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Abstract
This paper investigates the problem of a state bounding estimation for a linear
continuous-time singular system with time-varying delay. By employing the maximal
Lyapunov–Krasovskii functional and applying the new free-matrix-based integral
inequality, some proper conditions are derived in terms of LMIs and a bounding
estimation lemma and set are obtained for the studied singular system.
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1 Introduction
During the past years, state bounding estimation has been widely applied in control sys-
tems with actuator saturation, peak-to-peak gain minimization, and parameter estimation
(see [1–5]). A state bounding estimation is meant to get the corresponding state bounding
set which is limited by the inside and outside of the initial conditions. State bounding esti-
mation is so important that it has aroused much attention in control research. Meanwhile,
there have been several kinds of correlative applications of a state bounding estimation,
such as reachable set estimation and design actuator saturation for control systems (see
[1–53]).

Specially, by applying the S-procedure, an ellipsoid reachable set bounding was derived
for linear systems without time delays in [19]. However, time delays cannot always be
avoided in practice and they often cause the system’s instability and poor performance.
Recently, many researchers have studied many kinds of dynamic systems with time de-
lays (see [3, 6–25]). Thus, some researchers naturally have devoted efforts to investigating
the corresponding state bounding estimation for the dynamic systems with time delays.
In [7], a delay-dependent criterion for an ellipsoid reachable bounding set was derived by
Fridman and Shaked, applying a Lyapunov–Krasovskii functional. Later, in [11], a better
ellipsoid reachable bounding set was proposed by Kim using a Lyapunov–Krasovskii func-
tional with just one nonconvex scalar. Some new criteria for reachable bounding sets were
established by employing the maximal Lyapunov–Krasovskii functional in [14].

On the other hand, singular systems have been more intensively studied than state-space
ones because they can present a better description of the behavior for some systems. There
have been many singular systems in lots of practical systems, such as circuit systems, air-
craft modeling, chemical processes and economic systems. Leaving alone their practical
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performance, singular systems are worth investigating for their theoretical importance
and have drawn many researchers’ attention in recent years because their basis is different
from state-space systems. However, many researchers have successfully extended the ba-
sic theory of state-space systems to the singular systems. Recently, there have been several
contributions on the state bounding estimation for nonlinear singular systems by applying
different methods (see [11–19]). Particulary, Feng and Lam in [17] obtained the reachable
set estimation for singular systems with time delays by using a Lyapunov–Krasovskii func-
tional but not the maximal Lyapunov–Krasovskii functional.

In this paper, we extend the state bounding estimation to a singular system with time-
varying delay. By employing the maximal Lyapunov–Krasovskii functional and apply-
ing the new free-matrix-based integral inequality, some proper conditions are derived in
terms of LMIs and a new bounding estimation lemma and set are obtained for the studied
singular system.

Notations: Throughout this paper, Rn denotes n-dimensional Euclidean space and Rm×n

is the set of m × n real matrices. [·, ·] represents an interval. The superscripts ‘–1’ and ‘T ’
stand for the inverse and transpose of a matrix, respectively. ‖ · ‖ refers to the Euclidean
vector norm. ∗ denotes the symmetric block in a symmetric matrix. Sym(P) is defined as
P + PT . For a real number ε, use the notation ε+ = max{ε, 0}, which means ε+ =

{
ε, ε > 0,
0, ε ≤ 0.

Matrix dimensions, if not explicitly stated, are assumed to be compatible for algebraic
operations.

2 Problem statement and preliminaries
Consider the following linear continuous-time singular system with time-varying delay:

Eẋ(t) = Ax(t) + Dx
(
t – d(t)

)
+ Bu(t),

x(t) = φ(t), t ∈ [–dM, 0],
(1)

where x(t) ∈ Rn is the state vector; the matrices E, A, D and B are constant matrices
with appropriate dimensions and rank(E) = n1; d(t) is the time-varying delay satisfying
0 ≤ dm ≤ d(t) ≤ dM , ḋ(t) < d, d > 0; u(t) ∈ Rm stands for a disturbance which satisfies
uT (t)u(t) ≤ u2 ≤ ‖xt‖2, where u is a real constant; φ(t) is the initial condition and contin-
uously differentiable on [–dM, 0]. We denote ‖φ‖ = maxt∈[–dM ,0] ‖φ‖.

Remark 1 The initial condition for the studied system in [17] must be zero. However, the
initial condition in this paper either may be equal to zero or not equal to zero. It is obvious
that our discussed system is more general than the one in [17].

To discuss the state bounding problem for a linear continuous-time singular system with
time-varying delay, the next definitions are necessary.

