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Abstract
In this paper, we propose a nonlocal diffusion infectious disease model with nonlinear
incidences and distributed delay to model the transmission of the epidemic. By a
fixed point theorem and a limiting argument, we establish the existence of traveling
wave solutions for the model. Meanwhile, we obtain the non-existence of traveling
wave solutions for the model via two-sided Laplace transform. It is found that the
threshold dynamics of traveling wave solutions are entirely determined by the basic
reproduction number of the corresponding spatially-homogenous delayed
differential system and the minimum wave speed. A typical example is given for
supporting our abstract results. Moreover, the effect of the diffusive rate of the
infected individuals on the minimum wave speed is discussed.
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1 Introduction
With the rapid development of modern mathematical epidemiology, many mathemati-
cal models have been proposed to describe the transmission of communicable diseases.
Among these models, one of the cornerstones is the classical Kermack–McKendrick SIR
epidemic model [21–23]

⎧
⎪⎪⎨

⎪⎪⎩

ṡ(t) = –βs(t)i(t),

i̇(t) = βs(t)i(t) – γ i(t),

ṙ(t) = γ i(t),

(1.1)

where s(t), i(t) and r(t) denote the sizes of the susceptible, infected and removed individ-
uals, respectively. The constant β > 0 is the transmission coefficient and γ > 0 represents
the recovery rate. Kermack and McKendrick [21–23] proved that if the basic reproduction
number R0 = β/γ > 1, i(t) first increases to its maximum and then decreases to zero and
hence an epidemic occurs; if R0 < 1, then i(t) decreases to zero and an epidemic does not
take place.

Due to large mobility of people within a country or even worldwide, the spatially uni-
form models are not sufficient to give a realistic picture of disease diffusion. Based on this
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concern, Hosono and Ilyas [18] introduced a reaction–diffusion epidemic model

⎧
⎨

⎩

st(x, t) = d1sxx(x, t) – βs(x, t)i(x, t),

it(x, t) = d2ixx(x, t) + βs(x, t)i(x, t) – γ i(x, t),
(1.2)

where d1 > 0 and d2 > 0 are the diffusion rates for the susceptible and infected individ-
uals, respectively. They showed that if the basic reproduction number R0 = β/γ > 1 and
the wave speed c ≥ c∗ (c∗ is the critical speed), system (1.2) admits a nontrivial and non-
negative traveling wave solution (s(x + ct), i(x + ct)) satisfying s(∞) = s∞ < s–∞ = s(–∞)
and i(±∞) = 0, while there exist no nontrivial and nonnegative traveling wave solutions if
R0 ≤ 1 or 0 < c < c∗.

Note that the bilinear incidence βsi will be reasonable for a small number of infected,
and it appears quite unrealistic that for a large i this can still hold, see [7] for more de-
tails. Recently, nonlinear incidences have been introduced in epidemic models, see [3,
6, 7, 24–26, 31, 32]. For example, Capasso and Serio [7] introduced a saturated incidence
βsi/(1+αi) (α > 0) into epidemic models to prevent the unboundedness of the contact rate.
Liu et al. [31, 32] considered the effect of nonlinear incidence of the form ipsq (p, q > 0) on
the behavior of epidemiological models. It has been suggested that time delay should be
incorporated into epidemic models in applications [3, 6, 27, 29, 44, 46]. In fact, for many
infectious diseases, an infected individual is unable to pass on the disease and a certain
amount of biological development is necessary before one can infect others. This period
is called the latent period. After the latent period, the individual passes into the infectious
period which ends when one’s symptoms appear and one is removed to the recovered
class. The latent period is assumed to be a constant τ . A susceptible becomes infective if
one contacts the person who is infected τ time units ago. In particular, for some vector-
borne diseases (such as those distributed by mosquitoes), Beretta and Takeuchi [6] intro-
duced a distributed delay of the form s(t)

∫ h
0 f (τ )i(t – τ ) dτ into the SIR model, where h is

the maximum time taken to become infectious and f (τ ) denotes the fraction of a vector
population in which the time taken to be infectious is τ . Furthermore, f (τ ) satisfies

f (τ ) > 0, f (τ ) ∈ C[0, h],
∫ h

0
f (τ ) dτ = 1. (1.3)

Bai and Zhang [3] investigated a reaction–diffusion model with nonlinear incidences and
distributed delay

⎧
⎨

⎩

st(x, t) = d1sxx(x, t) – βs(x, t)
∫ h

0 f (τ )g(i(x, t – τ )) dτ ,

it(x, t) = d2ixx(x, t) + βs(x, t)
∫ h

0 f (τ )g(i(x, t – τ )) dτ – γ i(x, t),
(1.4)

where the nonlinear function g satisfies two hypotheses: (H1) g(i) is continuously differen-
tiable and monotone increasing on [0,∞) with g(0) = 0; (H2) i/g(i) is monotone increasing
on (0,∞) with limi→0+ i/g(i) = 1. The authors showed that (1.4) admits a nontrivial and
nonnegative traveling wave solution (s(x + ct), i(x + ct)) satisfying s(∞) = s∞ < s0 = s(–∞),
i(±∞) = 0 if R0 > 1 and c ≥ c∗. Moreover, they obtained that, if 0 < c < c∗ or R0 ≤ 1, there
exist no such traveling wave solutions. Recently, utilizing Schauder’s fixed point theorem
and the two-sided Laplace transform, Wang et al. [42], Xu [46], Zhang and Wang [54],
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Zhen et al. [55] investigated the existence and nonexistence of traveling wave solutions
for a class of reaction–diffusion disease systems with nonlinear incidences and established
some important existence and nonexistence theorems.

It is generally known that reaction–diffusion equations have been intensively studied
to describe many phenomena in epidemiology and spatial ecology [3, 15, 16, 18, 29, 36,
41, 42, 44–46, 54, 55]. However, a nonlocal diffusion is better described as a long-range
process rather than as a local one in many situations such as in population ecology, since
the movements of individuals which cannot be limited to a small area are often free and
random. During the past ten years, a special integral operator of the form

J ∗ u(x, t) – u(x, t) =
∫ ∞

–∞
J(x – y)

[
u(y, t) – u(x, t)

]
dy

has been widely used to model diffusion phenomena. Simultaneously, nonlocal diffusion
problems have attracted much attention, see [4, 5, 8–14, 19, 20, 28, 30, 35, 36, 38, 40,
47–53, 56, 57] and the references therein.

In the present paper we propose a nonlocal diffusion infectious disease model with non-
linear incidences and distributed delay

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

st(x, t) = d1
∫ ∞

–∞ J(x – y)[s(y, t) – s(x, t)] dy

– βs(x, t)
∫ h

0 f (τ )g(i(x, t – τ )) dτ ,

it(x, t) = d2
∫ ∞

–∞ J(x – y)[i(y, t) – i(x, t)] dy

+ βs(x, t)
∫ h

0 f (τ )g(i(x, t – τ )) dτ – γ i(x, t)

(1.5)

to model the propagation of the epidemic. In (1.5), the integral operators J ∗ s(x, t) – s(x, t)
and J ∗ i(x, t) – i(x, t) mean that the rate of susceptible and infected individuals in position x
and at time t depend on the influence of neighboring s(x, t) and i(x, t) in all other positions
y [56, 57]. Model (1.5) with nonlinear incidences and distributed delay describes the spread
of an infectious disease (involving only susceptible and infected individuals) transmitted
by a vector (e.g., mosquitoes) after a latent period [39]. Throughout this paper, we always
assume that f (τ ) satisfies (1.3), the nonlinear function g and the kernel function J satisfy

(A1) g(0) = 0, g ′(i) > 0 and g ′′(i) ≤ 0 for i ≥ 0;
(A2) g(i)/i is continuously differentiable, nonincreasing for i > 0 and limi→∞ g(i)/i = 0;
(A3) J ∈ C1(R), J(y) = J(–y) ≥ 0,

∫

R
J(y) dy = 1, J is compactly supported;

(A4) limλ→∞ λ–1 ∫

R
J(y)e–λy dy = ∞ and

∫

R
J(x)eλx dx < +∞ for all λ > 0.

