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Abstract
In this paper the classification of single traveling wave solutions of (1 + 1) dimensional
Gardner equation with variable coefficients is obtained by applying the complete
discrimination system to the polynomial and trial equation methods. In particular, the
corresponding solutions for the concrete parameters are constructed to show that
each solution in the classification can be realized. Moreover, numerical simulations
shown in the paper could help us better understand the nature of each solution.
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1 Introduction
Nonlinear differential equations have been widely applied to describe physical phenom-
ena in many scientific fields, such as physics, electronics and other engineering and applied
sciences. For hundreds of years, scientists have been studying both the exact and numer-
ical solutions of nonlinear problems [1–4]. Due to the inaccuracy of numerical solutions,
especially when we encounter very sensitive problems such as chaos, exact solutions have
important applications. Accurate solutions can also help us better understand physical
phenomena and models. Therefore, finding the exact solutions is of great significance.

A shallow water wave (or long wave) is considered a nonlinear dynamic system with
wavelength much longer than its depth. It is widely used to describe nonlinear phenom-
ena in the atmosphere and ocean. In order to describe and study the related nonlinear
problems, the KdV equation [5] has been established. However, in some situations, the
modified KdV equation should be applied when we discuss the effect of surface tension.
But in some conditions such as internal solitary waves in a two-layer fluid with surface ten-
sion where the KdV and mKdV equation are not valid at some thickness ratios, we need to
combine the KdV equation and mKdV, namely study the Gardner equation, which takes
the surface tension on solitary waves in a two-layer (stratified) fluid [6] into consideration.
The one-dimensional variable-coefficient Gardner equation

ut + a(t)ux + b(t)u2ux + c(t)uxxx = 0, (1)
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where a(t), b(t), c(t) are nonzero arbitrary functions, was proposed to describe internal
solitary waves that occur in coastal areas with inhomogeneous media and boundary, such
as the northwest continental shelf of Australia and the Baltic Sea [7, 8]. In this paper,
the trial equation method [9–14] and the complete discrimination system for polynomial
method [15–20] are applied to the generalized (1 + 1) dimensional Gardner equation with
variable coefficients. In order to ensure the existence of the solutions, the concrete exam-
ples of specific parameters are given.

In real life applications, most nonlinear differential equations (or systems of differential
equations) contain arbitrary functions of dependent variables and their derivatives. Ex-
tensive studies have been conducted by using various numerical and analytical methods
for the various forms of equations that emerge. However, these approaches may involve
approximate solutions [21]. In recent years, many useful methods have been put forward,
such as direct method [22], improved tanh–coth method [23], and so on. However, few
methods can get all the traveling wave solutions to the nonlinear equations. So Liu pro-
posed the trial equation method and the complete discrimination system for polynomial
method. By these two methods, many difficult problems have been solved [24]. According
to [10], we can see that, by taking a special traveling wave transformation

u(x, y, . . . , t) = φ(ξ ), ξ = κ1(t)x + κ2(t)y + · · · + ω(t), (2)

we can actually reduce the nonlinear differential equation with variable coefficients

Ψ (t, x, y, u, ux, uy, . . . ) = 0, (3)

to the nonlinear ordinary equation

ψ
(
t, x, y, k1, k2,ωu, u′, u′′, . . .

)
= 0. (4)

Then, by taking the following trial equation:

(
u′)2 = F(u), (5)

and substituting Eq. (5) into Eq. (4), an ordinary equation system is obtained, and the trial
function F(u) could be a polynomial, rational function, or some other irrational function.
Upon getting the trial equation, we can obtain the integral form of the original equation
as

±(ξ – ξ0) =
∫ dφ

√
G(φ)

, (6)

where ξ0 is an integral constant. Then we can obtain the classification of all traveling wave
solutions to Eq. (6). For example, Yang applied Liu’s methods to the Gerdjikov–Ivanov
model, and the classification of the single traveling wave solutions was obtained [24].
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2 The classification of traveling wave solutions to (1 + 1) dimensional Gardner
equation with variable coefficients