Definition 2.1 If the singular system (1) is satisfied with one of the next conditions, re-
spectively, the system (1) is said to be regular, impulse free, stable and admissible:

(1) The singular system in (1) is said to be regular if the matrix pair (E, A) is regular.
(2) The singular system in (1) is said to be impulse free if the matrix pair (E, A) is

impulse free.
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(3) The singular system in (1) is said to be stable, if for any δ > 0, there exists a scalar
ε(δ) > 0, such that, for any compatible initial condition x0 satisfying ‖x0‖ ≤ ε(δ), the
solution x(t) of (1) satisfies ‖x(t)‖ ≤ δ for t ≥ 0; furthermore, x(t) → 0, when t → ∞.

(4) The singular system in (1) is said to be admissible if it is regular, impulse free and
stable.

Definition 2.2 For a given α > 0, system (1) with u(t) = 0 (t ≥ 0) is said to be α-
exponentially stable if there exists a positive constant ρ such that every solution x(t,φ)
of (1) satisfies the following inequality:

∥∥x(t,φ)
∥∥ ≤ ρ‖φ‖e–αt , ∀t ≥ 0. (2)

For γ > 0, let the ball B(γ ) be defined by B(γ ) = {x ∈ Rn : ‖x‖ ≤ γ }. By adopting the
concept of ball convergence in [16], we have the following definition.

Definition 2.3 For a given γ > 0, the system (1) is said to be globally exponentially con-
vergent within the ball B(γ ) if there exist a constant α > 0 and a non-decreasing function
K(·) such that the following inequality holds:

∥∥x(K ,φ)
∥∥ ≤ γ + K

(‖φ‖)e–αt , ∀t ≥ 0. (3)

The main objective of this paper is to obtain delay-dependent conditions for the state
bounding problem of singular system (1). First, the conditions are investigated for the
existence of two balls, namely, B(γ1) and B(γ2) with the radii γ1, γ2 explicitly dependent
on the upper bound u2 of the disturbance such that: (i) for all initial conditions in B(γ1),
the corresponding state trajectories of the systems are bounded inside the ball B(γ2) all
the time, and (ii) for all the initial conditions that are outside B(γ1), the corresponding
state trajectories of the systems converge exponentially (with a convergence rate α) within
B(γ2). Then the conditions are derived for the reachable set bounding of (1) with zero
initial condition and the α-exponential stability of (1) without any disturbance.

In the following, some necessary lemmas are introduced.

Lemma 2.1 ([18]) Let x be a differentiable function: [a, b] → Rn. For symmetric matrices
Q ∈ Rn×n, Y1 ∈ R3n×3n, Y3 ∈ R3n×3n and any matrices Y2 ∈ R3n×3n, M1 ∈ R3n×n, M2 ∈ R3n×n

satisfying

Ψ =

⎡

⎢
⎣

Y1 Y2 M1

∗ Y3 M2

∗ ∗ Q

⎤

⎥
⎦ ≥ 0,

the following integral inequality holds:

–
∫ b

a
ẋT (s)Qẋ(s) ds ≤ 
 TΩ
 , (4)

where


 =
[

xT (a), xT (b),
1

b – a

∫ b

a
ẋT (s) ds

]T

,
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Ω =
[

(b – a)
(

Y1 +
1
3

Y3

)]
+ Sym{M1Π1 + M2Π2},

Π1 = e1 – e2, Π2 = 2e3 – e1 – e2,

e1 = [I, 0, 0], e2 = [0, I, 0], e3 = [0, 0, I].

Lemma 2.2 ([17]) Let 0 ≤ τm < τM , 0 < λ < 1, Q ≥ 0, x(t) be a continuous vector-valued
function on [τm, τM]. If ‖x(t)‖ ≤ λ‖x(t –τ (t))‖+Q, t ≥ 0, then ‖x(t)‖ ≤ sup–τM≤t≤0 ‖x‖+ Q

1–λ
.

Lemma 2.3 ([17]) If system (1) is regular and impulse free, there exist two nonsingular
matrices M and N such that

MEN =

[
In1 0
0 0

]

, MAN =

[
Â1 0
0 I

]

.

Let

x̂(t) = N–1x(t) =

[
x̂1(t)
x̂2(t)

]

,

where x̂1(t) ∈ Rn1 and x̂2(t) ∈ Rn–n1 . Denote

MAτ N =

[
D̂11 D̂12

D̂21 D̂22

]

, MB =

[
B̂1

B̂2

]

.

Then system (1) is a restricted system, equivalent to the following one:

˙̂x1(t) = Â1x̂1(t) + D̂11x̂1
(
t – τ (t)

)
+ D̂12x̂2

(
t – τ (t)

)
+ B̂1u(t),

0 = x̂2(t) + D̂21x̂1
(
t – τ (t)

)
+ D̂22x̂2

(
t – τ (t)

)
+ B̂2u(t).

