√
hξ1(n + 1) 0

0 σ2
√

hξ2(n + 1)

)

= E

(
d11σ

2
1 hξ 2

1 (n + 1) d12σ1σ2hξ1(n + 1)ξ2(n + 1)
d12σ1σ2hξ1(n + 1)ξ2(n + 1) d22σ

2
2 hξ 2

2 (n + 1)

)

=

(
d11σ

2
1 h 0

0 d22σ
2
2 h

)
.
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Now, according to (7),

E�V (n) = E

(
z′(n)

(
–P +

(
d11σ

2
1 h 0

0 d22σ
2
2 h

))
z(n)

)

≤ –cE
∣∣z(n)

∣∣2

for some c > 0. A direct application of Lemma 2.1 immediately finishes the proof. �

In the remaining of this section, we apply Theorem 2.1 to the positive equilibrium state
E3 of (4). In this case,

A =

(
1 – a11u∗

31h a12u∗
31h

a21u∗
32h 1 – a22u∗

32h

)
.

Then (6) is equivalent to

p11 =
[
1 –

(
1 – a11u∗

31h
)2]d11 –

(
1 – a11u∗

31h
)
(a12 + a21)u∗

32hd12

–
(
a21u∗

32h
)2d22,

p12 = –
(
1 – a11u∗

31h
)
a12u∗

31hd11 –
(
1 – a22u∗

32h
)
a21u∗

32hd22

+
[
a11u∗

31 + a22u∗
32 – (a11a22 + a12 + a21)u∗

31u∗
32h

]
hd12,

p22 = –
(
a12u∗

31h
)2d11 –

(
1 – a22u∗

32h
)
(a12 + a21)u∗

31hd12

+
[
1 –

(
1 – a22u∗

32h
)2]d22,

(8)

and (7) is equivalent to

p11 – d11σ
2
1 h > 0,

(
p11 – d11σ

2
1 h

)(
p22 – d22σ

2
2 h

)
– p2

12 > 0,
(9)

under the condition that

p11p22 – p2
12 > 0. (10)

Corollary 2.2 If the system of linear equations (8) has a solution (d11, d12, d22) satisfying (9)
and (10), then the zero solution of (5) is asymptotically mean square stable, or, equivalently,
the positive equilibrium state E3 = (u∗

31, u∗
32) of (4) is locally asymptotically mean square

stable.

Theoretically, we can solve the system of linear equations (8) for (d11, d12, d22) and then
verify whether we can choose p11, p12, and p22 such that both (9) and (10) hold. However,
this is tedious because of so many parameters involved. As a result, we just provide a
concrete example. According to Kwon [29, 30], for the ant–aphid mutualism, we choose
a11 = 2, a12 = 3/8, a21 = 1, a22 = 1, h = 0.1, r1 = 0.5, r2 = 3, σ1 = σ2 = 0.6. Using MATLAB,
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Figure 1 The positive equilibrium state E3 of (4) is
locally asymptotically mean square stable based on
50 trajectories of (4) with the initial condition
(u1, u2) = (0.5, 0.8), where a11 = 2, a12 = 3/8,
a21 = a22 = 1, r1 = 0.5, r2 = 3, and h = 0.1

we get the following results: E3 = (1, 4) and positive definite matrices

D =

(
5.1043 2.0235
2.0235 1.0215

)
and P =

(
1.1258 0.9978
0.9978 1.0129

)
.

By Corollary 2.2 the zero solution of (5) is asymptotically mean square stable, that is,
the positive equilibrium state E3 = (1, 4) is locally asymptotically mean square stable (see
Fig. 1).

3 Asymptotic stability of the boundary equilibrium states
As we will see later, we cannot apply Theorem 2.1 to discuss the mean square stability
of none of the three boundary equilibrium states. When such situations happen, Palmer
[27] studied the almost sure asymptotic stability of a linear stochastic difference equation
by a discretized Itô formula. Here we study the stochastic stability using this method and
comparison theorems [31].