Assumptions (A1)–(A4) have been used in the literature, one can refer to [3, 17, 26, 49,
50, 56, 57]. The aim of the current paper is to study the existence and nonexistence of the
nontrivial and nonnegative traveling wave solutions of the form

(
s(x + ct), i(x + ct)

)
=

(
s(z), i(z)

)
, (1.6)

where z = x + ct is the moving coordinate and c > 0 is the wave speed. Substituting (1.6)
into (1.5) yields

⎧
⎪⎪⎨

⎪⎪⎩

cs′(z) = d1
∫ ∞

–∞ J(y)[s(z – y) – s(z)] dy – βs(z)
∫ h

0 f (τ )g(i(z – cτ )) dτ ,

ci′(z) = d2
∫ ∞

–∞ J(y)[i(z – y) – i(z)] dy + βs(z)
∫ h

0 f (τ )g(i(z – cτ )) dτ

– γ i(z).

(1.7)
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We are going to find the solutions of (1.7) which satisfy the asymptotic boundary condi-
tions

lim
z→∞ s(z) := s(∞) = s∞ < lim

z→–∞ s(z) := s(–∞) = s0,

lim
z→±∞ i(z) := i(±∞) = 0,

(1.8)

where s0 > 0 refers to the size of the susceptible individuals at the beginning of the epi-
demic and s∞ ≥ 0 stands for the size of the susceptible individuals after the epidemic.

We should point out that our model is different from model (1.4), which can be viewed
as a first order approximation of model (1.5) by Fourier transform and Taylor formula
[19, 20]. In [3], under the traveling wave transformation, (1.4) was reduced to a system of
second order ordinary differential equations (ODEs). By the general theory of ODEs, the
solution of this system can be written as integral forms on the real line. By introducing an
auxiliary system and applying the Schauder’s fixed point theorem together with a limiting
argument, Bai and Zhang [3] obtained the existence of a traveling wave solution for their
model directly. Notice that (1.5) has no monotone semi-flow due to the introduction of
nonlocal diffusion, the method used in [3] cannot be effective for (1.5). Moreover, other
traditional methods such as the method of monotone iteration together with upper–lower
solutions [45] and the shooting method [18] cannot be applied any more. To obtain the
existence theorem for (1.5), we construct an invariant cone of initial functions defined on a
large spatial domain and apply Schauder’s fixed point theorem on this cone and a limiting
argument (motivated by [30, 42, 49, 50, 54]) to establish the existence of a solution for
the wave system. Note also that in [3], the authors investigated the nonexistence of the
solutions for their model for the cases R0 < 1 and R0 = 1, simultaneously. However, in the
proof of Theorem 1.3 in [3], the last inequality does not hold when R0 = 1. Here in the
proof of the nonexistence theorem for R0 ≤ 1, we divide it into two subcases, namely,
R0 < 1 and R0 = 1. We hope that the techniques adopted here can be used to study other
delayed general nonlocal diffusion systems.

The rest of the paper is organized as follows. In Sect. 2, the existence of traveling wave
solutions of (1.5) is established. In Sect. 3, the nonexistence of traveling wave solutions
of (1.5) is obtained. In Sect. 4, we give an example to illustrate the theoretical results and
make a brief conclusion.

2 Existence of traveling waves
2.1 Preliminaries
Linearizing the second equation in (1.7) at (s0, 0) and using g(0) = 0, we have

d2

∫ ∞

–∞
J(y)

[
i(z – y) – i(z)

]
dy – ci′(z) + βs0g ′(0)

∫ h

0
f (τ )i(z – cτ ) dτ – γ i(z) = 0. (2.1)

Substituting i(z) = eλz into (2.1) yields

Θ(λ, c) := d2

∫ ∞

–∞
J(y)

(
e–λy – 1

)
dy – cλ + βs0g ′(0)

∫ h

0
f (τ )e–λcτ dτ – γ = 0. (2.2)

Lemma 2.1 Assume that R0 := βs0g ′(0)/γ > 1. Then there exist c∗ > 0 and λ∗ > 0 such that

Θ
(
λ∗, c∗) = 0 and Θλ

(
λ∗, c∗) = 0.
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Furthermore, the following alternatives hold:
(i) If 0 < c < c∗, then Θ(λ, c) > 0 for λ ∈ [0,∞);

(ii) If c > c∗, then equation Θ(λ, c) = 0 has two positive real roots λ1(c) := λ1 and
λ2(c) := λ2 with 0 < λ1 < λ∗ < λ2 < ∞ such that

⎧
⎨

⎩

Θ(λ, c) > 0, λ ∈ [0,λ1) ∪ (λ2,∞),

Θ(λ, c) < 0, λ ∈ (λ1,λ2).

Proof Obviously, Θ(0, c) = βs0g ′(0) – γ > 0. Using (A4), we have Θ(∞, c) = ∞ for each
fixed c > 0. Meanwhile, by (A3), we derive for λ > 0 and c > 0 that

Θc(λ, c) = –λ – λβs0g ′(0)
∫ h

0
τ f (τ )e–λcτ dτ < 0,

Θ(λ, 0) = d2

∫ ∞

–∞
J(y)

(
e–λy – 1

)
dy + βs0g ′(0) – γ

≥ –d2λ

∫ ∞

–∞
yJ(y) dy + βs0g ′(0) – γ

= βs0g ′(0) – γ > 0,

Θ(λ,∞) = –∞,

Θλ(0, c) = –c – cβs0g ′(0)
∫ h

0
τ f (τ ) dτ < 0,

Θλλ(λ, c) = d2

∫ ∞

–∞
y2J(y)e–λy dy + βs0g ′(0)c2

∫ h

0
τ 2f (τ )e–λcτ dτ > 0.

By the intermediate value theorem, monotonicity and convexity properties, there exists a
positive point (λ∗, c∗) such that

Θ
(
λ∗, c∗) = 0 and Θλ

(
λ∗, c∗) = 0.

Since Θc(λ, c) < 0, we get that Θ(λ∗, c) > Θ(λ∗, c∗) = 0 for any 0 < c < c∗. Using the convexity
of Θ(λ, c) with respect to λ, we have

Θ(λ1, c) ≥ Θ
(
λ∗, c

)
= 0 for λ ∈ [0,∞).

Due to Θc(λ, c) < 0, we have that Θ(λ∗, c) < Θ(λ∗, c∗) = 0 for any c > c∗. Then by Θ(0, c) > 0,
Θλλ(λ, c) > 0 and Θ(λ, c) → ∞ as λ → ∞, we obtain that the equation Θ(λ, c) = 0 has two
positive roots λ1(c) := λ1 and λ2(c) := λ2 with 0 < λ1 < λ∗ < λ2 < ∞ such that

Θ(λ, c)

⎧
⎨

⎩

> 0, λ ∈ [0,λ1) ∪ (λ2,∞),

< 0, λ ∈ (λ1,λ2).

The proof of this lemma is finished. �

In the remainder of this section, we always assume that R0 > 1 and c > c∗.



Cheng and Lu Advances in Difference Equations        (2019) 2019:109 Page 6 of 29

2.2 Key lemmas
Set

q(i) := βs0
g(i)

i
, i > 0,

then q(i) is a continuous differential function for i > 0 (see (A2)). A direct computation
yields

lim
i→0+

q(i) = lim
i→0+

βs0
g(i)

i
= βs0g ′(0) > γ

and

lim
i→∞ q(i) = lim

i→∞βs0
g(i)

i
= 0 < γ ,

where we have used R0 > 1 and (A2). So there exists a positive constant i0 such that

βs0g(i0) = γ i0. (2.3)

For z ∈R, define the following nonnegative continuous functions:

s(z) := s0,

i(z) :=

⎧
⎨

⎩

eλ1z, z < λ–1
1 ln i0,

i0, z ≥ λ–1
1 ln i0,

s(z) :=

⎧
⎨

⎩

s0 – μ–1eμz, z < μ–1 ln(μs0),

0, z ≥ μ–1 ln(μs0),

i(z) :=

⎧
⎨

⎩

eλ1z(1 – Meαz), z < –α–1 ln M,

0, z ≥ –α–1 ln M,

where λ1 is the smaller positive real root of (2.2) and μ, M, α are all positive constants
which will be determined later.