To find the classification of traveling wave solutions to (1 + 1) dimensional Gardner equa-
tion with variable coefficients, we set

u(x, t) = φ(ξ ), ξ = κ(t)x + ω(t), (7)

where κ(t), ω(t) represent nonzero arbitrary functions. Substituting Eq. (7) into Eq. (1)
yields

(
κ ′(t)x + ω′(t)

)
φ′ + a(t)κ(t)φφ′ + b(t)κ(t)φ2φ′ + c(t)κ3(t)φ′′′ = 0. (8)

Now we assume that (φ′)2 is equal to a polynomial function, namely

(
φ′)2 = anφ

n + an–1φ
n–1 + · · · + a1φ + a0, (9)

and, via the balance principle, we get n = 4, so

(
φ′)2 = a4φ

4 + a3φ
3 + a2φ

2 + a1φ + a0. (10)

Then taking derivatives on both sides of Eq. (10), we have

φ′′′ = 6a4φ
2φ′ + 3a3φφ′ + a2φ

′. (11)

Substituting (11) into (8), we get

dκ(t)
dt

x +
dω(t)

dt
+ a2c(t)κ3(t) = 0, (12)

a(t)κ(t) + 3a3c(t)κ3(t) = 0, (13)

b(t)κ(t) + 6a4c(t)κ3(t) = 0. (14)

Actually, this system of equations is not solvable. So we must impose some restrictions on
it. Setting a3 = 2b1a4, where b1 is a constant, we have

a(t) = b1b(t), (15)

dκ(t)
dt

x = 0, (16)

dω(t)
dt

= –
b(t)κ(t)

6a4
. (17)

So we get κ(t) = const, and by setting κ(t) = κ , we obtain

ω(t) = –
∫

κb(t)
6a4

dt. (18)

Let

Φ = (a4)
1
4

(
φ +

b1

2

)
, ξ1 = (a4)

1
4 ξ , (19)
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then Eq. (10) is deformed into

Φ2
ξ1 = Φ4 + pΦ2 + qΦ + r, (20)

where

p =
a2 – 3

2 b1
2a4√a4

, (21)

q =
a1 + a4b1

3 – a2b1
4√a4

, (22)

r = a0 –
1
2

a1b1 +
1
4

a2b1
2 –

3
16

a4b1
4. (23)

So we have

±(ξ1 – ξ0) =
∫ dΦ

√
Φ4 + pΦ2 + qΦ + r

. (24)

Then the corresponding complete discrimination system is presented as [11]

D1 = 4, D2 = –p, D3 = –2p3 + 8pr – 9q2, E2 = 9q2 – 32pr,

D4 = –p3q2 + 4p4r + 36pq2 – 32p2r2 –
27
4

q4 + 64r3.
(25)

For the purpose of solving Eq. (24), the solutions of the complete discrimination system
of the fourth order polynomial in nine cases are discussed separately.

Case 1. D4 = 0, D3 = 0, D2 = 0. In this case G(Φ) has a root of multiplicity 4, i.e., p = 0,
q = 0, r = 0, and then Eq. (20) is presented by

G(Φ) = Φ4. (26)

Therefore, by using Eq. (24), we have

Φ = –(ξ1 – ξ0)–1, (27)

where ξ0 is an integral constant. The solutions of Eq. (10) can be shown to be

φ(ξ ) = ∓a– 1
4

4
(
a

1
4
4 ξ – ξ0

)–1 –
b1

2
. (28)

For example, when a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, we get ω(t) = 1
2 t2 + t + c, and setting

c = 0, we can get the solution of Eq. (1) as

u(x, t) = –
(

–6x +
1
2

t2 + t – ξ0

)–1

–
1
2

. (29)

Case 2. D4 = 0, D3 = 0, D2 < 0. This time G(Φ) has a pair of conjugate complex roots of
multiplicity 2, i.e.,

