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Abstract
The classical linearization problem concerns with determining the coefficients in the
expansion of the product of two polynomials in terms of any given sequence of
polynomials. As a generalization of this, we consider here sums of finite products of
Chebyshev polynomials of the first, third, and fourth kinds, which are different from
the ones previously studied. We represent each of them as linear combinations of
Hermite, extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials. Here,
the coefficients involve some terminating hypergeometric functions 2F1, 2F2, and 1F1.
These representations are obtained by explicit computations.
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1 Introduction and preliminaries
Here in this section, before stating the necessary basic facts about orthogonal polynomials,
we will first fix some notations that will be used throughout this paper. We will limit those
facts as minimum as possible. So the interested reader may want to refer to some general
books on orthogonal polynomials; for instance [2, 3, 26].

For any nonnegative integer n, the falling factorial polynomials (x)n and the rising fac-
torial polynomials 〈x〉n are, respectively, given by

(x)0 = 1, (x)n = x(x – 1) · · · (x – n + 1) (n ≥ 1), (1)

〈x〉0 = 1, 〈x〉n = x(x + 1) · · · (x + n – 1) (n ≥ 1). (2)

The two factorial polynomials are related by

(–1)n(x)n = 〈–x〉n, (–1)n〈x〉n = (–x)n, (3)

(2n – 2j)!
(n – j)!

=
22n–2j(–1)j〈 1

2 〉n

〈 1
2 – n〉j

(n ≥ j ≥ 0), (4)
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(2n + 2j)!
(n + j)!

= 22n+2j
〈

1
2

〉
n

〈
n +

1
2

〉
j

(n, j ≥ 0), (5)

Γ

(
n +

1
2

)
=

(2n)!
√

π

22nn!
(n ≥ 0), (6)

Γ (x + 1)
Γ (x + 1 – n)

= (x)n,
Γ (x + n)

Γ (x)
= 〈x〉n (n ≥ 0), (7)

where Γ (x) is the gamma function. The hypergeometric function is defined by

pFq(a1, . . . , ap; b1, . . . , bq; x) =
∞∑

n=0

〈a1〉n · · · 〈ap〉n

〈b1〉n · · · 〈bq〉n

xn

n!
. (8)

Next, we would like to state some basic facts about Chebyshev polynomials of the first
kind Tn(x), second kind Un(x), third kind Vn(x), and fourth kind Wn(x). Also, we will
mention those facts about Hermite polynomials Hn(x), extended Laguerre polynomials
Lα

n(x), Legendre polynomials Pn(x), Gegenbauer polynomials C(λ)
n (x), and Jacobi polyno-

mials P(α,β)
n (x). All of these facts can be found also in [5–9, 12, 14].

The above-mentioned polynomials are given, in terms of generating functions, in the
following:

F1(t, x) =
1 – xt

1 – 2xt + t2 =
∞∑

n=0

Tn(x)tn, (9)

F2(t, x) =
1

1 – 2xt + t2 =
∞∑

n=0

Un(x)tn, (10)

F3(t, x) =
1 – t

1 – 2xt + t2 =
∞∑

n=0

Vn(x)tn, (11)

F4(t, x) =
1 + t

1 – 2xt + t2 =
∞∑

n=0

Wn(x)tn, (12)

e2xt–t2 =
∞∑

n=0

Hn(x)
tn

n!
, (13)

(1 – t)–α–1 exp

(
–

xt
1 – t

)
=

∞∑
n=0

Lα
n(x)tn (α > –1), (14)

(
1 – 2xt + t2)– 1

2 =
∞∑

n=0

Pn(x)tn, (15)

1
(1 – 2xt + t2)λ

=
∞∑

n=0

C(λ)
n (x)tn

(
λ > –

1
2

,λ �= 0, |t| < 1, |x| ≤ 1
)

, (16)

α + β

R(1 – t + R)α(1 + t + R)β
=

∞∑
n=0

P(α,β)
n (x)tn (

R =
√

1 – 2xt + t2,α,β > –1
)
. (17)

They are also given, in terms of explicit expressions, as follows:

Tn(x) = 2F1

(
–n, n;

1
2

;
1 – x

2

)
=

n
2

[ n
2 ]∑

l=0

(–1)l 1
n – l

(
n – l

l

)
(2x)n–2l (n ≥ 1), (18)
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Un(x) = (n + 1)2F1

(
–n, n + 2;

3
2

;
1 – x

2

)

=
[ n

2 ]∑
l=0

(–1)l

(
n – l

l

)
(2x)n–2l (n ≥ 0), (19)