(5)

Lemma 2.4 Assume that there exist a functional V (xt) and positive scalars λ1,λ2,α,β ∈
(0, 1) such that

(1) λ1
∥∥x(t)

∥∥2 ≤ V (xt) ≤ λ2‖xt‖2, t ≥ 0, (6)

(2) V̇ (xt) + αV (xt) ≤ βuT (t)u(t), (7)

where xt represents the state trajectory {x(t +θ ) : θ ∈ C[–dM, 0]}. Then every solution x(t,φ)
of (1) satisfies

∥∥x(t,φ)
∥∥2 ≤ βu2

αλ1
+

(
λ2

λ1
‖φ‖2 –

βu2

αλ1

)+

e–αt , ∀t ≥ 0. (8)

Proof Notice

V̇ (xt) + αV (xt) ≤ βuT (t)u(t). (9)

By multiplying both sides of the inequality in (7) with eαt , we have

eαtV̇ (xt) + αeαtV (xt) =
d
dt

(
eαtV (xt)

) ≤ βeαtuT (t)u(t). (10)
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Then, by performing the integral of (10) from 0 to T > 0, it is not difficult to obtain

eαtV (xT ) – V (x0) =
∫ T

0
βeαtuT (t)u(t) dt ≤

∫ T

0
βeαtu2 dt =

β

α
u2(eαT – 1

)
. (11)

By simple computation, it is easy to get

V (xT ) ≤ e–αtV (x0)
β

α
u2(eαT – 1

)
e–αT =

β

α
u2 +

[
V (x0) –

β

α
u2

]
e–αT . (12)

Finally, for all t ≥ 0, replacing T with t in (12), we get

V (xt) ≤ β

α
u2 +

[
V (x0) –

β

α
u2

]
e–αt . (13)

Taking (6) into account, we derive

∥∥x(t,φ)
∥∥2 ≤ βu2

αλ1
+

(
λ2

λ1
‖φ‖2 –

βu2

αλ1

)+

e–αt . (14)

The proof is thus completed. �

Remark 2 Lemma 2.4 in this paper provides a basic tool for the problem of state bounding
not only containing the state convergence within a ball but also including the reachable
set bounding for a continuous-time singular system with bounded disturbance input. It
is obvious that Lemma 2.4 in this paper can be regarded as an expansion of Lemma 3 in
[17]. Particularly, taking β = α

u2 and V (x0), it is easy to see that Lemma 2.4 is reduced to
Lemma 3 in [17], which was proved to be more useful for the reachable set estimation
of singular systems with bounded disturbances. Note that Lemma 2.4 in this paper can
also be applied to the case where there is no disturbance in system (1). In this case, the
studied problem is reduced to the α-exponential stability analysis for a singular system
with interval time-varying delay.

3 Main results
According to Lemma 2.3, we consider the following system’s state bounding estimation:

˙̂x1(t) = Â1x̂1(t) + D̂11x̂1
(
t – τ (t)

)
+ D̂12x̂2

(
t – τ (t)

)
+ B̂1u(t),

0 = x̂2(t) + D̂21x̂1
(
t – τ (t)

)
+ D̂22x̂2

(
t – τ (t)

)
+ B̂2u(t).

(15)

Assumption 1 The matrix pair (E, D) is regular and ‖D̂22‖ < 1.

Theorem 3.1 Under Assumption 1, the singular system (1) is bounded by the ellipsoid

B(ε) =
{

x ∈ Rn|xT ˆ̂Pjx ≤ βu2

α

}

(

P̂j =
(
S–T PjS–1)

n1×n1
, ˆ̂Pj = T–T

[
ηP̂j 0
0 (1–η)βu2

ε2
2α

]

T–1

)
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if there exist positive Rn×n matrices Pj, Q1, Q2, Q3, X1, X2, G1, G2, G3, G4, G5, G6, G7, G8,
any R3n×3n symmetric matrices