Lemma 2.2 The function s(z) satisfies

d1

∫ ∞

–∞
J(y)s(z – y) dy – d1s(z) – cs′(z) – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ ≤ 0

for all z ∈ R.

Proof The proof is trivial, so it is omitted. �

Lemma 2.3 The function i(z) satisfies

d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z) – ci′(z) + βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z) ≤ 0

for all z 
= z1 := λ–1
1 ln i0.
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Proof It follows from (A1)–(A3) that

∫ ∞

–∞
J(y)i(z – y) dy ≤ min

{

eλ1z
∫ ∞

–∞
J(y)e–λ1y dy, i0

}

, z ∈R (2.4)

and

g
(
i(z – cτ )

)
= g

(
i(z – cτ )

)
– g(0) ≤ g ′(0)i(z – cτ ). (2.5)

If z < z1, then i(z) = eλ1z. From (2.4), (2.5) and Lemma 2.1, we obtain that

d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z) – ci′(z) + βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z)

≤ d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z) – ci′(z) + βs0g ′(0)

∫ h

0
f (τ )i(z – cτ ) dτ – γ i(z)

= eλ1z
[

d2

∫ ∞

–∞
J(y)

(
e–λ1y – 1

)
dy – cλ1 + βs0g ′(0)

∫ h

0
f (τ )e–λ1cτ dτ – γ

]

= eλ1zΘ(λ1, c)

= 0.

If z > z1, then i(z) = i0. By (2.3), (A1) and the definition of i(z), we have that

d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z) – ci′(z) + βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z)

≤ βs0g(i0) – γ i0

= 0.

The proof of this lemma is completed. �

Lemma 2.4 Let μ ∈ (0,λ1) be sufficiently small. Then the function s(z) satisfies

d1

∫ ∞

–∞
J(y)s(z – y) dy – d1s(z) – cs′(z) – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ ≥ 0 (2.6)

for all z 
= z2 := μ–1 ln(μs0).

Proof If z > z2, then s(z) = 0, which implies that (2.6) holds.
Note that z2 = μ–1 ln(μs0) < λ–1

1 ln i0 = z1 as μ → 0+. If z < z2 < z1, then

s(z) = s0 – μ–1eμz and i(z) = eλ1z. (2.7)
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It follows from (2.5) and (2.7) that

d1

∫ ∞

–∞
J(y)s(z – y) dy – d1s(z) – cs′(z) – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

≥ d1

∫ ∞

–∞
J(y)s(z – y) dy – d1s(z) – cs′(z) – βs(z)g ′(0)

∫ h

0
f (τ )i(z – cτ ) dτ

= –d1μ
–1eμz

∫ ∞

–∞
J(y)e–μy dy + d1μ

–1eμz + ceμz

– β
(
s0 – μ–1eμz)g ′(0)

∫ h

0
f (τ )eλ1(z–cτ ) dτ

≥ eμz
[

–d1μ
–1

∫ ∞

–∞
J(y)

(
e–μy – 1

)
dy + c – βs0g ′(0)e(λ1–μ)z

]

≥ eμz
[

–d1μ
–1

∫ ∞

–∞
J(y)

(
e–μy – 1

)
dy + c – βs0g ′(0)(μs0)

λ1–μ
μ

]

, (2.8)

where we have used the fact that e(λ1–μ)z < (μs0)
λ1–μ

μ for z < z2 and the assumption that
0 < μ < λ1. Since limμ→0+ (μs0)

λ1–μ
μ = 0 and limμ→0+ μ–1 ∫

R
J(y)(e–μy – 1) dy = 0, we have

for sufficiently small μ > 0 that

–d1μ
–1

∫ ∞

–∞
J(y)

(
e–μy – 1

)
dy + c – βs0g ′(0)(μs0)

λ1–μ
μ > 0. (2.9)

This ends this lemma. �

Lemma 2.5 Suppose that 0 < α < min{μ,λ1,λ2 – λ1} and M > 1 is sufficiently large. Then
the function i(z) satisfies

d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z) – ci′(z)

+ βs(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z) ≥ 0 (2.10)

for all z 
= z3 := –α–1 ln M.

Proof If z > z3, then i(z) = 0, s(z) ≥ 0,
∫

R
J(y)i(z – y) dy ≥ 0 and g(i(z – cτ )) ≥ 0. Obviously,

(2.10) holds.
If z < z3, then i(z) = eλ1z(1 – Meαz). Let M1 > 1 be large enough such that –α–1 ln M1 + 1 =

z2. Choose M ≥ M1, then s(z) = s0 – μ–1eμz for z < z3 < z2. Thus (2.10) is equivalent to

βs0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

≤ d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z) – ci′(z) + βs0g ′(0)

∫ h

0
f (τ )i(z – cτ ) dτ – γ i(z),
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which gives

βs0

∫ h

0
f (τ )

[
g ′(0)i(z – cτ ) – g

(
i(z – cτ )

)]
dτ

+ βμ–1eμz
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

≤ Θ(λ1, c)eλ1z – MΘ(λ1 + α, c)e(λ1+α)z. (2.11)

By (A2), we know that, for any ε̂ ∈ (0, 1), there exists a small positive constant δ0 such that

g(i)
i

≥ g ′(0) – ε̂ for 0 < i < δ0. (2.12)

Thus for 0 < i < δ0, one has that

g ′(0)i – g(i) = i
[

g ′(0) –
g(i)

i

]

≤ iε̂ ≤
(

i + ε̂

2

)2

. (2.13)

Since (2.13) holds for any sufficiently small ε̂ ∈ (0, 1), we obtain that

g ′(0)i – g(i) ≤ i2 for 0 < i < δ0.

In order to ensure (2.11) holds, it suffices to prove that

βs0

∫ h

0
f (τ )i2(z – cτ ) dτ + βμ–1g ′(0)eμz

∫ h

0
f (τ )i(z – cτ ) dτ

≤ –MΘ(λ1 + α, c)e(λ1+α)z. (2.14)

Further enlarging the left-hand side of (2.14) by i(z) < eλ1z gives that

βs0e(λ1–α)z + βμ–1g ′(0)e(μ–α)z ≤ –MΘ(λ1 + α, c). (2.15)

Choose 0 < α < λ2 – λ1, then Θ(λ1 + α, c) < 0 (see Lemma 2.1). We infer from (2.15) that

M ≥ βs0e(λ1–α)z + βμ–1g ′(0)e(μ–α)z

–Θ(λ1 + α, c)
.

Since z < z2 < 0 and 0 < α < min{μ,λ1}, one knows that

e(λ1–α)z < 1, e(μ–α)z < 1.

Then (2.15) holds if we choose that

M ≥ max

{
βs0 + βμ–1g ′(0)

–Θ(λ1 + α, c)
+ 1, M1

}

.

The claim of this lemma is shown. �
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2.3 Existence of solution for (1.7) on a closed bounded interval
Now we construct a closed bounded set

Γl =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(
φ(·),ϕ(·)) ∈ C

(
[–l, l],R2)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

φ(–l) = s(–l),
ϕ(–l) = i(–l),
s(z) ≤ φ(z) ≤ s0,
i(z) ≤ ϕ(z) ≤ i(z)
for any z ∈ [–l, l]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

,

where l is a constant satisfying l > ρ := max{|z3|, r, ch} (r is the radius of supp J). For
(φ(z),ϕ(z)) ∈ C([–l, l],R2), define

φ̂(z) =

⎧
⎪⎪⎨

⎪⎪⎩

φ(l), z > l,

φ(z), |z| ≤ l,

s(z), z < –l,

ϕ̂(z) =

⎧
⎪⎪⎨

⎪⎪⎩

ϕ(l), z > l,

ϕ(z), |z| ≤ l,

i(z), z < –l.