Vn(x) = 2F1

(
–n, n + 1;

1
2

;
1 – x

2

)

=
n∑

l=0

(
n + l

2l

)
2l(x – 1)l (n ≥ 0), (20)

Wn(x) = (2n + 1)2F1

(
–n, n + 1;

3
2

;
1 – x

2

)

= (2n + 1)
n∑

l=0

2l

2l + 1

(
n + l

2l

)
(x – 1)l (n ≥ 0), (21)

Hn(x) = n!
[ n

2 ]∑
l=0

(–1)l

l!(n – 2l)!
(2x)n–2l (n ≥ 0), (22)

Lα
n(x) =

〈α + 1〉n

n! 1F1(–n,α + 1; x)

=
n∑

l=0

(–1)l

(
n + α

n – ł

)

l!
xl (n ≥ 0), (23)

Pn(x) = 2F1

(
–n, n + 1; 1;

1 – x
2

)

=
1
2n

[ n
2 ]∑

l=0

(–1)l

(
n
l

)(
2n – 2l

n

)
xn–2l (n ≥ 0), (24)

C(λ)
n (x) =

(
n + 2λ – 1

n

)
2F1

(
–n, n + 2λ;λ +

1
2

;
1 – x

2

)

=
[ n

2 ]∑
k=0

(–1)k Γ (n – k + λ)
Γ (λ)k!(n – 2k)!

(2x)n–2k (n ≥ 0), (25)

P(α,β)
n (x) =

〈α + 1〉n

n! 2F1

(
–n, 1 + α + β + n;α + 1;

1 – x
2

)

=
n∑

k=0

(
n + α

n – k

)(
n + β

k

)(
x – 1

2

)k(x + 1
2

)n–k

(n ≥ 0). (26)

Next, we state Rodrigues-type formulas for Hermite and extended Laguerre polynomi-
als, and Rodrigues’ formulas for Legendre, Gegenbauer and Jacobi polynomials:

Hn(x) = (–1)nex2 dn

dxn e–x2
, (27)

Lα
n(x) =

1
n!

x–αex dn

dxn

(
e–xxn+α

)
, (28)

Pn(x) =
1

2nn!
dn

dxn

(
x2 – 1

)n, (29)
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(
1 – x2)λ– 1

2 C(λ)
n (x) =

(–2)n

n!
〈λ〉n

〈n + 2λ〉n

dn

dxn

(
1 – x2)n+λ– 1

2 , (30)

(1 – x)α(1 + x)βP(α,β)
n (x) =

(–1)n

2nn!
dn

dxn (1 – x)n+α(1 + x)n+β . (31)

The special polynomials in (27)–(31) satisfy the following orthogonality properties with
respect to various weight functions:

∫ ∞

–∞
e–x2

Hn(x)Hm(x) dx = 2nn!
√

πδm,n, (32)
∫ ∞

0
xαe–xLα

n(x)Lα
m(x) dx =

1
n!

Γ (α + n + 1)δm,n, (33)

∫ 1

–1
Pn(x)Pm(x) dx =

2
2n + 1

δm,n, (34)

∫ 1

–1

(
1 – x2)λ– 1

2 C(λ)
n (x)C(λ)

m (x) dx =
π21–2λΓ (n + 2λ)
n!(n + λ)Γ (λ)2 δm,n, (35)

∫ 1

–1
(1 – x)α(1 + x)βP(α,β)

n (x)P(α,β)
m (x) dx

=
2α+β+1Γ (n + α + 1)Γ (n + β + 1)

(2n + α + β + 1)Γ (n + α + β + 1)Γ (n + 1)
δm,n. (36)

In this paper, we will consider the following sums of finite products of Chebyshev polyno-
mials of the first, third and fourth kinds:

αm,r(x) =
∑

i1+···+ir+1=m

Ti1 (x) · · ·Tir+1 (x) (m, r ≥ 0), (37)

βm,r(x) =
∑

i1+···+ir+1=m

Vi1 (x) · · ·Vir+1 (x) (m, r ≥ 0), (38)

γm,r(x) =
∑

i1+···+ir+1=m

Wi1 (x) · · ·Wir+1 (x) (m, r ≥ 0), (39)

where all the sums in (37)–(39) run over all nonnegative integers i1, . . . , ir+1, with i1 + · · · +
ir+1 = m. Here, we observe that αm,r(x), βm,r(x), and γm,r(x) all have degree m.

