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Abstract
This article aims to develop fractional order convolution theory to bring forth
innovative methods for generating fractional Fourier transforms by having recourse
to solutions for fractional difference equations. It is evident that fractional difference
operators are used to formulate for finding the solutions of problems of distinct
physical phenomena. While executing the fractional Fourier transforms, a new
technique describing the mechanism of interaction between fractional difference
equations and fractional differential equations will be introduced as h tends to zero.
Moreover, by employing the theory of discrete fractional Fourier transform of
fractional calculus, the modeling techniques will be improved, which would help to
construct advanced equipments based on fractional transforms technology using
fractional Fourier decomposition method. Numerical examples with graphs are
verified and generated by MATLAB.
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1 Introduction
Miller and Ross [27], Oldham and Spanier [29], and Podlubny [31] have developed con-
tinuous fractional calculus. The discrete fractional calculus, due to its widespread appli-
cations in various branches of science and engineering, has become the object of many
research works [1–3, 7, 14, 20]. Recently discrete delta fractional calculus has been devel-
oped by Atici and Eloe [12, 13, 15], Goodrich [21–23], and Holm [24]. For recent develop-
ments in the theory of discrete fractional calculus, applications of Mittag-Leffler function
and fractional integral inequalities, we refer to [4–6, 8, 9, 16, 19, 25, 26, 32].

The integral transforms, like Mellin, Laplace, Fourier, were applied to obtain the so-
lution of differential equations. These transforms made effectively possible to change a
signal in the time domain into that in the frequency s-domain in the field of Digital Signal
Processing (DSP) [34]. The more recent applications of fractional Fourier transform in X-
ray models and simulations are developed in [28, 30]. In [33], the forward complex DFT,
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written in polar form, is given by

X(t) =
1
N

N–1∑

n=0

x(n)e–j2π tn/N (1)

and it takes different labels depending on the nature of x[n]. The DFT X(t) = 1
N �–1x(n) ×

e–j2π tn/N |N0 follows from the basic difference identity �–1x(t)|N0 =
∑N–1

n=0 x(n) in [10]. Let �

be the time between two successive signals. Replacing �–1 by �–1
� , integer n by real t and

the sequence x(n) by a function x(ξ ), we get a Generalized Discrete Fourier Transform
(GDFT)

X(t) =
h
N

�–1
h x(ξ )e–j2π tt/N

∣∣∣∣
N

0
. (2)

When h = 1 and h → 0, the GDFT becomes DFT given in (1) and FT defined as g(t) =∫ ∞
–∞ e–j2π tx/N f (t) dt, respectively [11, 18].
The article is organized as follows. In Sect. 2, the basic concepts about delta and its in-

verse difference operators are presented. In Sect. 3, one dimensional fractional frequency
Fourier transform is defined and its properties with numerical verification are given. In
Sect. 4, some results on convolution and fractional Fourier transform are discussed. Sec-
tion 5 presents the conclusion.

2 Preliminaries
Here, we present some basic definitions, notations, and preliminaries. Let us denote by sm

r
and Sm

r the Stirling numbers of first and second kind, respectively. Denote byR = (–∞,∞),
L(R) = the set of all Lebesgue integrable functions onR. Let h > 0, m be the positive integer,
ν be a fraction, and ω be the frequency.

The polynomial factorial is defined by t(m)
h = t(t – h)(t – 2h) · · · (t – (m – 1)h), the relation

between the polynomial and polynomial factorials is given by

(i) t(m)
h =

m∑

r=1

sm
r hm–rtr , (ii) tm =

m∑

r=1

Sm
r hm–rt(r)

h . (3)

Definition 2.1 Let u(t), t ∈ [0,∞), be a real- or complex-valued function and h > 0 be a
fixed shift value. Then the h-difference operator �h on u(t) is defined as follows:

�hu(t) =
u(t + h) – u(t)

h
, (4)

and its infinite h-difference sum is defined by

�–1
h u(t) = h

∞∑

r=0

u(t + rh). (5)

Definition 2.2 Let u(t) and v(t) be two real-valued functions defined on (–∞,∞), and if
�hv(t) = u(t), then the finite inverse principle law is given by

v(t) – v(t – mh) = h
m∑

r=1

u(t – rh), m ∈ Z+. (6)
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Definition 2.3 ([17], p. 5, Definition 2.6) For h > 0 and ν ∈ R, the falling h-polynomial
factorial function is defined by

t(ν)
h = hν

Γ ( k
h + 1)

Γ ( k
h + 1 – ν)

, (7)

where k(0)
h = 1 and k

h + 1, k
h + 1 – ν /∈ {0, –1, –2, –3, . . .}, since the division at a pole yields

zero.