Y1 =

⎡

⎢
⎣

Y11 Y12 Y13

Y21 Y22 Y23

Y31 Y32 Y33

⎤

⎥
⎦ , Y3 =

⎡

⎢
⎣

Ȳ11 Ȳ12 Ȳ13

Ȳ21 Ȳ22 Ȳ23

Ȳ31 Ȳ32 Ȳ33

⎤

⎥
⎦ ,

Z1 =

⎡

⎢
⎣

Z11 Z12 Z13

Z21 Z22 Z23

Z31 Z32 Z33

⎤

⎥
⎦ , Z3 =

⎡

⎢
⎣

Z̄11 Z̄12 Z̄13

Z̄21 Z̄22 Z̄23

Z̄31 Z̄32 Z̄33

⎤

⎥
⎦ ,

any R3n×3n matrices Y2, Z2, and any R3n×n matrices

N1 =

⎡

⎢
⎣

N11

N12

N13

⎤

⎥
⎦ , N2 =

⎡

⎢
⎣

N21

N22

N23

⎤

⎥
⎦ , M1 =

⎡

⎢
⎣

M11

M12

M13

⎤

⎥
⎦ , M2 =

⎡

⎢
⎣

M21

M22

M23,

⎤

⎥
⎦

such that the following matrix inequalities hold:

Ω = (Ωij)8×8 (i, j = 1, 2, . . . , 8) < 0, (16)

Ω1 =

⎡

⎢
⎣

Y1 Y2 M1

∗ Y3 M2

∗ ∗ ET X1E

⎤

⎥
⎦ ≥ 0, (17)

Ω2 =

⎡

⎢
⎣

Z1 Z2 N1

∗ Z3 N2

∗ ∗ ET X2E

⎤

⎥
⎦ ≥ 0, (18)

where

Ωij = Ωji (i, j = 1, 2, . . . , 8),

Ω11 = Q1 + Q2 + Q3 + αET PjE – e–αdm ET X2E + sym
(
GT

1 A
)
,

Ω12 = –e–αdm ET X2E + AT G2,

Ω13 = GT
1 D + AT G3,

Ω14 = GT
4 A,

Ω15 = AT G5,

Ω16 = AT G6,

Ω17 = (PjE + E0U)T – GT
1 + AT G7,

Ω18 = GT
1 B,

Ω22 = –e–αdm ET X2E – e–αdm Q1 + (dM – dm)2e–αdM

(
Y11 +

Ȳ11

3

)

+ (dM – dm)2e–αdM (M11 + M21),
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Ω23 = GT
2 D + (dM – dm)2e–αdM

(
Y12 +

Ȳ12

3

)
+

(dM – dm)2e–αdM

2
(M12 – M11)

–
(dM – dm)2e–αdM

2
(M21 + M22),

Ω25 = (dM – dm)2e–αdM

(
Y13 +

Ȳ13

3

)
+

(dM – dm)2e–αdM

2
(2M13 + M21 – M23),

Ω27 = –GT
2 ,

Ω28 = GT
2 B,

Ω33 = –(1 – μ)e–αdm Q3 + sym
(
GT

3 D
)

+ (dM – dm)2e–αdM

(
Y22 +

Ȳ22

3
+ Z11 +

Z̄11

3

)

+
(dM – dm)2e–αdM

2
(2M12 – 2M22 + 2N12 – 2N21),

Ω34 = DT G4 + (dM – dm)2e–αdM

(
Z12 +

Z̄12

3

)

+
(dM – dm)2e–αdM

2
(N12 – N11 – N22 – N21),

Ω35 = DT G5 + (dM – dm)2e–αdM

(
Y23 +

Ȳ23

3

)
+

(dM – dm)2e–αdM

2
M13,

Ω36 = DT G6 + (dM – dm)2e–αdM

(
Z13 +

Z̄13

3

)
+

(dM – dm)2e–αdM

2
(N13 + 2N21 – N23),

Ω37 = DT G7 – GT
3 ,

Ω38 = GT
3 B,

Ω44 = –e–αdM Q2 + (dM – dm)2e–αdM

(
Z22 +

Z̄22

3

)
–

(dM – dm)2e–αdM

2
(N12 + 2N22),

Ω46 = (dM – dm)2e–αdM

(
Z23 +

Z̄23

3

)
+

(dM – dm)2e–αdM

2
(–N13 + 2N22 – N23),

Ω48 = –GT
4 + GT

4 B,

Ω55 = (dM – dm)2e–αdM

(
Y33 +

Ȳ33

3

)
+ 2(dM – dm)2e–αdM M23,

Ω57 = –GT
5 ,

Ω58 = GT
5 B,

Ω66 = (dM – dm)2e–αdM

(
Z33 +

Z̄33

3

)
+ 2(dM – dm)2e–αdM N23,

Ω67 = –GT
6 ,

Ω68 = GT
6 B,

Ω77 = d2
mX2 + 2(dM – dm)2X1 – sym(G7),

Ω78 = GT
7 B,

Ω88 = –βI + sym
(
GT

8 B
)
.
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Proof Given a family of matrices Pj > 0, Q1 > 0, Q2 > 0, Q3 > 0, X1 > 0, X2 > 0, the pointwise
maximum Lyapunov–Krasovskii functional is defined as