Consider the initial value problem

cs′(z) = d1

∫ ∞

–∞
J(y)φ̂(z – y) dy + �φ(z) – (d1 + �)s(z)

– βφ(z)
∫ h

0
f (τ )g

(
ϕ̂(z – cτ )

)
dτ , (2.16)

ci′(z) = d2

∫ ∞

–∞
J(y)ϕ̂(z – y) dy + βφ(z)

∫ h

0
f (τ )g

(
ϕ̂(z – cτ )

)
dτ

– (d2 + γ )i(z) (2.17)

on [–l, l] with

s(–l) = s(–l), i(–l) = i(–l), (2.18)

where � is a constant satisfying � > βg(i0). It is easy to verify that

s(z) ≤ φ̂(z) ≤ s0, i(z) ≤ ϕ̂(z) ≤ i(z) for z ∈R. (2.19)

By the general theory of ODEs, (2.16)–(2.18) admits a unique solution (sl(z), il(z)) ∈
C1([–l, l],R2). We define an operator F = (F1,F2): Γl �→ C([–l, l],R2) as follows:

F1(φ,ϕ)(z) := sl(z), F2(φ,ϕ)(z) := il(z), z ∈ [–l, l].

Proposition 2.1 The operator F = (F1,F2) maps Γl into Γl .
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Proof Due to � > βg(i0) and ϕ̂(z) ≤ i0, we obtain that �φ(z) – βφ(z)
∫ h

0 f (τ )g(ϕ̂(z – cτ )) dτ

is increasing with respect to φ. Then we derive from Lemmas 2.2, 2.4 and (2.19) that

d1

∫ ∞

–∞
J(y)φ̂(z – y) dy – cs̄′(z) + �φ(z) – (d1 + �)s̄(z)

– βφ(z)
∫ h

0
f (τ )g

(
ϕ̂(z – cτ )

)
dτ

≤ d1

∫ ∞

–∞
J(y)s̄(z)(z – y) dy – cs̄′(z) + �s̄(z) – (d1 + �)s̄(z)

– β s̄(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

≤ 0, z ∈ [–l, l], (2.20)

and

d1

∫ ∞

–∞
J(y)φ̂(z – y) dy – cs′(z) + �φ(z) – (d1 + �)s(z)

– βφ(z)
∫ h

0
f (τ )g

(
ϕ̂(z – cτ )

)
dτ

≥ d1

∫ ∞

–∞
J(y)s(z)(z – y) dy – cs′(z) + �s(z) – (d1 + �)s(z)

– βs(z)
∫ h

0
f (τ )g

(
ī(z – cτ )

)
dτ

≥ 0, z ∈ [
–l, z2) ∪ (z2, l

]
. (2.21)

By Lemmas 2.3, 2.5 and (2.19), we have that

ci′(z) – d2

∫ ∞

–∞
J(y)ϕ̂(z – y) dy – βφ(z)

∫ h

0
f (τ )g

(
ϕ̂(z – cτ )

)
dτ

+ (d2 + γ )i(z)

≤ ci′(z) – d2

∫ ∞

–∞
J(y)i(z – y) dy – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

+ (d2 + γ )i(z)

≤ 0, z ∈ [
–l, z3) ∪ (z3, l

]
, (2.22)

and

ci′(z) – d2

∫ ∞

–∞
J(y)ϕ̂(z – y) dy – βφ(z)

∫ h

0
f (τ )g

(
ϕ̂(z – cτ )

)
dτ + (d2 + γ )i(z)

≥ ci′(z) – d2

∫ ∞

–∞
J(y)i(z – y) dy – βs0

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ + (d2 + γ )i(z)

≥ 0, z ∈ [
–l, z1) ∪ (z1, l

]
. (2.23)
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In view of

s(–l) = sl(–l) ≤ s̄(–l), i(–l) = il(–l) ≤ ī(–l), (2.24)

(2.20)–(2.23), comparison theorem and the continuity of s̄(z), ī(z), s(z), i(z), sl(z), il(z), we
get that

s(z) ≤ sl(z) ≤ s̄(z), i(z) ≤ il(z) ≤ ī(z) for z ∈ [–l, l].

The proof of this proposition is finished. �

Proposition 2.2 The operator F = (F1,F2) : Γl �→ Γl is completely continuous with re-
spect to the supremum norm in C([–l, l],R2).

Proof We first show that F is compact. Let (sl(z), il(z)) be the solution to (2.16)–(2.18).
Since it is of class C1([–l, l],R2), s′

l(z) and i′l(z) are bounded on [–l, l]. Hence, by the defi-
nition of Γl , we obtain that the operator F is compact.

We next prove that F is continuous. Assume that (φ1(z),ϕ1(z)) ∈ Γl and (φ2(z),ϕ2(z)) ∈
Γl for z ∈ [–l, l]. Equation (2.16) can be written as

sl(z) = s(–l)e– d1+�
c (l+z) +

1
c

∫ z

–l
e– d1+�

c (z–η)H1(φ,ϕ)(η) dη, (2.25)

where

H1(φ,ϕ)(η) = d1

∫ ∞

–∞
J(y)φ̂(η – y) dy + �φ(η) – βφ(η)

∫ h

0
f (τ )g

(
ϕ̂(η – cτ )

)
dτ .

A direct computation gives that

∣
∣H1(φ1,ϕ1)(η) – H1(φ2,ϕ2)(η)

∣
∣

=
∣
∣
∣
∣d1

∫ ∞

–∞
J(η – y)

[
φ̂1(y) – φ̂2(y)

]
dy + �

[
φ1(η) – φ2(η)

]

– β

[

φ1(η)
∫ h

0
f (τ )g

(
ϕ̂1(η – cτ )

)
dτ – φ2(η)

∫ h

0
f (τ )g

(
ϕ̂2(η – cτ )

)
dτ

]∣
∣
∣
∣

≤ d1

∣
∣
∣
∣

∫ l

–l
J(η – y)

[
φ1(y) – φ2(y)

]
dy

∣
∣
∣
∣ + d1

∣
∣
∣
∣

∫ ∞

l
J(η – y)

[
φ1(l) – φ2(l)

]
dy

∣
∣
∣
∣

+ �
∣
∣φ1(η) – φ2(η)

∣
∣

+ β

∣
∣
∣
∣φ1(η)

∫ h

0
f (τ )g

(
ϕ̂1(η – cτ )

)
dτ – φ1(η)

∫ h

0
f (τ )g

(
ϕ̂2(η – cτ )

)
dτ

+ φ1(η)
∫ h

0
f (τ )g

(
ϕ̂2(η – cτ )

)
dτ – φ2(η)

∫ h

0
f (τ )g

(
ϕ̂2(η – cτ )

)
dτ

∣
∣
∣
∣

≤ [
2d1 + � + βg(i0)

]
max

y∈[–l,l]

∣
∣φ1(y) – φ2(y)

∣
∣

+ βs0g ′(0) max
y∈[–l,l]

∣
∣ϕ1(y) – ϕ2(y)

∣
∣. (2.26)



Cheng and Lu Advances in Difference Equations        (2019) 2019:109 Page 13 of 29

Then we can obtain the continuity of F1. Similarly, one can deduce the continuity of F2.
The proof is completed. �

By the definition of Γl , it is easy to see that Γl is nonempty, bounded, closed and convex.
Then based on Propositions 2.1, 2.2 and Schauder’s fixed point theorem, we obtain the
following theorem.