G(Φ) =
(
(Φ – l)2 + m2)2, (30)
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where m > 0. By using Eq. (24), we can obtain

Φ = m tan m(ξ1 – ξ0) + l, (31)

which is a rational solution. So the solutions of Eq. (10) can be shown to be

φ(ξ ) = ±a– 1
4

4 m tan
(
m

(
a

1
4
4 ξ – ξ0

))
–

b1

2
. (32)

For instance, when a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, p = 2, we have ω(t) = 1
2 t2 + t + c, and

setting c = 0, we obtain the solution of Eq. (1) as

u(x, t) = tan

(
–6x +

1
2

t2 + t – ξ0

)
–

1
2

. (33)

Case 3. D4 = 0, D3 = 0, D2 > 0, E2 = 0. Now G(Φ) has a real root of multiplicity 3 and a
real root of multiplicity 1. Thus we have

G(Φ) = (Φ – l)3(Φ – m). (34)

When Φ > l, Φ > m or Φ < l, Φ < m, the solution of Eq. (24) is

Φ =
4(l – m)

(m – l)2(ξ1 – ξ0)2 – 4
+ l, (35)

where the expression (35) is a rational solution. So we can obtain the solutions of Eq. (10)
as

φ(ξ ) = ± 4a– 1
4

4 (l – m)

(m – l)2(a
1
4
4 ξ – ξ0)2 – 4

+ l –
b1

2
. (36)

For example, when a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, we get ω(t) = 1
2 t2 + t + c, and setting

l = 1, m = –3, c = 0, the solution of Eq. (1) is given by

u(x, t) =
4

4(–6x + 1
2 t2 + t – ξ0)2 – 1

+
1
2

. (37)

Case 4. D4 = 0, D3 = 0, D2 > 0, E2 > 0. Here G(Φ) has two real roots of multiplicity 2,
namely

G(Φ) = (Φ – l)2(Φ – m)2, (38)

where l > m. When Φ > l or Φ < m, we can obtain the solution as

Φ =
m – l

e(l–m)(ξ1–ξ0) – 1
+ m =

m – l
2

[
coth

(l – m)(ξ1 – ξ0)
2

– 1
]

+ m. (39)

Then we can get the solution of Eq. (10) as

φ(ξ ) =
(m – l)a– 1

4
4

2

[
coth

(l – m)(a
1
4
4 ξ – ξ0)

2
– 1

]
+ m –

b1

2
, (40)
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and, when m < Φ < l, we have the solution as

Φ =
m – l

–e(l–m)(ξ1–ξ0) – 1
+ m =

m – l
2

[
tanh

(l – m)(ξ1 – ξ0)
2

– 1
]

+ m. (41)

Similarly for

φ(ξ ) =
(m – l)a– 1

4
4

2

[
tanh

(l – m)(a
1
4
4 ξ – ξ0)

2
– 1

]
+ m –

b1

2
. (42)

For instance, when a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, p = –2, we have ω(t) = 1
2 t2 + t + c, and

setting c = 0, and Φ > 1 or Φ < –1, we can get the solution as follows:

u(x, t) = coth

(
–6x +

1
2

t2 + t – ξ0

)
–

1
2

. (43)

Case 5. D4 > 0 and D2 > 0, D3 > 0. This time G(Φ) has four distinct real roots, namely

G(Φ) = (Φ – α1)(Φ – α2)(Φ – α3)(Φ – α4), (44)

where α1, α2, α3, α4 are real numbers, and α1 > α2 > α3 > α4. If Φ > α1 or Φ < α4, then we
take the following transformation:

Φ =
α2(α1 – α4) sin2 θ – α1(α2 – α4)

(α1 – α4) sin2 θ – (α2 – α4)
; (45)

if α3 < Φ < α2, we similarly use

Φ =
α4(α2 – α3) sin2 θ – α3(α2 – α4)

(α2 – α3) sin2 θ – (α2 – α4)
. (46)