Vmax = max
{

V1,j(x) + V2(xt) + V3(xt) + V4(xt)
}

= max
{

Vj(x)
}

= V1,max(x) + V2(xt) + V3(xt) + V4(xt), j = 1, 2, . . . , N , (19)

where

V1,j(x) = xT (t)ET PjEx(t),

V1,max(x) = max V1,j(x),

V2(xt) =
∫ t

t–dm

eαθ–txT (θ )Q1x(θ ) dθ

+
∫ t

t–dM

eαθ–txT (θ )Q2x(θ ) dθ +
∫ t

t–d(t)
eαθ–txT (θ )Q3x(θ ) ds,

V3(xt) = (dM – dm)
∫ –dm

–dM

∫ t

t+s
eαθ–t ẋT (θ )ET X1Eẋ(θ ) ds dθ ,

V4(xt) = dm

∫ 0

–dm

∫ t

t+s
eαθ–t ẋT (θ )ET X2Eẋ(θ ) ds dθ .

From Lemma 2.4, we have

λ1
∥∥x(t)

∥∥2 ≤ Vmax ≤ λ2‖xt‖2, t ≥ 0, (20)

where

λ1 = min
1≤j≤N

λ
(
ET PjE

)
,

λ2 = max
1≤j≤N

λ
(
ET PjE

)
+ max

1≤j≤N
λ(Q1)dm + max

1≤j≤N
λ(Q2)dM + max

1≤j≤N
λ(Q3)dM

+ max
1≤j≤N

λ
(
ET X1E

)
(dM – dm)3 + max

1≤j≤N
λ
(
ET X2E

)
d2

m.

In order to better express the idea of our proof, define a set Mmax(x) := {j ∈ {1, 2, . . . , K} :
Vj(x) = Vmax(x)} for any x 
= 0. Therefore, Vj(x) < Vmax(x), if j 
= Mmax(x). Without loss
of generality, we assume that the first n ellipsoids intersect at x. In that case, Mmax =
{1, 2, . . . , n}. Thus one obtains for all k ∈ {1, 2, . . . , K}, xT (Pk – Pj)x ≤ 0, ∀j ≤ n.

Let ηj = {x ∈ Rn : Vj(x) ≥ Vk(x),∀k 
= j}. Observe that x is differentiable if x ∈ ηj \ Vk 
=jηk ,
while x is nondifferentiable if x ∈ ⋂n

j=1 ηj \ ⋃K
j=m+1 ηj.

Since the derivative of a convex function at a differential point can be regarded as a
special case of a directional derivative for the same convex function at a nondifferentiable
point, we combine these two situations and only illustrate the proof for the situation of a
nondifferentiable point in the following discussion. Therefore,

Vmax = xT (t)ET PjEx(t) + V2(xt) + V3(xt) + V4(xt), j ∈ Mmax(x), (21)

∂V1,max(x) = Co{∂Pjx}, j ∈ Mmax(x). (22)
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Calculating the derivative of Vmax, we have

∇ẋV1,max(x) = 2ẋT (t)ET (PjE + E0u)x(t)

= 2
(
Eẋ(t)

)T PjEx(t) + 2
(
Eẋ(t)

)T PjE0ux(t), (23)

V̇2(xt) = –αV2 + xT (t)(Q1 + Q2 + Q3)x(t) – e–αdm xT (t – dm)Q1x(t – dm)

– e–αdM xT (t – dM)Q2x(t – dM)

–
(
1 – τ̇ (t)

)
e–αd(t)xT(

t – d(t)
)
Q3x

(
t – d(t)

)

≤ –αV2 + xT (t)(Q1 + Q2 + Q3)x(t) – e–αdm xT (t – dm)Q1x(t – dm)

– e–αdM xT (t – dM)Q2x(t – dM)

– (1 – μ)e–αd(t)xT(
t – d(t)

)
Q3x

(
t – d(t)

)
, (24)

V̇3(xt) = –αV3 + (dM – dm)2ẋT (t)ET X1Eẋ(t)

– (dM – dm)
∫ t–dm

t–dM

eα(θ–t)ẋT (θ )ET X1Eẋ(θ ) dθ

≤ –αV3 + (dM – dm)2ẋT (t)ET X1Eẋ(t)

– (dM – dm)e–αdM

∫ t–dm

t–dM

ẋT (θ )ET X1Eẋ(θ ) dθ , (25)

V̇4(xt) = –αV4 + d2
mẋT (t)ET X2Eẋ(t) – dm

∫ t

t–dm

eα(θ–t)ẋT (θ )ET X2Eẋ(θ ) dθ

≤ –αV4 + d2
mẋT (t)ET X2Eẋ(t) – dme–αdm

∫ t

t–dm

ẋT (θ )ET X2Eẋ(θ ) dθ . (26)