Our goal here is to express each of the sums of products in (37)–(39) as linear com-
binations of Hn(x), Lα

n(x), Pn(x), C(λ)
n (x), and P(α,β)

n (x). An important observation here is
that αm,r(x), βm,r(x), and γm,r(x) can be expressed in terms of U (r)

m–j+r(x), (j = 1, . . . , m) (see
Lemmas 1 and 2) by using the generating functions in (10). Then our results for αm,r(x),
βm,r(x), and γm,r(x) will be obtained by making use of Lemmas 1 and 2, the general formu-
las in Propositions 1 and 2, and integration by parts. We note here that each of the sums in
(37)–(39) are also expressed in terms of all four kinds of Chebyshev polynomials in (21).

Before we state the main theorems, we would like to mention some previous work di-
rectly related to the results in the present paper. For this purpose, let us put

m∑
l=0

∑
i1+···+ir+1=m–l

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x)

–
m–2∑
l=0

∑
i1+···+ir+1=m–l–2

(
r + l

r

)
xlTi1 (x) · · ·Tir+1 (x) (m ≥ 2, r ≥ 1), (40)
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m∑
l=0

∑
i1+···+ir+1=l

(
r – 1 + m – l

r – 1

)
Vi1 (x) · · ·Vir+1 (x) (m ≥ 0, r ≥ 1), (41)

m∑
l=0

∑
i1+···+ir+1=l

(–1)m–l
(

r – 1 + m – l
r – 1

)
Wi1 (x) · · ·Wir+1 (x) (m ≥ 0, r ≥ 1). (42)

We studied Eq. (40) in [13, 16] and (41) and (42) in [4, 19] and were able to express each of
them in terms of the Chebyshev polynomials of all kinds, Hermite polynomials, extended
Laguerre polynomials. Legendre polynomials, Gegenbauer polynomials, and Jacobi poly-
nomials. It is worth mentioning that some terminating hypergeometic functions like 1F1,
2F0, 2F1, and 3F2 appear as coefficients in such expressions. The impetus for these stud-
ies was the observation that the sums in (40)–(42) are, respectively, equal to 1

2r–1r! T
(r)
m+r(x),

1
2rr! V

(r)
m+r(x), and 1

2rr! W
(r)
m+r(x). In fact, these equalities can easily be seen by differentiating

the generating functions in (9), (11) and (12). The next three theorems are the main results
in this paper.

Theorem 1 For any nonnegative integers m, r, the following identities hold:

∑
i1+···+ir+1=m

Ti1 (x) · · ·Tir+1 (x)

=
1
r!

[ m
2 ]∑

s=0

1
(m – 2s)!

s∑
l=0

(–1)l(m + r – l)!
l!(s – l)!

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)
Hm–2s(x) (43)

=
2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!Γ (m – 2l + α + 1)

l!(m – k – 2l)!

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)
Lα

k (x) (44)

=
4m

r!

[ m
2 ]∑

s=0

21–2s(2m – 4s + 1)
s∑

l=0

(– 1
4 )l(m + r – l)!(m – s – l + 1)!
l!(s – l)!(2m – 2s – 2l + 2)!

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)
Pm–2s(x) (45)

=
Γ (λ)

r!

[ m
2 ]∑

s=0

(m – 2s + λ)
s∑

l=0

(–1)l(m + r – l)!
l!(s – l)!Γ (m + λ – s – l + 1)

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)
C(λ)

m–2s(x) (46)

=
(–2)m

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!

l!(m – k – 2l)!

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)

× 2F1(2l + k – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (47)
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Theorem 2 For any nonnegative integers m, r, the following identities hold:

∑
i1+···+ir+1=m

Vi1 (x) · · ·Vir+1 (x)

= (–1)m(r + 1)
m∑

k=0

(–1)k

k!

[ m–k
2 ]∑

s=0

(k + 2s + r)!
(m – k – 2s)!(r + 1 – m + k + 2s)!s!

× 1F1(–s, –k – 2s – r; –1)Hk(x) (48)

=
2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!Γ (m + α – 2l + 1)

l!(m – k – 2l)!

× 2F2

(
2l + k – m, –r – 1; l – m – r; 2l – m – α; –

1
2

)
Lα

k (x) (49)

= (–1)m(r + 1)
m∑

k=0

(2k + 1)

×
[ m–k

2 ]∑
s=0

(k + 2s + r)!
s!(m – k – 2s)!(r + 1 – m + k + 2s)!(k + s + 1

2 )k+s

× 2F1

(
–s, –k – s –

1
2

; –k – 2s – r; 1
)

Pk(x) (50)

= (–1)m(r + 1)Γ (λ)
m∑

k=0

(k + λ)(–1)k

×
[ m–k

2 ]∑
s=0

(k + 2s + r)!
s!(m – k – 2s)!(r + 1 – m + k + 2s)!Γ (k + λ + s + 1)

× 2F1(–s, –k – λ – s; –k – 2s – r; 1)C(λ)
k (x) (51)

= (–2)m(r + 1)
m∑

k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

×
m–k∑
j=0

2–j

j!(r + 1 – j)!