Definition 3.1 The zero solution of (4) is said to be almost sure asymptotically stable if

P
{

lim
n→∞ z(n) = 0

}
= 1;

we also write limn→∞ z(n) = 0 a.s. (the standard abbreviation for “almost surely”).

We begin with the citation of a result whose proof is a direct consequence of [27,
Thm. 5.3].

Lemma 3.1 Let {u(n)}n∈Z be a solution of the equation

u(n + 1) = u(n) + rhu(n) + σ
√

hu(n)ξ (n + 1), n ∈ Z, r,σ ∈ R,

for h > 0 sufficiently small. Then the following two statements hold:
(i) limn→∞ u(n) = 0 a.s. if and only if 2r – σ 2 < 0;

(ii) limn→∞ u(n) = ∞ a.s. if and only if 2r – σ 2 > 0.

Now we use Lemma 3.1 to discuss the stochastic stability of the boundary equilibrium
states one by one.
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Firstly, we consider E0 = (0, 0). For this case, we have A =
( 1+r1h 0

0 1+r2h
)

in the linearized
system. Then (6) becomes

(
(2r1h + r2

1h2)d11 (1 + r1h)(1 + r2h)d12

(1 + r1h)(1 + r2h)d12 (2r2h + r2
2h)d22

)
= –

(
p11 p12

p12 p22

)
,

which clearly has no positive semidefinite solution D for any positive definite matrix P.
This means that Theorem 2.1 is inapplicable. Recall that, in this case, (5) is

u1(n + 1) = u1(n) + r1hu1(n) + σ1
√

hu1(n)ξ1(n + 1),

u2(n + 1) = u2(n) + r2hu2(n) + σ2
√

hu2(n)ξ2(n + 1).
(11)

By Lemma 3.1, for h sufficiently small, we must have:
(i) If 2ri – σ 2

i < 0, then limn→∞ ui(n) = 0 (i = 1, 2) a.s.;
(ii) If 2ri – σ 2

i > 0, then limn→∞ ui(n) = ∞ (i = 1, 2) a.s.
The above result is supported by Figs. 2 and 3. Here, for the purpose of simulation, we

do not need the values of aij. For Fig. 2, σ1 = σ2 = 0.9, r1 = r2 = 0.4, and h = 0.1. Clearly,
2ri – σ 2

i < 0, and hence limn→∞(u1(n), u2(n)) = (0, 0) a.s. For Fig. 3, 2ri – σ 2
i > 0 with σ1 =

σ2 = 0.6, r1 = r2 = 0.8, and h = 0.1. It follows that limn→∞(u1(n), u2(n)) = (∞,∞) a.s.
Going back to the stability of E0, we have the following:

Proposition 3.1 For h sufficiently small, the equilibrium state E0 of (4) is a.s. locally
asymptotically stable if 2ri – σ 2

i < 0 for i = 1, 2.

Figure 2 The boundary equilibrium state E0 = (0, 0)
of (4) is a.s. locally asymptotically stable when
2ri – σ 2

i < 0 with σ1 = σ2 = 0.9, r1 = r2 = 0.4, and
h = 0.1, where the initial condition is
(u1(0),u2(0)) = (0.5, 0.8)

Figure 3 The boundary equilibrium state E0 = (0, 0)
of (4) is unstable when 2ri – σ 2

i > 0 with
σ1 = σ2 = 0.6, r1 = r2 = 0.8, and h = 0.1, where the
initial condition is (u1(0, ),u2(0)) = (0.5, 0.8)
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Secondly, we consider E1 = ( r1
a11

, 0). This time,

A =

(
1 – r1h a12r1

a11
h

0 1 + (r2 + r1a21
a11

)h

)
.