Substituting (45) or (46) into Eq. (24), we get

ξ1 – ξ0 =
∫ dΦ√

(Φ – α1)(Φ – α2)(Φ – α3)(Φ – α4)

=
2√

(α1 – α3)(α2 – α4)

∫ dθ√
1 – m2 sin2 θ

, (47)

where m2 = (α1–α4)(α2–α3)
(α1–α3)(α2–α4) . By using Eq. (47) and the definition of Jacobi elliptic sine function

[25], we have

sin θ = sn

(√
(α1 – α3)(α2 – α4)

2
(ξ1 – ξ0), m

)
. (48)

Combining Eq. (48) with the expressions (45) and (46), we obtain the solution of Eq. (24)
with corresponding conditions

Φ =
α2(α1 – α4) sn2(

√
(α1–α3)(α2–α4)

2 (ξ1 – ξ0), m) – α1(α2 – α4)

(α1 – α4) sn2(
√

(α1–α3)(α2–α4)
2 (ξ1 – ξ0), m) – (α2 – α4)

, (49)
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thus we have the solution of Eq. (10) as

φ(ξ ) =
α2(α1 – α4)a– 1

4
4 sn2(

√
(α1–α3)(α2–α4)

2 (a
1
4
4 ξ – ξ0), m) – α1(α2 – α4)

(α1 – α4) sn2(
√

(α1–α3)(α2–α4)
2 (a

1
4
4 ξ – ξ0), m) – (α2 – α4)

–
b1

2
, (50)

and

Φ =
α4(α2 – α3) sn2(

√
(α1–α3)(α2–α4)

2 (ξ1 – ξ0), m) – α3(α2 – α4)

(α2 – α3) sn2(
√

(α1–α3)(α2–α4)
2 (ξ1 – ξ0), m) – (α2 – α4)

. (51)

Moreover, we have

φ(ξ ) =
α4(α2 – α3)a– 1

4
4 sn2(

√
(α1–α3)(α2–α4)

2 (a
1
4
4 ξ – ξ0), m) – α3(α2 – α4)

(α2 – α3) sn2(
√

(α1–α3)(α2–α4)
2 (a

1
4
4 ξ – ξ0), m) – (α2 – α4)

–
b1

2
, (52)

where m2 = (α1–α4)(α2–α3)
(α1–α3)(α2–α4) . Expressions (49)–(52) involve elliptic functions and are double

periodic solutions. For example, when a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, we can get ω(t) =
1
2 t2 + t + c. Setting c = 0, if p = –5, q = 0, r = 4, we have α1 = 2, α2 = 1, α3 = –1, α4 = –2.
When Φ > α1 or Φ < α4, we get the solution

u(x, t) =
4 sn2( 3

2 (–6x + 1
2 t2 + t – ξ0), 2

√
2

3 ) – 6

4 sn2( 3
2 (–6x + 1

2 t2 + t – ξ0), 2
√

2
3 ) – 3

–
1
2

. (53)

Case 6. D4 = 0 and D2D3 < 0. Now G(Φ) has a real root of multiplicity 2 and a pair of
conjugate complex roots, i.e.,

G(Φ) = (Φ – β)2[(Φ – l)2 + m2], (54)

where β , l and m are real numbers. By using Eq. (24), we can get

±(ξ1 – ξ0) =
∫ dΦ

(Φ – β)
√

(Φ – l)2 + m2

=
1

√
(β – l)2 + m2

ln

∣∣
∣∣
εΦ + η –

√
(Φ – l)2 + m2

Φ – β

∣∣
∣∣, (55)

where

ε =
β – 2l

√
(β – l)2 + m2

,

η =
√

(β – l)2 + m2 –
β(β – 2l)

√
(β – l)2 + m2

.
(56)

Correspondingly we have the solution of Eq. (24) as

Φ =
(e±

√
(β–l)2+m2(ξ1–ξ0) – ε) +

√
(β – l)2 + m2(2 – ε)

(e±
√

(β–l)2+m2(ξ1–ξ0) – ε)2 – 1
, (57)
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hence the solution of Eq. (10) is