Theorem 2.1 There exists (sl(z), il(z)) ∈ Γl such that F (sl, il)(z) = (sl(z), il(z)), which satis-
fies

s(z) ≤ sl(z) ≤ s0, i(z) ≤ il(z) ≤ i(z) for z ∈ [–l, l]. (2.27)

2.4 Existence of solutions of (1.7) on R

Choose a positive increasing constant sequence {ln}∞n=1 such that ln > ρ and limn→∞ ln = ∞.
Then by Theorem 2.1, we obtain that there exists some (sln , iln ) ∈ Γln such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cs′
ln (z) = d1

∫ ∞
–∞ J(y)ŝln (z – y) dy – d1sln (z)

– βsln (z)
∫ h

0 f (τ )g(îln (z – cτ )) dτ ,

ci′ln (z) = d2
∫ ∞

–∞ J(y)îln (z – y) dy + βsln (z)
∫ h

0 f (τ )g(îln (z – cτ )) dτ

– (d2 + γ )iln (z), n ∈ N
∗,

(2.28)

where

ŝln (z) =

⎧
⎪⎪⎨

⎪⎪⎩

sln (ln), z > ln,

sln (z), |z| ≤ ln,

s(z), z < –ln,

îln (z) =

⎧
⎪⎪⎨

⎪⎪⎩

iln (ln), z > ln,

iln (z), |z| ≤ ln,

i(z), z < –ln,

and

s(z) ≤ sln (z) ≤ s0, i(z) ≤ iln (z) ≤ ī(z), z ∈ [–ln, ln]. (2.29)

Inequalities (2.29) imply that sln (z) and iln (z) are all uniformly bounded on z ∈ [–ln, ln],
which together with (2.28) guarantees that s′

ln (z) and i′ln (z) are all uniformly bounded on z ∈
[–ln, ln]. Differentiating system (2.28), one can infer that s′′

ln (z) and i′′ln (z) are all uniformly
bounded on z ∈ [–ln + ρ, ln – ρ]. Applying Arzela–Ascoli theorem on [–ln + ρ, ln – ρ] for
every n ∈N

∗ large enough, we have a subsequence which is still denoted by ln through the
diagonal argument such that limn→∞ ln = ∞ and

sln → s, iln → i, s′
ln → s′, i′ln → i′ as n → ∞,

uniformly in any compact subinterval of R. Furthermore, by Lebesgue dominated conver-
gence theorem, we have that

lim
n→∞ sln (z)

∫ h

0
f (τ )g

(
îln (z – cτ )

)
dτ = s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ ,
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lim
n→∞

∫ ∞

–∞
J(y)ŝln (z – y) dy =

∫ ∞

–∞
J(y)s(z – y) dy,

lim
n→∞

∫ ∞

–∞
J(y)îln (z – y) dy =

∫ ∞

–∞
J(y)i(z – y) dy.

Passing to the limits in (2.28) and (2.29) as n → ∞, we obtain that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cs′(z) = d1
∫ ∞

–∞ J(y)s(z – y) dy – d1s(z)

– βs(z)
∫ h

0 f (τ )g(i(z – cτ )) dτ ,

ci′(z) = d2
∫ ∞

–∞ J(y)i(z – y) dy + βs(z)
∫ h

0 f (τ )g(i(z – cτ )) dτ

– (d2 + γ )i(z),

(2.30)

and

s(z) ≤ s(z) ≤ s0, i(z) ≤ i(z) ≤ ī(z), z ∈R. (2.31)

Therefore, we have the following results.

Theorem 2.2 For R0 > 1 and c > c∗, there exists some (s(z), i(z)), z ∈ R satisfying (2.30) and
(2.31). Furthermore,

‖s‖C2(R) + ‖i‖C2(R) ≤ C0

with some C0 independent on l.

2.5 Asymptotic boundary of solution for (1.7)
Lemma 2.6 The solution (s(z), i(z)) of (1.7) satisfies

(i) s(–∞) = s0, i(–∞) = 0 and limz→–∞ e–λ1zi(z) = 1;
(ii) 0 <

∫

R
s(z)

∫ h
0 f (τ )g(i(z – cτ )) dτ dz < ∞,

∫

R
i(z) dz < ∞ and i(∞) = 0;

(iii) s(∞) < s0 and β
∫

R
s(z)

∫ h
0 f (τ )g(i(z – cτ )) dτ dz = γ

∫

R
i(z) dz = c(s0 – s∞).

Proof The proof of (i). For z ∈R, it follows from (2.31) that

s0 – μ–1eμz ≤ s(z) ≤ s0 and eλ1z(1 – Meαz) ≤ i(z) ≤ eλ1z. (2.32)

Applying the squeeze theorem in (2.32) gives that

s(–∞) = s0, i(–∞) = 0 (2.33)

and

lim
z→–∞ e–λ1zi(z) = 1. (2.34)

This completes the proof of (i).
The proof of (ii). From (2.31), (A1) and the definitions of s(z), i(z), we get

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz ≥

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz > 0. (2.35)
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Note that
∫ x

η

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz

= –
∫ x

η

∫ ∞

–∞
J(y)y

∫ 1

0
s′(z – ty) dt dy dz

=
∫ ∞

–∞
J(y)y

∫ 1

0

[
s(η – ty) – s(x – ty)

]
dt dy,

then

lim
η→–∞

∫ x

η

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz =

∫ ∞

–∞
J(y)y

∫ 1

0

[
s0 – s(x – ty)

]
dt dy

= –
∫ ∞

–∞
J(y)y

∫ 1

0
s(x – ty) dt dy.

Consequently, one can deduce for x ∈R that

∣
∣
∣
∣

∫ x

–∞

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz

∣
∣
∣
∣ ≤ s0

∫ ∞

–∞
J(y)|y|dy := σ0.

We can infer from the first equation in (1.7) that

β

∫ x

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz

= d1

∫ x

–∞

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz + cs0 – cs(x)

≤ d1σ0 + cs0,

which yields

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz < ∞.

Analogously, one can obtain

∣
∣
∣
∣

∫ ∞

–∞

∫ ∞

–∞
J(y)

[
i(z – y) – i(z)

]
dy dz

∣
∣
∣
∣ ≤ i0

∫ ∞

–∞
J(y)|y|dy := σ1.

Integrating the second equation in (1.7) over R, we get

γ

∫ ∞

–∞
i(z) dz ≤ d2

∫ ∞

–∞

∫ ∞

–∞
J(y)

[
i(z – y) – i(z)

]
dy dz

+ β

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz + ci0 < ∞. (2.36)

It follows from (2.36) that
∫

R
i(z) dz < ∞, which together with the boundedness of i′(z)

implies that i(∞) = 0. This ends the proof of (ii).
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The proof of (iii). To obtain the existence of s(∞), we assume for the contrary that
lim supz→∞ s(z) > lim infz→∞ s(z). Then Fluctuation Lemma [45] implies that there is a se-
quence {zn} satisfying zn → ∞ as n → ∞ such that

lim
n→∞ s(zn) = lim sup

z→∞
s(z) := σ2 and s′(zn) = 0. (2.37)

Meanwhile, there exists a sequence {ηn} satisfying ηn → ∞ as n → ∞ such that

lim
n→∞ s(ηn) = lim inf

z→∞ s(z) := σ3 < σ2 and s′(ηn) = 0. (2.38)

From the first equation in (1.7), we have

cs′(zn) = d1

∫ ∞

–∞
J(y)

[
s(zn – y) – s(zn)

]
dy dz – βs(zn)

∫ h

0
f (τ )g

(
i(zn – cτ )

)
dτ . (2.39)

Letting n → ∞ in (2.39) and using (2.37), i(∞) = 0 and g(0) = 0, we obtain

lim
n→∞

∫ ∞

–∞
J(y)s(zn – y) dy = lim

n→∞ s(zn) = σ2. (2.40)

Set

sn(y) = s(zn – y). (2.41)

Then we will show that limn→∞ sn(y) → σ2 for any y ∈ supp J := Ω . Take a sufficiently small
ε̃ > 0 and let

Ωε̃ = Ω ∩
{

y ∈ Ω| lim
n→∞ sn(y) < σ2 – ε̃

}
. (2.42)

From (2.40)–(2.42), one can get

σ2 = lim
n→∞

∫

Ω

J(y)s(zn – y) dy

= lim
n→∞

∫

Ω

J(y)sn(y) dy

≤ lim sup
n→∞

∫

Ω\Ωε̃

J(y)sn(y) dy + lim sup
n→∞

∫

Ωε̃

J(y)sn(y) dy

≤ σ2

∫

Ω\Ωε̃

J(y) dy + (σ2 – ε̃)
∫

Ωε̃

J(y) dy

= σ2 – ε̃

∫

Ωε̃

J(y) dy,

which implies that m(Ωε̃) = 0, where m(·) denotes the measure. Hence we obtain that
limn→∞ sn(y) = σ2 almost everywhere in Ω . However, {sn} is an equi-continuous family, so
the convergence is everywhere in Ω . That is,

lim
n→∞ sn(y) = lim

n→∞ s(zn – y) = σ2, y ∈ Ω .
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Analogously, using the similar arguments yields

lim
n→∞ s(ηn – y) = σ3 < σ2, y ∈ Ω .