Then (6) is equivalent to the following system of linear equations:

p11 = –(1 – r1h)2d11,

p12 = –(1 – r1h)
a12r1

a11
hd11 – (1 – r1h)

(
1 +

(
r2 +

r1a21

a11

)
h
)

d12,

p22 = –
(

a12r1

a11
h
)2

d11 – 2
a12r1

a11
h
(

1 +
(

r2 +
r1a21

a11

)
h
)

d12

–
(

1 +
(

r2 +
r1a21

a11

)
h
)2

d22.

(12)

It is not difficult to see that, for any positive definite matrix P, (6) has no positive semidefi-
nite solution D satisfying (7). This means that Theorem 2.1 cannot be applied. As a result,
we study the almost sure asymptotic stability. Note that, in this case, (5) is

u1(n + 1) = u1(n) – r1hu1(n) +
a12r1

a11
hu2(n) + σ1

√
hu1(n)ξ1(n + 1),

u2(n + 1) = u2(n) +
(

r2 +
a21r1

a11

)
hu2(n) + σ2

√
hu2(n)ξ2(n + 1).

(13)

For h sufficiently small, from the second equation of (13), using Lemma 3.1, we have the
following conclusion:

lim
n→∞ u2(n) = 0 a.s. if and only if 2

(
r2 +

a21r1

a11

)
– σ 2

2 < 0.

If limn→∞ u2(n) = 0 a.s., then there is a sufficiently large N such that P{| a12r1
a11

hu2(n)| ≤
r1

a11
} = 1 for n > N . From the first equation of (13) we have

u1(n + 1) ≤ r1

a11
+ u1(n) – r1hu1(n) + σ1

√
hu1(n)ξ1(n + 1) a.s.

By using the comparison theorem [31] and Lemma 3.1 we have limn→∞ u1(n) = r1
a11

a.s.
Figure 4 demonstrates the almost sure asymptotical stability of ( r1

a11
, 0).

In summary, we have established the following result.

Proposition 3.2 For h sufficiently small, the equilibrium state E1 of (4) is a.s. locally
asymptotically stable if 2(r2 + a21r1

a11
) – σ 2

2 < 0.

Finally, the stability of E2 = (0, r2
a22

) can be discussed in a similar way as that for E1, and
the following result can be drawn.

Proposition 3.3 For h sufficiently small, the equilibrium state E2 of (4) is a.s. locally
asymptotically stable if 2(r1 + a12r2

a22
) – σ 2

1 < 0.
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Figure 4 The boundary equilibrium state E1 = (1/8,
0) of (4) is a.s. locally asymptotically stable when
σ1 = σ2 = 0.9, r1 = r2 = 0.25, a11 = 2, a12 = 0.6,
a21 = 1, and h = 0.1 satisfy 2(r2 +

a21r1
a11

) – σ 2
2 < 0,

where the initial condition is (u1(0),u2(0)) = (0.5, 0.8)

Figure 5 The boundary equilibrium state E2 = (0,
1/8) of (4) is a.s. locally asymptotically stable when
σ1 = σ2 = 0.9, r1 = r2 = 0.25, a22 = 2, a12 = 0.6,
a21 = 1, and h = 0.1 satisfy 2(r1 +

a12r2
a22

) – σ 2
1 < 0,

where the initial condition is (u1(0),u2(0)) = (0.5, 0.8)

The illustration of Proposition 3.3 is shown in Fig. 5.

4 Conclusion
In this paper, we proposed a two-species stochastic discrete mutualism model where the
stochastic white noise perturbation is directly proportional to the deviation of the state
from the equilibrium staes. For the positive equilibrium state, we established conditions
for the asymptotic mean square stability by the Lyapunov functional approach. However,
it seems not easy to apply this approach to obtain the mean square stability of the three
boundary equilibrium states. As a result, we studied the almost sure asymptotic stability
of them by employing a discretized Itô formula and comparison theorems. The obtained
theoretical results are strongly supported by numerical simulations.
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