[ m–j–k
2 ]∑

l=0

(– 1
4 )l(m – j + r – l)!

l!(m – j – k – 2l)!

× 2F1(j + k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (52)

Theorem 3 For any nonnegative integers m, r, the following identities hold:

∑
i1+···+ir+1=m

Wi1 (x) · · ·Wir+1 (x)

= (r + 1)
m∑

k=0

1
k!

[ m–k
2 ]∑

s=0

(k + 2s + r)!
(m – k – 2s)!(r + 1 – m + k + 2s)!s!

× 1F1(–s, –k – 2s – r; –1)Hk(x) (53)

=
2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!Γ (m + α – 2l + 1)

l!(m – k – 2l)!
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× 2F2

(
2l + k – m, –r – 1; l – m – r; 2l – m – α;

1
2

)
Lα

k (x) (54)

= (r + 1)
m∑

k=0

(–1)k(2k + 1)

×
[ m–k

2 ]∑
s=0

(k + 2s + r)!
s!(m – k – 2s)!(r + 1 – m + k + 2s)!(k + s + 1

2 )k+s

× 2F1

(
–s, –k – s –

1
2

; –k – 2s – r; 1
)

Pk(x) (55)

= (r + 1)Γ (λ)
m∑

k=0

(k + λ)

×
[ m–k

2 ]∑
s=0

(k + 2s + r)!
s!(m – k – 2s)!(r + 1 – m + k + 2s)!Γ (k + λ + s + 1)

× 2F1(–s, –k – λ – s; –k – 2s – r; 1)C(λ)
k (x) (56)

= (–2)m(r + 1)
m∑

k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

m–k∑
j=0

(– 1
2 )j

j!(r + 1 – j)!

×
[ m–j–k

2 ]∑
l=0

(– 1
4 )l(m – j + r – l)!

l!(m – j – k – 2l)!

× 2F1(j + k + 2l – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x). (57)

Lastly, we would like to mention some of the previous results that are related to the
present work. Along the same line as this paper, certain sums of finite products of Cheby-
shev polynomials of the first, second, third and fourth kinds, and of Legendre, Laguerre,
Fibonacci and Lucas polynomials are expressed in terms of all four kinds of Chebyshev
polynomials in [10, 16, 19, 23, 25] and also in terms of Hermite, extended Laguerre, Leg-
endre, Gegenbauer and Jacobi polynomials in [4, 11, 13, 24].

Also, some sums of finite products of Appell and non-Appell polynomials are expressed
as linear combinations of Bernoulli polynomials. All of these were obtained by deriving
Fourier series expansions for the functions closely related to such sums of finite products
of special polynomials. Indeed, as for Appell polynomials some sums of finite products
of Bernoulli and Euler polynomials are expressed in terms of Bernoulli polynomials in [1,
20]. As for non-Appell polynomials in [15, 17, 18, 22] the same are done for some sums of
finite products of Chebyshev polynomials of the first, second, third, and fourth kinds, and
of Legendre, Laguerre, Fibonacci and Lucas polynomials.

2 Proof of Theorem 1
Here we are going to prove Theorem 1. For this purpose, we first state Propositions 1 and 2
that will be used in showing Theorems 1, 2 and 3.

We note that the facts (a), (b), (c), (d) and (e) of Proposition 1 are, respectively, from
(3.7) of [8], (2.3) of [12], (2.3) of [9], (2.3) of [6] and (2.7) of [14]. Actually, all the formu-
las in Proposition 1 can be derived from the orthogonalities in (32)–(36). Rodrigues’ and
Rodrigues-type formulas in (27)–(31), and integration by parts.
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Proposition 1 Let q(x) ∈ R[x] be a polynomial of degree n. Then the following formulas
hold:

(a) q(x) =
∑n

k=0 Ck,1Hk(x), where

Ck,1 =
(–1)k

2kk!
√

π

∫ ∞

–∞
q(x)

dk

dxk e–x2
dx.

(b) q(x) =
∑n

k=0 Ck,2Lα
k (x), where

Ck,2 =
1

Γ (α + k + 1)

∫ ∞

0
q(x)

dk

dxk

(
e–xxk+α

)
dx.