In a similar manner, we can show that

lim
n→∞ s(zn – ty) = σ2, t ∈ [0, 1], y ∈ Ω , (2.43)

and

lim
n→∞ s(ηn – ty) = σ3, t ∈ [0, 1], y ∈ Ω . (2.44)

Note that

lim
n→∞

∫ zn

ηn

s(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz = 0. (2.45)

Integrating the first equation in (1.7) from ηn to zn and using (2.43)–(2.45), we have that

0 < c(σ2 – σ3)

= c lim
n→∞

[
s(zn) – s(ηn)

]

= d1 lim
n→∞

∫ zn

ηn

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz

– β lim
n→∞

∫ zn

ηn

s(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz

= d1 lim
n→∞

∫ zn

ηn

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz

= d1 lim
n→∞

∫ zn

ηn

∫ ∞

–∞
J(y)(–y)

∫ 1

0
s′(z – ty) dt dy dz

= d1 lim
n→∞

∫ ∞

–∞
J(y)y

∫ 1

0

[
s(ηn – ty) – s(zn – ty)

]
dt dy

= 0,

which yields a contradiction. Thus we obtain

lim sup
z→∞

s(z) = lim inf
z→∞ s(z), (2.46)

which implies that the limit s(∞) exists.
We next prove that s∞ < s0. Since s(z) ≤ s0, we have s∞ ≤ s0. Assume that s∞ = s0, then

we get

s(–∞) = s∞ = s0. (2.47)
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Integrating the first equation in (1.7) from –x to x yields

c
[
s(x) – s(–x)

]
= d1

∫ x

–x

∫ ∞

–∞
J(y)

[
s(z – y) – s(z)

]
dy dz

– β

∫ x

–x
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz

= d1

∫ x

–x

∫ ∞

–∞
J(y)(–y)

∫ 1

0
s′(z – ty) dt dy dz

– β

∫ x

–x
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz

= d1

∫ ∞

–∞
J(y)(–y)

∫ 1

0

[
s(x – ty) – s(–x – ty)

]
dt dy

– β

∫ x

–x
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz. (2.48)

Letting x → ∞ in (2.48) and using (2.47), we obtain

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz = 0,

then a contradiction appears. Thus we have

s∞ < s0. (2.49)

Furthermore, integrating the first equation in (1.7) over R and applying Fubini theorem,
we get

β

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz = c(s0 – s∞). (2.50)

Integrating the second equation in (1.7) over R and applying Fubini theorem and i(±∞) =
0, we deduce

β

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz = γ

∫ ∞

–∞
i(z) dz. (2.51)

This ends the proof of (iii). �

Therefore, we have obtained the following result.

Theorem 2.3 Suppose that R0 > 1 and c > c∗. Then system (1.5) admits a nontrivial
and nonnegative traveling wave solution (s(x + ct), i(x + ct)) satisfying (1.8). Furthermore,
limz→–∞ e–λ1zi(z) = 1 and

β

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz = γ

∫ ∞

–∞
i(z) dz = c(s0 – s∞).
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3 Nonexistence of traveling wave solutions
In this section, a detailed proof is provided for the nonexistence of traveling wave solutions
of (1.5) in two cases: R0 > 1 and 0 < c < c∗, as well as R0 ≤ 1 and c > 0. The main results of
this section are stated in Theorems 3.1 and 3.2, respectively.

3.1 Case 1: R0 > 1 and 0 < c < c∗

We present the main result of this case as follows.

Theorem 3.1 Suppose that R0 > 1 and 0 < c < c∗. Then there exist no nontrivial and non-
negative traveling wave solutions (s(x+ct), i(x+ct)) of (1.5) satisfying i(±∞) = 0, s(–∞) = s0

and supz∈R s(z) ≤ s0.

Proof The proof of this theorem is by contradiction. Assume that there exists a nontriv-
ial and nonnegative traveling wave solution (s(x + ct), i(x + ct)) of system (1.5) satisfying
i(±∞) = 0, s(–∞) = s0 and supz∈R s(z) ≤ s0.

Since limz→–∞ s(z) = s0 and limz→–∞ i(z) = 0, there exist ẑ < 0 and sufficiently small con-
stant δ0 > 0 such that

s(z) >
βs0g ′(0) + γ

2βg ′(0)
and 0 < i(z) < δ0 (3.1)

for z ≤ ẑ. Therefore, one can deduce from (2.12) and (3.1) that

ci′(z) = d2

∫ ∞

–∞
J(y)

[
i(z – y) – i(z)

]
dy

+ βs(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z)

≥ d2

∫ ∞

–∞
J(y)

[
i(z – y) – i(z)

]
dy

+
βs0g ′(0) + γ

2g ′(0)
[
g ′(0) – ε̂

]
∫ h

0
f (τ )i(z – cτ ) dτ – γ i(z) (3.2)

for z ≤ ẑ. Due to (3.2) holds for ε̂ ∈ (0, 1), one can get

ci′(z) ≥ d2

∫ ∞

–∞
J(y)

[
i(z – y) – i(z)

]
dy

+
βs0g ′(0) + γ

2

∫ h

0
f (τ )

[
i(z – cτ ) – i(z)

]
dτ +

βs0g ′(0) – γ

2
i(z) (3.3)

for z ≤ ẑ. By the integrability of i(z), we define

K(z) :=
∫ z

–∞
i(s) ds. (3.4)
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Integrating (3.3) from –∞ to z with z ≤ ẑ, using (3.4) and i(–∞) = 0, we obtain that

βs0g ′(0) – γ

2
K(z)

≤ ci(z) – d2

∫ z

–∞

∫ ∞

–∞
J(y)

[
i(s – y) – i(s)

]
dy ds

+
βs0g ′(0) + γ

2

∫ z

–∞

∫ h

0
f (τ )

[
i(s) – i(s – cτ )

]
dτ ds

= ci(z) – d2

∫ z

–∞

∫ ∞

–∞
J(y)

[
i(s – y) – i(s)

]
dy ds

+
βs0g ′(0) + γ

2

∫ h

0
f (τ )

∫ z

z–cτ
i(s) ds dτ . (3.5)

Applying Fubini theorem and (3.4) gives

∫ z

–∞

∫ ∞

–∞
J(y)i(s – y) dy ds =

∫ ∞

–∞
J(y)

∫ z

–∞
i(s – y) ds dy

=
∫ ∞

–∞
J(y)

∫ z–y

–∞
i(s) ds dy

=
∫ ∞

–∞
J(y)K(z – y) dy. (3.6)

Substituting (3.6) into (3.5) yields

βs0g ′(0) – γ

2
K(z) ≤ ci(z) – d2

∫ ∞

–∞
J(y)

[
K(z – y) – K(z)

]
dy

+
βs0g ′(0) + γ

2

∫ h

0
f (τ )

∫ z

z–cτ
i(s) ds dτ . (3.7)

In view of
∫ z

–∞

∫ ∞

–∞
J(y)

[
K(s – y) – K(s)

]
dy ds

=
∫ z

–∞

∫ ∞

–∞
(–y)J(y)

∫ 1

0
K ′(s – θy) dθ dy ds

=
∫ ∞

–∞
(–y)J(y)

∫ 1

0
K(z – θy) dθ dy (3.8)

and

∫ z

–∞

∫ h

0
f (τ )

∫ x

x–cτ
i(s) ds dτ dx

=
∫ h

0
f (τ )

[∫ z–cτ

–∞

∫ s+cτ

s
i(s) dx ds +

∫ z

z–cτ

∫ z

s
i(s) dx ds

]

dτ

=
∫ h

0
f (τ )

[

cτ
∫ z–cτ

–∞
i(s) ds +

∫ z

z–cτ
i(s)(z – s) ds

]

dτ

≤
∫ h

0
f (τ )

[

cτ
∫ z–cτ

–∞
i(s) ds + cτ

∫ z

z–cτ
i(s) ds

]

dτ
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= ch
∫ z

–∞
i(s) ds

= chK(z), (3.9)

we obtain that J ∗ K(·) – K(·) and
∫ h

0 f (τ )
∫ x

x–cτ i(s) ds dτ are integrable on (–∞, z] for z ≤ ẑ.
Hence from (3.7)–(3.9), one derives that K(·) is integrable on (–∞, z] for z ≤ ẑ.