φ(ξ ) =
(e±

√
(β–l)2+m2(a

1
4
4 ξ–ξ0) – ε) +

√
(β – l)2 + m2(2 – ε)

a
1
4
4 [(e±

√
(β–l)2+m2(a

1
4
4 ξ–ξ0) – ε)2 – 1]

–
b1

2
, (58)

which is a solitary wave solution. When a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, β = 1, l = –1,
m = 2, we have ω(t) = 1

2 t2 + t + c, and by setting c = 0, we can get the solution of Eq. (1) as

u(x, t) =
e±2

√
2(–6x+ 1

2 t2+t–ξ0) + 13
√

2
4 – 3

[(e±2
√

2(–6x+ 1
2 t2+t–ξ0) – 3

√
2

4 )2 – 1]
–

1
2

. (59)

Case 7. D4 < 0 and D2D3 ≥ 0. In this case G(Φ) has two distinct real roots and a pair of
conjugate complex roots, thus G(Φ) is given by

G(Φ) = (Φ – β)(Φ – γ )
[
(Φ – l)2 + m2], (60)

where β , γ , l, m are real numbers, β > γ and m > 0. We now use the following transfor-
mation:

Φ =
d1 cos θ + d2

d3 cos θ + d4
, (61)

where

d1 =
1
2

(β + γ )d3 –
1
2

(β – γ )d4,

d2 =
1
2

(β + γ )d4 –
1
2

(β – γ )d3,

d3 = β – l –
m
f2

,

d4 = β – l – mf2,

e2 =
m2 + (β – l)(γ – l)

m(β – γ )
,

f2 = e2 ±
√

e2
2 + 1.

(62)

By choosing f2 > 0 and substituting expression (62) into Eq. (24), we have

ξ1 – ξ0 =
∫ dΦ

√±(Φ – β)(Φ – γ )((Φ – l)2 + m2)

=
2f2m2√∓2mf2(β – γ )

∫ dΦ
√

1 – m2
2 sin2 θ

, (63)

where m2
2 = 2

1+f 2
2

. By Eq. (63) and the definition of Jacobi elliptic cosine function [25], we
have

cos θ = cn

(√∓2mf2(β – γ )
2f2m2

(ξ1 – ξ0), m2

)
. (64)
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Combining expression (63) with (60) leads to the solutions of Eq. (24) given by

Φ =
d1 cn(

√
∓2mf2(β–γ )

2f2m2
(ξ1 – ξ0), m2) + d2

d3 cn(
√

∓2mf2(β–γ )
2f2m2

(ξ1 – ξ0), m2) + d4

. (65)

Hence we can get the solution of Eq. (10) in the form

φ(ξ ) =
a– 1

4
4 [d1 cn(

√
∓2mf2(β–γ )

2f2m2
(a

1
4
4 ξ – ξ0), m2) + d2]

d3 cn(
√

∓2mf2(β–γ )
2f2m2

(a
1
4
4 ξ – ξ0), m2) + d4

–
b1

2
, (66)

where expression (66) involves an elliptic function and is a double periodic solution. For
example, when a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, β = 1, γ = –1, l = 0, m = 2, we have a2 = 3,
b2 = c2 = 0, d2 = –3, e2 = 3

4 , f2 = 2 or – 1
2 , ω(t) = 1

2 t2 + t + c. By setting f2 = 2, c = 0, we can
obtain the solution of Eq. (1) as

u(x, t) = – cn

(√
10
2

(
–6x +

1
2

t2 + t – ξ0

)
,
√

10
5

)
–

1
2

. (67)

Case 8. D4 > 0 and D2D3 ≤ 0. This time G(Φ) has two pairs of conjugate complex roots,
namely