(c) q(x) =
∑n

k=0 Ck,3Pk(x), where

Ck,3 =
2k + 1
2k+1k!

∫ 1

–1
q(x)

dk

dxk

(
x2 – 1

)k dx.

(d) q(x) =
∑n

k=0 Ck,4C(λ)
k (x), where

Ck,4 =
(k + λ)Γ (λ)

(–2)k√πΓ (k + λ + 1
2 )

∫ 1

–1
q(x)

dk

dxk

(
1 – x2)k+λ– 1

2 dx.

(e) q(x) =
∑n

k=0 Ck,5P(α,β)
k (x), where

Ck,5 =
(–1)k(2k + α + β + 1)Γ (k + α + β + 1)

2α+β+k+1Γ (α + k + 1)Γ (β + k + 1)

∫ 1

–1
q(x)

dk

dxk (1 – x)k+α(1 + x)k+β dx.

The next proposition is stated in [24].

Proposition 2 Let m, k be nonnegative integers. Then we have the following.

(a)
∫ ∞

–∞
xme–x2

dx =

⎧⎨
⎩

0, if m ≡ 1(mod 2),
m!

√
π

( m
2 )!2m , if m ≡ 0(mod 2).

(b)
∫ 1

–1
xm(

1 – x2)k dx =

⎧⎨
⎩

0, if m ≡ 1(mod 2),
22k+2k!m!(k+ m

2 +1)!
( m

2 )!(2k+m+2)! , if m ≡ 0(mod 2).

(c)
∫ 1

–1
xm(

1 – x2)k+λ– 1
2 dx =

⎧⎨
⎩

0, if m ≡ 1(mod 2),
Γ (k+λ+ 1

2 )Γ ( m
2 + 1

2 )
Γ (k+λ+ m

2 +1) , if m ≡ 0(mod 2).

(d)
∫ 1

–1
xm(1 – x)k+α(1 + x)k+β dx

= 22k+α+β+1
m∑

s=0

(
m
s

)
(–1)m–s2s Γ (k + α + 1)Γ (k + β + s + 1)

Γ (2k + α + β + s + 2)
.

In [27], the following lemma is stated for m ≥ r + 1. But it is valid for any nonnegative
integer m, under the usual convention

(r+1
j
)

= 0, for j > r + 1 (see [21]).
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Lemma 1 Let m, r be any nonnegative integers. Then the following identity holds:

∑
i1+···+ir+1=m

Ti1 (x) · · ·Tir+1 (x) =
1

2rr!

m∑
j=0

(–1)j
(

r + 1
j

)
xjU (r)

m–j+r(x), (58)

where
(r+1

j
)

= 0, for j > r + 1.

For (19), we see that the rth derivative of Un(x) is given by

U (r)
n (x) =

[ n–r
2 ]∑

l=0

(–1)l
(

n – l
l

)
(n – 2l)r2n–2lxn–2l–r. (59)

We see easily from (59) that

xjU (r)
m–j+r(x) =

[ m–j
2 ]∑

l=0

(–1)l
(

m – j + r – l
l

)
(m – j + r – 2l)r2m–j+r–2lxm–2l. (60)

In this section, we are going to show (43), (45) and (47) in Theorem 1, leaving the others
(44) and (46) as exercises to the reader.

With αm,r(x) as in (37), we let

αm,r(x) =
m∑

k=0

Ck,1Hk(x). (61)

Then, by making use of (a) of Proposition 1, (58), (60), and integration by parts k times,
we have

Ck,1 =
(–1)k

2kk!
√

π

∫ ∞

–∞
αm,r(x)

dk

dxk e–x2
dx

=
(–1)k

2kk!
√

π2rr!

m∑
j=0

(–1)j
(

r + 1
j

)∫ ∞

–∞
xjU (r)

m–j+r(x)
dk

dxk e–x2
dx

=
(–1)k

2kk!
√

π2rr!

m∑
j=0

(–1)j
(

r + 1
j

) [ m–j
2 ]∑

l=0

(–1)l
(

m – j + r – l
l

)

× (m – j + r – 2l)r2m–j+r–2l
∫ ∞

–∞
xm–2l dk

dxk e–x2
dx (62)

=
(–1)k

2kk!
√

π2rr!

[ m–k
2 ]∑

l=0

m–2l∑
j=0

(–1)j
(

r + 1
j

)
(–1)l

(
m – j + r – l

l

)

× (m – j + r – 2l)r2m–j+r–2l(–1)k(m – 2l)k

∫ ∞

–∞
xm–2l–ke–x2

dx,

where we note from (a) of Proposition 2 that

∫ ∞

–∞
xm–2l–ke–x2

dx =

⎧⎨
⎩

0, if k �≡ m(mod 2),
(m–2l–k)!