By employing Lemma 2.1, there exist matrices Y1, Y2, Y3, Z1, Z2, Z3 ∈ R3n×3n, and any
matrices N1, N2, M1, M2 ∈ R3n×n satisfying

Ω1 =

⎡

⎢
⎣

Y1 Y2 M1

∗ Y3 M2

∗ ∗ ET X1E

⎤

⎥
⎦ ≥ 0, Ω2 =

⎡

⎢
⎣

Z1 Z2 N1

∗ Z3 N2

∗ ∗ ET X2E

⎤

⎥
⎦ ≥ 0

such that dm < d(t) < dM . We have

V̇3(xt) ≤ –αV3 + (dM – dm)2ẋT (t)ET X1Eẋ(t)

– (dM – dm)e–αdM

∫ t–d(t)

t–dM

ẋT (θ )ET X1Eẋ(θ ) dθ

– (dM – dm)e–αdM

∫ t–dm

t–d(t)
ẋT (θ )ET X1Eẋ(θ ) dθ

≤ –αV3 + (dM – dm)2ẋT (t)ET X1Eẋ(t)

+ (dM – dm)e–αdM

[
xT (t – dm), xT(

t – d(t)
)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]

×
[(

d(t) – dm
)(

Y1 +
1
3

Y3

)]
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×
[

xT (t – dm), xT(
t – d(t)

)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]T

+ (dM – dm)e–αdM

[
xT (t – dm), xT(

t – d(t)
)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]

× Sym
(
M1

(
x
(
t – d(t)

)
– x(t – dm)

))

+ (dM – dm)e–αdM

[
xT (t – dm), xT(

t – d(t)
)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]

× Sym

(
M2

(
2

d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ – x

(
t – d(t)

)
– x(t – dm)

))

+ (dM – dm)e–αdM

[
xT(

t – d(t)
)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]

×
[(

dM – d(t)
)(

Z1 +
1
3

Z3

)]

×
[

xT(
t – d(t)

)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]T

+ (dM – dm)e–αdM

[
xT(

t – d(t)
)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]

× Sym
(
N1

(
x(t – dM) – x

(
t – d(t)

)))

+ (dM – dm)e–αdM

[
xT(

t – d(t)
)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]

× Sym

(
N2

(
2

dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ – x
(
t – d(t)

)
– x(t – dM)

))

≤ –αV3 + (dM – dm)2ẋT (t)ET X1Eẋ(t)

+ (dM – dm)e–αdM

[
xT (t – dm), xT(

t – d(t)
)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]

×
[

(dM – dm)
(

Y1 +
1
3

Y3

)]

×
[

xT (t – dm), xT(
t – d(t)

)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]T

+ (dM – dm)e–αdM

[
xT (t – dm), xT(

t – d(t)
)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]

× Sym
(
M1

(
x
(
t – d(t)

)
– x(t – dm)

))

+ (dM – dm)e–αdM

[
xT (t – dm), xT(

t – d(t)
)
,

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ

]

× Sym

(
M2

(
2

d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ – x

(
t – d(t)

)
– x(t – dm)

))

+ (dM – dm)e–αdM

[
xT(

t – d(t)
)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]

×
[

(dM – dm)
(

Z1 +
1
3

Z3

)]
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×
[

xT(
t – d(t)

)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]T

+ (dM – dm)e–αdM

[
xT(

t – d(t)
)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]

× Sym
(
N1

(
x(t – dM) – x

(
t – d(t)

)))

+ (dM – dm)e–αdM

[
xT(

t – d(t)
)
, xT (t – dM),

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ

]

× Sym

(
N2

(
2

dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ – x
(
t – d(t)

)
– x(t – dM)

))
. (27)

By applying the Jensen inequality in V̇4(xt), we have

V̇4(xt) ≤ –αV4 + d2
mẋT (t)ET X2Eẋ(t)

– dme–αdm
(
x(t) – x(t – dm)

)T ET X2E
(
x(t) – x(t – dm)

)
. (28)

Introducing the free weighting matrix G , we have

2ξT (t)GT[
–Eẋi(t) + Ax(t) + Dx

(
t – d(t)

)
+ Bu(t)

]
= 0, (29)

where

ξ (t) =
[

xT (t), xT (t – dm), xT(
t – d(t)

)
, xT (t – dM),

1
d(t) – dm

∫ t–dm

t–d(t)
xT (θ ) dθ ,

1
dM – d(t)

∫ t–d(t)

t–dM

xT (θ ) dθ ,
(
Eẋ(t)

)T , uT (t)
]T

,

G = [G1, G2, G3, G4, G5, G6, G7, G8].