G(Φ) =
(
(Φ – α1)2 + l2

1
)(

(Φ – α2)2 + l2
2
)
, (68)

where α1, α2, l1 and l2 are real numbers, l1 ≥ l2 > 0. We use the transformation

Φ =
d1 tan θ + d2

d3 tan θ + d4
, (69)

where

d1 = α1d3 + l1d4,

d2 = α1d4 – l1d3,

d3 = –l1 –
l2

f2
,

d4 = α1 – α2,

e2 =
(α1 – α2)2 + l2

1 + l2
2

2l1l2
,

f2 = e2 +
√

e2
2 – 1,

(70)

and get

ξ1 – ξ0 =
∫ dΦ

√
((Φ – α1)2 + l2

1)((Φ – α2)2 + l2
2)

=
d2

3 + d2
4

l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

∫ dθ
√

1 – m2
2 sin2 θ

, (71)



Cao and Du Advances in Difference Equations        (2019) 2019:121 Page 10 of 15

where m2
2 = f 2

2 –1
f 2
2

. By Eq. (71) and the definition of Jacobi elliptic functions, we can obtain

sin θ = sn

( l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

d2
3 + d2

4
(ξ1 – ξ0), m2

)
, (72)

cos θ = cn

( l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

d2
3 + d2

4
(ξ1 – ξ0), m2

)
. (73)

Combining expressions (72) and (73) with (69) yields

Φ =
d1 sn(η(ξ1 – ξ0), m2) + d2 cn(η(ξ1 – ξ0), m2)
d3 sn(η(ξ1 – ξ0), m2) + d4 cn(η(ξ1 – ξ0), m2)

(74)

and

φ(ξ ) =
a– 1

4
4 (d1 sn(η(a

1
4
4 ξ – ξ0), m2) + d2 cn(η(a

1
4
4 ξ – ξ0), m2))

d3 sn(η(a
1
4
4 ξ – ξ0), m2) + d4 cn(η(a

1
4
4 ξ – ξ0), m2)

–
b1

2
, (75)

where

η =
l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

d2
3 + d2

4
. (76)

Expression (75) involves elliptic functions and is a double periodic solution. When a4 = 1,
κ = –6, b1 = 1, b(t) = t + 1, α1 =

√
7

2 , α2 = –
√

7
2 , l1 = 3, l2 = 2, we have ω(t) = 1

2 t2 + t + c,
a2 = 7

√
7

6 , b2 = 29
2 , c2 = – 11

3 , d2 =
√

7, e2 = 5
3 , f2 = 3 and η = 24

√
23

23 . Setting c = 0, we obtain

u(x, t) =
7
√

7
6 sn( 24

√
23

23 (–6x + 1
2 t2 + t – ξ0), 2

√
2

3 ) + 29
2 cn( 24

√
23

23 (–6x + 1
2 t2 + t – ξ0), 2

√
2

3 )

– 11
3 sn( 24

√
23

23 (–6x + 1
2 t2 + t – ξ0), 2

√
2

3 ) +
√

7 cn( 24
√

23
23 (–6x + 1

2 t2 + t – ξ0), 2
√

2
3 )

–
1
2

. (77)

Case 9. D4 = 0, D3 > 0 and D2 > 0. In this case G(Φ) has two single real roots and a real
root with multiplicity 2. We obtain

G(Φ) = (Φ – α1)2(Φ – α2)(Φ – α3), (78)

where α1, α2 and α3 are real numbers, and α2 > α3, α1 = – α2+α3
2 . Denote h = (α1 – α2)(α1 –

α3). When Φ > α2, α2 > α1 > α3, we get the solution of Eq. (24) as

Φ =
2h

±(α2 – α3) sin[
√

–h(ξ1 – ξ0)] – (2α1 – α2 – α3)
, (79)

thus

φ(ξ ) =
2a– 1

4
4 h

±(α2 – α3) sin[
√

–h(a
1
4
4 ξ – ξ0)] – (2α1 – α2 – α3)

–
b1

2
. (80)
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Figure 1 (a) The 3D graph of a rational function solution u(x, t) appearing in Eq. (29), when κ = –6,
ω = 1