√
π

( m–k
2 –l)!2m–2l–k , if k ≡ m(mod 2).

(63)
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Now, from (61)–(63) and after some simplifications, we obtain

αm,r(x) =
1
r!

∑
0≤k≤m

k≡m(mod 2)

1
k!

[ m–k
2 ]∑

l=0

(–1)l(m – 2l)!
( m–k

2 – l)!l!

m–2l∑
j=0

( 1
2 )j(–1)j(r + 1)j(m + r – l – j)!

j!(m – 2l – j)!
Hk(x)

=
1
r!

∑
0≤k≤m

k≡m(mod 2)

1
k!

[ m–k
2 ]∑

l=0

(–1)l(m + r – l)!
l!( m–k

2 – l)!

m–2l∑
j=0

( 1
2 )j〈2l – m〉j〈–r – 1〉j

j!〈l – m – r〉j
Hk(x)

=
1
r!

[ m
2 ]∑

s=0

1
(m – 2s)!

s∑
l=0

(–1)l(m + r – l)!
l!(s – l)! 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)

× Hm–2s(x). (64)

This shows (35) of Theorem 1.
Next, let us put

αm,r(x) =
m∑

k=0

Ck,3Pk(x). (65)

Then, from (c) of Proposition 1, (58), (60) and integration by parts k times, we get

Ck,3 =
(2k + 1)

2k+1k!2rr!

[ m–k
2 ]∑

l=0

m–2l∑
j=0

(–1)j
(

r + 1
j

)
(–1)l

×
(

m – j + r – l
l

)
(m – j + r – 2l)r2m–j+r–2l(m – 2l)k

×
∫ 1

–1
xm–2l–k(1 – x2)k dx, (66)

where we observe from (b) of Proposition 2 that

∫ 1

–1
xm–2l–k(1 – x2)k dx =

⎧⎨
⎩

0, if k �≡ m(mod 2),
22k+2k!(m–2l–k)!(k+ m–k

2 –l+1)!
( m–k

2 –l)!(m+k–2l+2)!
, if k ≡ m(mod 2).

(67)

Now, from (65)–(67) and after some simplifications, we have

αm,r(x) =
2m

r!
∑

0≤k≤m
k≡m(mod 2)

(2k + 1)2k+1
[ m–k

2 ]∑
l=0

(– 1
4 )l(m – 2l)!(k + m–k

2 – l + 1)!
l!( m–k

2 – l)!(m + k – 2l + 2)!

×
m–2l∑
j=0

(– 1
2 )j(r + 1)j(m + r – l – j)!

j!(m – 2l – j)!
Pk(x)

=
2m

r!
∑

0≤k≤m
k≡m(mod 2)

(2k + 1)2k+1
[ m–k

2 ]∑
l=0

(– 1
4 )l(m + r – l)!(k + m–k

2 – l + 1)!
l!( m–k

2 – l)!(m + k – 2l + 2)!
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×
m–2l∑
j=0

( 1
2 )j〈2l – m〉j〈–r – 1〉j

j!〈l – m – r〉j
Pk(x) (68)

=
4m

r!

[ m
2 ]∑

s=0

21–2s(2m – 4s + 1)
s∑

l=0

(– 1
4 )l(m + r – l)!(m – s – l + 1)!
l!(s – l)!(2m – 2s – 2l + 2)!

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)
Pm–2s(x).

This completes the proof for (37) in Theorem 1.
Finally, we put

αm,r(x) =
m∑

k=0

Ck,5P(α,β)
k (x). (69)

Then, from (e) of Proposition 1, (58), (60) and integration by parts k times, we get

Ck,5 =
(–1)k(2k + α + β + 1)Γ (k + α + β + 1)
2α+β+k+1Γ (α + k + 1)Γ (β + k + 1)2rr!

×
[ m–k

2 ]∑
l=0

m–2l∑
j=0

(–1)j
(

r + 1
j

)
(–1)l

(
m – j + r – l

l

)
(m – j + r – 2l)r

× 2m–j+r–2l(–1)k(m – 2l)k

∫ 1

–1
xm–2l–k(1 – x)k+α(1 + x)k+β dx, (70)

where we note from (d) of Proposition 2 that

∫ 1

–1
xm–2l–k(1 – x)k+α(1 + x)k+β dx = 22k+α+β+1

m–2l–k∑
s=0

(
m – 2l – k

s

)
(–1)m–k–s2s

× Γ (k + α + 1)Γ (k + β + s + 1)
Γ (2k + α + β + s + 2)

. (71)

Now, from (69)–(71) and after some simplifications, we have

αm,r(x) =
(–2)m

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m – 2l)k

l!