Then integrating (3.7) from –∞ to z and using (3.8) and (3.9), we have

βs0g ′(0) – γ

2

∫ z

–∞
K(s) ds ≤

[

c +
βs0g ′(0) + γ

2
ch

]

K(z)

+ d2

∫ ∞

–∞
yJ(y)

∫ 1

0
K(z – θy) dθ dy

for z ≤ ẑ. Since yK(z – θy) is nonincreasing for θ ∈ [0, 1],

βs0g ′(0) – γ

2

∫ z

–∞
K(s) ds ≤

[

c +
βs0g ′(0) + γ

2
ch + d2

∫ ∞

–∞
yJ(y) dy

]

K(z)

≤
[

c +
βs0g ′(0) + γ

2
ch

]

K(z)

for z ≤ ẑ. Due to K(z) being nondecreasing with respect to z, for κ > 0 there holds

βs0g ′(0) – γ

2
κK(z – κ) ≤

[

c +
βs0g ′(0) + γ

2
ch

]

K(z).

Therefore, there exists a sufficiently large constant κ0 and some ε ∈ (0, 1) such that

K(z – κ0) ≤ εK(z), z ≤ ẑ, (3.10)

and

μ0 =
1
κ0

ln
1
ε

> 0. (3.11)

Set

Q(z) := K(z)e–μ0z, (3.12)

then using (3.11) and (3.12), we have that

Q(z – κ0) = K(z – κ0)e–μ0(z–κ0) ≤ εK(z)e–μ0(z–κ0) = Q(z),

which together with the fact Q(z) ≥ 0 implies that the limit Q(z) at minus infinity exists. On
the other hand, by (3.12) and (3.4), we get limz→∞ Q(z) = 0. Hence there exists a positive
constant Q0 such that

Q(z) ≤ Q0, z ∈R,
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namely,

K(z)e–μ0z ≤ Q0, z ∈R. (3.13)

Moreover, we obtain from (3.13) and (A3) that

∫ ∞

–∞
J(y)K(z – y) dy e–μ0z =

∫ ∞

–∞
J(y)e–μ0yK(z – y)e–μ0(z–y) dy

≤ Q0

∫ ∞

–∞
J(y)e–μ0y dy

≤ M1, z ∈R, (3.14)

where M1 is a positive constant. By the second equation in (1.7), s(z) ≤ s0 and g(i) ≤ g ′(0)i,
we have that

ci′(z) = d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z)

+ βs(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z)

≤ d2

∫ ∞

–∞
J(y)i(z – y) dy – d2i(z)

+ βs0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ – γ i(z). (3.15)

Integrating (3.15) from –∞ to z and using (3.4) and (3.6), we obtain that

ci(z) ≤ d2

∫ ∞

–∞
J(y)K(z – y) dy – d2K(z)

+ βs0g ′(0)
∫ z

–∞

∫ h

0
f (τ )i(s – cτ ) dτ ds – γ K(z)

= d2

∫ ∞

–∞
J(y)K(z – y) dy – (d2 + γ )K(z)

+ βs0g ′(0)
∫ h

0
f (τ )

∫ z

–∞
i(s – cτ ) ds dτ

= d2

∫ ∞

–∞
J(y)K(z – y) dy – (d2 + γ )K(z)

+ βs0g ′(0)
∫ h

0
f (τ )K(z – cτ ) dτ

≤ d2

∫ ∞

–∞
J(y)K(z – y) dy – (d2 + γ )K(z) + βs0g ′(0)K(z), (3.16)

where the last inequality is induced by the monotonicity of K(z). Utilizing (3.13), (3.14)
and (3.16), one can get that there exists a constant P1 > 0 such that

i(z)e–μ0z ≤ P1, z ∈R. (3.17)
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Noting (A3) and (3.17), there exists a positive constant M2 such that

∫ ∞

–∞
J(y)i(z – y) dy e–μ0z =

∫ ∞

–∞
J(y)i(z – y)e–μ0z dy

=
∫ ∞

–∞
J(y)e–μ0yi(z – y)e–μ0(z–y) dy

≤ P1

∫ ∞

–∞
J(y)e–μ0y dy ≤ M2, (3.18)

and

∫ h

0
f (τ )i(z – cτ )e–μ0z dτ =

∫ h

0
f (τ )e–μ0cτ i(z – cτ )e–μ0(z–cτ ) dτ

≤ P1

∫ h

0
f (τ )e–μ0cτ dτ ≤ P1. (3.19)

Then it follows from (3.15) and (3.17)–(3.19) that

sup
z∈R

{
i(z)e–μ0z} < ∞, sup

z∈R

{
i′(z)e–μ0z} < ∞. (3.20)

Moreover, we get from the second equation of (1.7) that, for z ∈ R,

d2

∫ ∞

–∞
J(z)i(z – y) dy – d2i(z) – ci′(z)

+ βs0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ – γ i(z)

= βs0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ . (3.21)

Since s(–∞) = s0, i(–∞) = 0, we have that for any ε > 0, there exists a constant z∗ � 0 such
that

s0g ′(0) –
s(z)g(i(z – cτ ))

i(z – cτ )
< ε for z < z∗.

Then we get that

s0g ′(0)i(z – cτ ) – s(z)g
(
i(z – cτ )

)

= i(z – cτ )
[

s0g ′(0) –
s(z)g(i(z – cτ ))

i(z – cτ )

]

≤
[ s0g ′(0) – s(z)g(i(z–cτ ))

i(z–cτ ) + i(z – cτ )
2

]2

≤
[

ε + i(z – cτ )
2

]2

≤ i2(z – cτ ) for z < z∗. (3.22)



Cheng and Lu Advances in Difference Equations        (2019) 2019:109 Page 24 of 29

From (3.20) and (3.22), we obtain

sup
z∈R

{

e–2μ0z
[

βs0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ – βs(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

]}

< ∞. (3.23)

Hence

β

∫ ∞

–∞
e–λz

[

s0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ – s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

]

dz < ∞ (3.24)

for 0 < Reλ < 2μ0.
For λ ∈C with 0 < Reλ < μ0, define the two-sided Laplace transform of i(z) by

L(λ) :=
∫ ∞

–∞
i(z)e–λz dz.

In view of
∫ ∞

–∞
e–λz

∫ ∞

–∞
J(y)i(z – y) dy dz =

∫ ∞

–∞
J(y)e–λyL(λ) dy

and taking two-sided Laplace transform on (3.21), we obtain

Θ(λ, c)L(λ) = β

∫ ∞

–∞
e–λz

[

s0g ′(0)
∫ h

0
f (τ )i(z – cτ ) dτ

– s(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ

]

dz (3.25)

for λ ∈C with 0 < Reλ < μ0, where Θ(λ, c) is defined in (2.2).
The property of Laplace transform [43] claims that either there exists a real number μ0

such that L(λ) is analytic for λ ∈ C with 0 < Reλ < μ0 and λ = μ0 is singular point of L(λ),
or for λ ∈ C with Reλ > 0, L(λ) is well defined. As for (3.25), the two Laplace integrals
can be analytically continued to the whole right half-plane. Otherwise the integral on the
left-hand side of (3.25) has a singularity at λ = μ0 and it is analytic for all λ with Reλ < μ0.
However, (3.24) implies that the integral on the right-hand side of (3.25) is actually analytic
for all λ with Reλ < 2μ0, a contradiction. Thus we obtain that (3.25) holds for all λ with
Reλ > 0. However, Lemma 2.1 implies that �(∞, c) = ∞ for c ∈ (0, c∗). A contradiction
occurs. The proof of this theorem is completed. �

3.2 Case 2: R0 ≤ 1 and c > 0
We give the main result of this case as follows.

Theorem 3.2 Suppose that R0 ≤ 1 and c > 0. Then there exist no nontrivial and nonneg-
ative traveling wave solutions (s(x + ct), i(x + ct)) of (1.5) satisfying i(±∞) = 0, s(–∞) = s0

and supz∈R s(z) ≤ s0.