2 t
2 + t and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

When α1 > α2 or α1 < α3,

Φ =
2h

(α2 – α3) cosh[
√

h(ξ1 – ξ0)] – (2α1 – α2 – α3)
, (81)

and then we have

φ(ξ ) =
2a– 1

4
4 h

(α2 – α3) cosh[
√

h(a
1
4
4 ξ – ξ0)] – (2α1 – α2 – α3)

–
b1

2
. (82)

For instance, if a4 = 1, κ = –6, b1 = 1, b(t) = t + 1, p = –9, q = –4, r = 12, then ω(t) = 1
2 t2 +

t + c. Setting c = 0, the solution can be obtained as

u(x, t) =
15

cosh[
√

15(–6x + 1
2 t2 + t – ξ0)] + 4

–
1
2

. (83)

3 Numerical simulations for modified Gardner equation
In this section, numerical simulations of modified Gardner equation are given. According
to the solutions obtained above, each solution is chosen to carry out a typical numerical
simulation, using Eqs. (29), (33), (37), (43), (53), (59), (67), (77) and (83). The 3D and the
corresponding 2D graphs of are drawn to present the nature of them. In addition, we only
focus on the positive one if there is a plus–minus sign in the selected solutions.

Case 1. For a4 = 1, see Fig. 1.
Case 2. For a4 = 1, see Fig. 2.
Case 3. For a4 = 1, see Fig. 3.
Case 4. For a4 = 1, see Fig. 4.
Case 5. For a4 = 1, see Fig. 5.
Case 6. For a4 = 1, see Fig. 6.
Case 7. For a4 = 1, see Fig. 7.
Case 8. For a4 = 1, see Fig. 8.
Case 9. For a4 = 1, see Fig. 9.
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Figure 2 (a) The 3D graph of a triangle function periodic solution u(x, t) in Eq. (33), when κ = –6, ω = 1
2 t

2 + t
and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

Figure 3 (a) The 3D graph of a rational function solution u(x, t) illustrating Eq. (37), when κ = –6, ω = 1
2 t

2 + t
and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

Figure 4 (a) The 3D graph of a hyperbolic cotangent function solution u(x, t) demonstrating Eq. (43), when
κ = –6, ω = 1

2 t
2 + t and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

4 Conclusion
In this paper, we consider the generalized (1 + 1) dimensional Gardner equation with vari-
able coefficients. By taking a special traveling wave transformation, the original equation
can be changed into the integral form. Then by applying the trial equation method and
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Figure 5 (a) The 3D graph of Jacobi elliptic function solution u(x, t) appearing in Eq. (53), when κ = –6,
ω = 1

2 t
2 + t and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

Figure 6 (a) The 3D graph of a solitary wave solution u(x, t) reflected in Eq. (59), when κ = –6, ω = 1
2 t

2 + t and
ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

Figure 7 (a) The 3D graph of Jacobi elliptic function solution u(x, t) illustrating Eq. (67), when κ = –6,
ω = 1

2 t
2 + t and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

a complete discrimination system for polynomial method, the classification of the exact
solutions is obtained. Moreover, the solitary wave solutions and six kinds of double pe-
riodic solutions with Jacobi elliptic functions are given, which are very difficult to get by
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Figure 8 (a) The 3D graph of Jacobi elliptic function solution u(x, t) demonstrating Eq. (77), when κ = –6,
ω = 1

2 t
2 + t and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

Figure 9 (a) The 3D graph of a solitary wave solution u(x, t) appearing in Eq. (83), when κ = –6, ω = 1
2 t

2 + t
and ξ0 = 1; (b) the corresponding 2D graph for u(x, t), when t = 1

other methods. In addition, some solutions with the specific parameters are also presented
in the paper, thus the existence of the solutions is proved. Our results may be helpful to
better understand the two-layer fluid with surface tension, and the problem with specific
boundary and initial conditions will be studied in a future work. Moreover, we can also
conclude that the trial equation method and the discrimination system for polynomial
method are powerful in solving differential equations with variable coefficients arising in
mathematical physics.
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