×
m–2l∑
j=0

( 1
2 )j(–1)j(r + 1)j(m + r – l – j)!

j!(m – 2l – j)!

×
m–2l–k∑

s=0

2s〈2l + k – m〉s〈k + β + 1〉s

s!〈2k + α + β + 2〉s
P(α,β)

k (x) (72)

=
(–2)m

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!

(m – k – 2l)!

×
m–2l∑
j=0

( 1
2 )j〈2l – m〉j〈–r – 1〉j

j!〈l – m – r〉j
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× 2F1(2l + k – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x)

=
(–2)m

r!

m∑
k=0

(–2)kΓ (k + α + β + 1)
Γ (2k + α + β + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!

(m – k – 2l)!

× 2F1

(
2l – m, –r – 1; l – m – r;

1
2

)

× 2F1(2l + k – m, k + β + 1; 2k + α + β + 2; 2)P(α,β)
k (x).

This finishes the proof for (39) in Theorem 1.

3 Proofs of Theorems 2 and 3
Here we will show (49) and (51) in Theorem 2 and leave the others (48), (50) and (52) as
exercises to the reader. Also, we remark that Theorem 3 follows from Theorem 2 by simple
observation. We start with the next lemma, which can be shown analogously to Lemma 1.

Lemma 2 Let m, r be nonnegative integers. Then the following identities hold true:

∑
i1+···+ir+1=m

Vi1 (x) · · ·Vir+1 (x) =
1

2rr!

m∑
j=0

(–1)j
(

r + 1
j

)
U (r)

m–j+r(x), (73)

∑
i1+···+ir+1=m

Wi1 (x) · · ·Wir+1 (x) =
1

2rr!

m∑
j=0

(
r + 1

j

)
U (r)

m–j+r(x), (74)

where
(r+1

j
)

= 0 for j > r + 1.

With βm,r(x) as in (38), let us put

βm,r(x) =
m∑

k=0

Ck,2Lα
k (x). (75)

First, we note from (59) that

U (r+k)
m–j+r(x) =

[ m–j–k
2 ]∑

l=0

(–1)l
(

m – j + r – l
l

)
(m – j + r – 2l)r+k2m–j+r–2lxm–j–k–2l. (76)

Then, from (b) of Proposition 1, (73), (76), and integration by parts k times, we get

Ck,2(x) =
1

Γ (α + k + 1)

∫ ∞

0
βm,r(x)

dk

dxk

(
e–xxk+α

)
dx

=
1

Γ (α + k + 1)2rr!

m∑
j=0

(–1)j
(

r + 1
j

)∫ ∞

0
U (r)

m–j+r(x)
dk

dxk

(
e–xxk+α

)
dx (77)

=
1

Γ (α + k + 1)2rr!

m∑
j=0

(–1)j
(

r + 1
j

)
(–1)k

∫ ∞

0
U (r+k)

m–j+r(x)e–xxk+α dx

=
1

Γ (α + k + 1)2rr!

m∑
j=0

(–1)j
(

r + 1
j

)
(–1)k
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×
[ m–j–k

2 ]∑
l=0

(–1)l
(

m – j + r – l
l

)
(m – j + r – 2l)r+k

× 2m–j+r–2lΓ (m + α – j – 2l + 1).

Now, from (75) and (77) and using (7), we have

βm,r(x) =
2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )lΓ (m + α – 2l + 1)

l!

×
m–k–2l∑

j=0

(– 1
2 )j(m + r – l – j)!(r + 1)j

j!(m – k – 2l – j)!(m + α – 2l)j
Lα

k (x)

=
2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!Γ (m + α – 2l + 1)

l!(m – k – 2l)!

×
m–k–2l∑

j=0

(– 1
2 )j〈2l + k – m〉j〈–r – 1〉j

j!〈l – m – r〉j〈2l – m – α〉j
Lα

k (x) (78)

=
2m

r!

m∑
k=0

(–1)k

Γ (α + k + 1)

[ m–k
2 ]∑

l=0

(– 1
4 )l(m + r – l)!Γ (m + α – 2l + 1)

l!(m – k – 2l)!

× 2F2

(
2l + k – m, –r – 1; l – m – r, 2l – m – α; –

1
2

)
Lα

k (x).