Therefore, we have

V̇ = V̇max + αVmax(xt) – βuT (t)u(t)

+ 2ξT (t)GT[
–Eẋi(t) + Ax(t) + Dx

(
t – d(t)

)
+ Bu(t)

]

≤ ξT (t)Ωξ (t). (30)

Therefore, let � = V̇max + αVmax(xt) – βuT (t)u(t). Obviously, we have

� ≤
M∑

k=1

γjkxT (pk – pj)x ≤ 0. (31)

According to Lemma 2.4, we have

∥∥x(t,φ)
∥∥ ≤ γ2 +

{(
λ2

λ1
‖φ‖2 –

βu2

αλ1

)+} 1
2

e–αt , ∀t ≥ 0, (32)
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where

γ2 =

√
βu2

αλ1
, λ1 = min

1≤j≤N
λ
(
ET PjE

)
,

λ2 = max
1≤j≤N

λ
(
ET PjE

)
+ max

1≤j≤N
λ(Q1)dm + max

1≤j≤N
λ(Q2)dM + max

1≤j≤N
λ(Q3)dM

+ max
1≤j≤N

λ
(
ET X1E

)
(dM – dm)3 + max

1≤j≤N
λ
(
ET X2E

)
d2

m. �

Remark 3 Define γ1 = λ1
λ2

γ2. It is obvious that λ1 and λ2 are positive constants due to the
conditions from Theorem 1. Denote B1 := B(γ1), B2 := B(γ2), then B1 ⊂ B2. According to
the above inequality, it is easy for us to obtain two cases as regards the state trajectory of
the singular system (1). On the one hand, for any initial condition which belongs to B1, the
corresponding state trajectory is bounded within the ball B2. On the other hand, for any
initial condition which is outside B1, as t tends to infinity, the corresponding trajectory
converges exponentially within the ball B2.

When taking φ(t) = 0, the singular system (1) is translated into the form

Eẋi(t) = Ax(t) + Dx
(
t – d(t)

)
+ Bu(t),

x(t) = 0 t ∈ [–dM, 0].
(33)

It is obvious that the new system (33) is just a special case of the system (1). The reach-
able set estimation for system (33) has been mainly studied by employing the common
Lyapunov–Krasovskii functional in [17]. The corresponding bounding ellipsoids have also
been derived. In this paper, we apply the maximal Lyapunov–Krasovskii functional to pro-
vide a non-ellipsoidal reachable set estimation for the system (1).

Define the reachable set of (1) as follows:

Rx =
{

x(t) ∈ Rn|x(t), u(t) satisfy (1) and uT (t)u(t) ≤ u2, t ≥ 0
}

. (34)

From (34), it is easy to see that the reachable set of a system is regarded as a bounded set
of all reachable states starting from the origin by input disturbances with constrained peak
value. Since recently, the most interesting problem of estimation and control for dynamical
systems has been to find an estimation of the bounds of the reachable sets. Therefore,
many researchers have devoted efforts to investigating such conditions for deriving an
ellipsoid or a non-ellipsoid which bounds the reachable set of the system.

Let Q be a symmetric positive definite matrix and a scalar r ≥ 0, the ellipsoid is defined
as follows:

ε(Q, r) =
{

x ∈ Rn, xT Qx ≤ r
}

. (35)

By employing the Lyapunov–Krasovskii functional in (19), from Lemma 2.4, we obtain

V (xt) ≤ βu2

α

(
1 – e–αt) <

βu2

α
, ∀t ≥ 0. (36)

Note that V (xt) ≥ xT (t)ET PjEx(t). Therefore, we are ready to get xT (t)ET PjEx(t) ≤ βu2

α
.

By combining the definitions about Rx, ε(Q, r), it is not difficult to get the reachable set Rx
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of system (1) under zero initial condition. The reachable set is bounded by the ellipsoid
ε(ET PjE, r∗), where r∗ = βu2

α
.

xT (t)ET PjEx(t) ≤ βu2

α
stands for x̂T (t)TT ET ST S–T PjS–1SETx̂(t) ≤ βu2

α
, that is to say,

x̂T (t)P̂jx̂(t) ≤ βu2

α
with P̂j = (S–T PjS–1)n1×n1 .

Thus, the following inequality holds:

∥∥x̂1(t)
∥∥ ≤ ε1 (37)

with ε1 = βu2

α

√
min1≤j≤N λ(P̂j)

. Obviously, ‖x̂1(t)‖ is bounded.