Proof Suppose to the contrary that there exists a traveling wave solution (s(x + ct), i(x + ct))
of (1.5) satisfying i(±∞) = 0, s(–∞) = s0 and supz∈R s(z) ≤ s0. We prove the desired results
in two subcases.
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Subcase 1. R0 < 1, i.e., βs0g ′(0)/γ < 1.
Integrating the second equation in (1.7) over R yields

c
∫ ∞

–∞
i′(z) dz = d2

∫ ∞

–∞

∫ ∞

–∞
J(y)i(z – y) dy dz – (d2 + γ )

∫ ∞

–∞
i(z) dz

+ β

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz. (3.26)

Since i(±∞) = 0 and s(z) ≤ s0, one can obtain from (3.26) that

(d2 + γ )
∫ ∞

–∞
i(z) dz ≤ d2

∫ ∞

–∞

∫ ∞

–∞
J(y)i(z – y) dy dz

+ βs0g ′(0)
∫ ∞

–∞

∫ h

0
f (τ )i(z – cτ ) dτ dz. (3.27)

Applying Fubini theorem in (3.27), we have that

(d2 + γ )
∫ ∞

–∞
i(z) dz ≤ d2

∫ ∞

–∞
J(y)

∫ ∞

–∞
i(z – y) dz dy

+ βs0g ′(0)
∫ h

0
f (τ )

∫ ∞

–∞
i(z – cτ ) dz dτ

= d2

∫ ∞

–∞
i(z) dz + βs0g ′(0)

∫ ∞

–∞
i(z) dz,

that is,

∫ ∞

–∞
i(z) dz ≤ βs0g ′(0)

γ

∫ ∞

–∞
i(z) dz <

∫ ∞

–∞
i(z) dz,

which leads to a contradiction.
Subcase 2. R0 = 1, i.e., βs0g ′(0) = γ .
From the second equation in (1.7), we get that

ci′(z) = d2

∫ ∞

–∞
J(z – y)

[
i(y) – i(z)

]
dy

+ βs(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – γ i(z)

= d2

∫ ∞

–∞
J(z – y)

[
i(y) – i(z)

]
dy

+ βs(z)
∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ – βs0g ′(0)i(z). (3.28)
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Integrating (3.28) over R yields

c
∫ ∞

–∞
i′(z) dz = d2

∫ ∞

–∞

∫ ∞

–∞
J(z – y)

[
i(y) – i(z)

]
dy dz

+ β

∫ ∞

–∞
s(z)

∫ h

0
f (τ )g

(
i(z – cτ )

)
dτ dz

– βs0g ′(0)
∫ ∞

–∞
i(z) dz. (3.29)

Using the facts i(±∞) = 0 and Fubini theorem, we obtain from (3.29) that

0 = β

∫ h

0
f (τ )

∫ ∞

–∞
s(z)g

(
i(z – cτ )

)
dz dτ – βs0g ′(0)

∫ ∞

–∞
i(z) dz

= β

∫ h

0
f (τ )

∫ ∞

–∞
s(z + cτ )g

(
i(z)

)
dz dτ – βs0g ′(0)

∫ h

0
f (τ )

∫ ∞

–∞
i(z) dz dτ

≤ βg ′(0)
∫ h

0
f (τ )

∫ ∞

–∞

[
s(z + cτ ) – s0

]
i(z) dz dτ . (3.30)

Due to (s(z + cτ ) – s0)i(z) ≤ 0 for z ∈ R, τ ∈ [0, h] and the continuity of s(z) and i(z), it
follows from (3.30) that

[
s(z + cτ ) – s0

]
i(z) = 0. (3.31)

Since the interior of supp i is not empty, we have from (3.31) that

s(z + cτ ) = s0, z ∈ supp i, τ ∈ [0, h]. (3.32)

For z ∈ supp i, τ ∈ [0, h], by the translation invariance of traveling wave solutions, we get
from the first equation in (1.7) that

cs′(z + cτ ) = d1

∫ ∞

–∞
J(y)s(z – y + cτ ) dy – d1s(z + cτ )

– βs(z + cτ )
∫ h

0
f (τ )g

(
i(z)

)
dτ . (3.33)

Using (3.32) and (3.33), we then have

0 = d1

∫ ∞

–∞
J(y)

[
s(z + cτ – y) – s0

]
dy – βs0

∫ h

0
f (τ )g

(
i(z)

)
dτ

≤ –βs0g
(
i(z)

)
< 0, z ∈ supp i, τ ∈ [0, h],

which yields another contradiction. The proof of this theorem is finished. �



Cheng and Lu Advances in Difference Equations        (2019) 2019:109 Page 27 of 29

4 Application and conclusion
In this section, we will give a typical example to support our abstract results. The choice
of g(i) = i

1+αi (α > 0 is a coefficient) in (1.5) leads to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

st(x, t) = d1
∫ ∞

–∞ J(x – y)[s(y, t) – s(x, t)] dy

– βs(x, t)
∫ h

0 f (τ ) i(x,t–τ )
1+αi(x,t–τ ) dτ ,

it(x, t) = d2
∫ ∞

–∞ J(x – y)[i(y, t) – i(x, t)] dy

+ βs(x, t)
∫ h

0 f (τ ) i(x,t–τ )
1+αi(x,t–τ ) dτ – γ i(x, t).

(4.1)

Obviously, it is easy to verify that g(i) = i
1+αi satisfies assumptions (A1) and (A2). Applying

Theorems 2.3, 3.1 and 3.2, we obtain the following result.

Theorem 4.1 There exists a positive constant c∗ such that
(i) If R0 = βs0/γ > 1 and c > c∗, then system (4.1) admits a nontrivial and nonnegative

traveling wave solution (s(x + ct), i(x + ct)) satisfying s(∞) = s∞ < s0 = s(–∞),
i(±∞) = 0;

(ii) If R0 > 1 and 0 < c < c∗ or R0 ≤ 1 and c > 0, then system (4.1) admits no nontrivial
and nonnegative traveling wave solutions (s(x + ct), i(x + ct)) satisfying i(±∞) = 0,
s(–∞) = s0 and supz∈R s(z) ≤ s0.

It is known that traveling wave solutions of nonlinear partial differential equations have
been extensively studied due to significant applications in many fields [1, 2, 33, 34, 37, 55–
57]. In the present paper, we have studied the traveling wave solutions of a nonlocal dif-
fusion epidemic model with nonlinear incidences and distributed delay. It has been found
that the existence and nonexistence of traveling wave solutions are totally determined by
the basic reproduction number and the minimum wave speed c∗. More precisely, if R0 > 1
and c > c∗, then (1.5) has a nontrivial and nonnegative traveling wave solution satisfying
(1.8); if 0 < c < c∗ or R0 ≤ 1, there exist no such traveling wave solutions. In particular, we
give an example with the choice of g(i) = i

1+αi (α > 0) to support our theoretical analysis.
It is noted that the existence and nonexistence of traveling wave solutions can indicate
whether or not the disease spreads; if it spreads, the wave speed can illustrate the spread-
ing speed. Results on this topic may help one predict how fast a disease invades geograph-
ically, and accordingly, take necessary measures in advance to prevent the disease, or at
least decrease possible negative consequences.

To explore the effect of the diffusive rate d2 of the infective individuals on the minimum
wave speed c∗, we use (2.2) and Lemma 2.1 to get

Θc∗
(
λ∗, c∗) = –λ∗ – λ∗βs0g ′(0)

∫ h

0
τ f (τ )e–λ∗c∗τ dτ < 0 (4.2)

and

Θd2

(
λ∗, c∗) =

∫ ∞

–∞
J(y)

(
e–λ∗y – 1

)
dy ≥ –λ∗

∫ ∞

–∞
yJ(y) dy = 0. (4.3)

Combining (4.2) and (4.3), we obtain the fact that the geographical movement of infective
individuals can increase the speed of the spread of disease.
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There are a few problems deserving further investigation, for instance, time periodic
traveling wave solutions, the uniqueness and stability of traveling wave solution in (1.5).
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