This shows (41) of Theorem 2.
Next, we let

βm,r(x) =
m∑

k=0

Ck,4C(λ)
k (x). (79)

Then, from (d) of Proposition 1, (73), (76), and integration by parts k times, we obtain

Ck,4 =
(k + λ)Γ (λ)

(–2)k√πΓ (k + λ + 1
2 )2rr!

×
m∑

j=0

(–1)j
(

r + 1
j

)∫ 1

–1
U (r)

m–j+r(x)
dk

dxk

(
1 – x2)k+λ– 1

2 dx

=
(k + λ)Γ (λ)

2k√πΓ (k + λ + 1
2 )2rr!

×
m–k∑
j=0

(–1)j
(

r + 1
j

)∫ 1

–1
U (r+k)

m–j+r(x)
(
1 – x2)k+λ– 1

2 dx

=
(k + λ)Γ (λ)

2k√πΓ (k + λ + 1
2 )2rr!

×
m–k∑
j=0

(–1)j
(

r + 1
j

) [ m–k–j
2 ]∑

l=0

(–1)l
(

m – j + r – l
l

)
(m – j + r – 2l)r+k

× 2m–j+r–2l
∫ 1

–1
xm–j–k–2l(1 – x2)k+λ– 1

2 dx. (80)
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From (c) of Proposition 2, we note that

∫ 1

–1
xm–j–k–2l(1 – x2)k+λ– 1

2 dx =

⎧⎨
⎩

0, if j �≡ m – k(mod 2),
Γ (k+λ+ 1

2 )Γ ( m–j–k
2 –l+ 1

2 )

Γ (k+λ+ m–j–k
2 –l+1)

, if j ≡ m – k(mod 2).
(81)

By (79)–(81), and after some simplifications, we have

βm,r(x) =
2mΓ (λ)√

πr!

m∑
k=0

(k + λ)
2k

∑
0≤j≤m–k

j≡m–k(mod 2)

(– 1
2 )j(r + 1)!

j!(r + 1 – j)!

×
[ m–k–j

2 ]∑
l=0

(– 1
4 )l(m – j + r – l)!Γ ( m–k–j

2 – l + 1
2 )

l!(m – j – k – 2l)!Γ (k + λ + m–k–j
2 – l + 1)

C(λ)
k (x)

=
(–1)m(r + 1)Γ (λ)√

π

m∑
k=0

(–1)k(k + λ)

×
[ m–k

2 ]∑
s=0

4s

(m – k – 2s)!(r + 1 – m + k + 2s)!

×
s∑

l=0

(– 1
4 )l(k + 2s + r – l)!Γ (s – l + 1

2 )
l!(2s – 2l)!Γ (k + λ + s + 1 – l)

C(λ)
k (x)

= (–1)m(r + 1)Γ (λ)
m∑

k=0

(–1)k(k + λ)

×
[ m–k

2 ]∑
s=0

(k + 2s + r)!
s!(m – k – 2s)!(r + 1 – m + k + 2s)!Γ (k + λ + s + 1)

×
s∑

l=0

〈–s〉l〈–k – λ – s〉l

l!〈–k – 2s – r〉l
C(λ)

k (x)

= (–1)m(r + 1)Γ (λ)
m∑

k=0

(–1)k(k + λ)

×
[ m–k

2 ]∑
s=0

(k + 2s + r)!
s!(m – k – 2s)!(r + 1 – m + k + 2s)!Γ (k + λ + s + 1)

× 2F1(–s, –k – λ – s; –k – 2s – r; 1)C(λ)
k (x). (82)

This finishes up the proof for (51) in Theorem 2.
Finally, we remark here that the identities (53)–(57) in Theorem 3 follow from those

(48)–(52) in Theorem 2. For this purpose, we note from (73) and (74) that the only differ-
ence between βm,r(x) and γm,r(x) (see (38), (39)) are the alternating sign (–1)j in their sums.
This amounts to multiplying (48), (50), (52) by (–1)m–k , and (51) by (–1)j, and replacing
2F2(–; –; – 1

2 ) in (49) by 2F2(–; –; 1
2 ).

4 Conclusion
In this paper, we studied the classical linearization problem, determining the coefficients
in the expansion of the product of two polynomials in terms of any given sequence of poly-
nomials. Considering sums of finite products of Chebyshev polynomials of the first, third,
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and fourth kinds, we have represented each of them as linear combinations of Hermite,
extended Laguerre, Legendre, Gegenbauer, and Jacobi polynomials by explicit computa-
tions. Also, it is shown that some terminating hypergeometric functions 2F1, 2F2, and 1F1

appear in the coefficients of the combinations.
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