On the other hand, from Assumption 1, it follows from Lemma 2.3 that

∥∥x̂2(t)
∥∥ =

∥∥D̂21x̂1
(
t – τ (t)

)
+ D̂22x̂2

(
t – τ (t)

)
+ B̂2u(t)

∥∥

≤ ‖D̂21‖ε1 + ‖D̂22‖
∥∥x̂2

(
t – τ (t)

)∥∥ + ‖B̂2‖u. (38)

By employing Lemma 6 in [17], ‖x̂2(t)‖ ≤ ε2. That is, x̂T
2 (t) 1

ε2
2

x̂2(t) ≤ 1.

It yields ‖x̂2(t)‖ ≤ sup–dM≤t≤0 ‖x(t)‖ + ‖D̂21‖ε1+‖B̂2‖u
1–‖D̂22‖ = ‖φ‖ + ‖D̂21‖ε1+‖B̂2‖u

1–‖D̂22‖ . We have

x̂T
2 (t)

1
ε2

2
x̂2(t) ≤ 1 (39)

with ε2 = ‖φ‖ + ‖D̂21‖ε1+‖B̂2‖u
1–‖D̂22‖ .

Then adding the inequality in (37) times η and the inequality in (39) times (1 – η) βu2

α
,

we obtain

[
x̂1(t)
x̂2(t)

]T [
ηP̂j 0
0 (1–η)βu2

ε2
2α

][
x̂1(t)
x̂2(t)

]

≤ βu2

α
. (40)

That is,

xT ˆ̂Pjx ≤ βu2

α
, P̂j =

(
S–T PjS–1)

n1×n1
, ˆ̂Pj = T–T

[
ηP̂j 0
0 (1–η)βu2

ε2
2α

]

T–1.

The next thing is to certify the regularity and non-impulsiveness characteristics of sys-
tem (1). It is not easy to get

ẼT P̃j = P̃T
j Ẽ =

[
ET PjE 0

0 0

]

≥ 0, (41)

sym
(
ÃT P̃j

)
+ Q̃ – ẼT X̃Ẽ =

[
Ω11 Ω17

∗ Ω77

]

< 0, (42)

where

Ã =

[
0 I
A –I

]

, Ẽ =

[
E 0
0 0

]

,
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X̃ =

[
e–αdm X2 0

0 0

]

, P̃j =

[
PjE + E0U 0

G1 G7

]

,

Q̃ =

[
Q1 + Q2 + Q3 + αET PjE 0

0 d2
mX2 + (dM – dm)2X1

]

.

From (41)–(42), we get

sym
(
ÃT P̃j

)
– ẼT Z̃Ẽ < 0. (43)

Because rank(Ẽ) = rank(E) = n1 ≤ n, there exist nonsingular matrices S̃ and T̃ such that

Ē = S̃ẼT̃ =

[
I 0
0 0

]

.

Denote

Ā = S̃ÃT̃ =

[
A11 A12

A21 A22

]

, P̄ = S̃–T P̃Ñ =

[
P11 P12

P21 P22

]

.

Taking (43) into account, we have P12 = 0 and P11 > 0. Then pre-multiplying and post-
multiplying (43) by T̃T and T , respectively, it is easy to obtain sym(AT

22P22) < 0 showing
that A22 is nonsingular. Thus, the pair (Ẽ, Ã) is regular and impulse free. In addition, by
simple computation, it is easy to certify that det(sE –A) = det(sẼ – Ã) and deg(det(sE –A)) =
deg(det(sẼ – Ã)). Finally, it is obvious that the system (1) is regular and impulse free.

4 Numerical examples
In this section, a numerical simulation example will be presented to demonstrate the ef-
fectiveness of our obtained results.

Example 1 Consider the two dimensional system (1) with

E =

[
–0.6
1.1

]

, A =

[
–2 0
0 –0.7

]

, B =

[
–1 0
–1 –1

]

,

u(t) =

[
cos(t)
sin(t)

]

, D = 0.

We have given

P1 =

[
0.4597 0.0270
0.0270 0.3100

]

, P2 =

[
0.8599 0.7400

–0.7400 2.1083

]

.

Figures 1 and 2 describe the reachable set estimation for the singular system (1) with
φ(t) = 0.
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Figure 1 The reachable set estimation for the singular system (1) with φ(t) = 0

Figure 2 The reachable set estimation for the singular system (1) with φ(t) = 0

5 Conclusions
The problem of a state bounding estimation of a continuous-time singular system with
time delays has been investigated in this paper. Some proper conditions have been estab-
lished to guarantee the state bounding set for the singular system with time delays by using
the maximal Lyapunov–Krasovskii functional and employing the new free-matrix-based
integral inequality. The above methods can be extended to our future studies, such as of
fractional-order systems and memristor-based neural networks.
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