Applying Definition 2.1, we get the modified identities as follows:

(i) �ht(m)
h = mt(m–1)

h , (ii) �–1
h t(m)

h =
t(m+1)
h

m + 1
,

(iii) �–1
h tm =

m∑

r=1

Sm
r hm–rk(r)

h
r + 1

.
(8)

Lemma 2.4 Let h > 0 and u(t), w(t) be real-valued bounded functions. Then

�–1
h

(
u(t)w(t)

)
= u(t)�–1

h w(t) – �–1
h

(
�–1

h w(t + h)�hu(t)
)
. (9)

Proof Applying (4) on the product of two functions u(t)v(t), we get

�hu(t)v(t) =
u(t + h)v(t + h) – u(t)v(t)

h
. (10)

Now the proof follows by adding and subtracting u(t)v(t+h)
h , then applying �–1

h on both
sides. �

Lemma 2.5 Let t ∈ (–∞,∞), h > 0, and ν > 0, then we have

�–1
h e–iω1/ν t =

he–iω1/ν t

(e–iω1/νh – 1)
. (11)

Proof The proof follows by taking u(t) = e–iω1/ν t in Definition 2.1 and applying �–1
h . �

Corollary 2.6 Let t ∈ (–∞,∞), h > 0, and ν > 0, then we have

he–iω1/ν t

(e–iω1/νh – 1)
–

he–iω1/ν (t–mh)

(e–iω1/νh – 1)
= h

m∑

r=1

e–iω1/ν (t–rh). (12)

Proof The proof follows by equation (11) and the finite inverse principle law given in (6).�

Example 2.7 For the particular values ν = 0.6, s = 0.2, t = 4, m = 2, and h = 3, (12) is verified
by MATLAB. The coding is given by 3× symsum(exp(–i× (0.2)(1/0.6) × (4 – 3× r)), r, 1, 2) =
(3 × exp(–i × (0.2)(1/0.6) × 4))/(exp(–i × (0.2)(1/0.6) × 3) – 1) – (3 × exp(–i × (0.2)(1/0.6) ×
–2))/(exp(–i × (0.2)(1/0.6) × 3) – 1).
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Theorem 2.8 Let t ∈ (–∞,∞) and h > 0. Then we have

�–1
h

(
t(m)
h e±iω1/ν t) =

m∑

r=0

(–1)r(m)(r)
1 hr+1t(m–r)

h e±iω1/ν (t+rh)

(e±iω1/νh – 1)r+1
. (13)

Proof Taking u(t) = t(1)
h , w(t) = eiω1/ν t in (9) and using (3), we get

�–1
h

(
t(1)
h eiω1/ν t) =

ht(1)
h eiω1/ν t

(eiω1/νh – 1)
–

h2eiω1/ν (t+h)

(eiω1/νh – 1)2
.

Taking u(t) = t(2)
h , w(t) = eiω1/ν t in (9) and using (3), we get

�–1
h

(
t(2)
h eiω1/ν t) =

ht(2)
h eiω1/ν t

(eiω1/νh – 1)
–

2h2t(1)
h eiω1/ν (t+h)

(eiω1/νh – 1)2
+

2h3eiω1/ν (t+2h)

(eiω1/νh – 1)3
,

which can be expressed as

�–1
h

(
t(2)
h eiω1/ν t) =

2∑

r=0

(–1)r(2)(r)
1 hr+1t(2–r)

h eiω1/ν (t+rh)

(eiω1/νh – 1)r+1
.

Now (13) follows by continuing the above process and then replacing i by –i. �

Theorem 2.9 Let t ∈ (–∞,∞) and h > 0. If e±iω1/νh �= 1, then we have

�–1
h

(
tne±iω1/ν t) =

n∑

m=0

Sn
mhn–m

m∑

r=0

(–1)r(m)(r)
1 hr+1t(m–r)

h e±iω1/ν (t+rh)

(e±iω1/νh – 1)r+1
. (14)

Proof The proof follows from the second term of (3) and (13). �

Theorem 2.10 Let t ∈ (–∞,∞) and h > 0. If ahe±iω1/νh �= 1, then

�–1
h

(
ate±iω1/ν t) =

hate±iω1/ν t

(ahe±iω1/νh – 1)
. (15)

Proof Since

�hate±iω1/ν t =
at+he±iω1/ν (t+h) – ate±iω1/ν t

h
=

ate±iω1/ν t

h
[
ahe±iω1/ν (h) – 1

]
,

the proof follows by taking �–1
h on both sides. �

3 1D fractional frequency Fourier transform and its properties
In this section, we define and obtain the properties of one dimensional fractional fre-
quency Fourier transform and present the transforms of certain functions like trigonomet-
ric, hyperbolic, polynomials, etc. We also obtain some properties of Fourier transforms.
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Definition 3.1 The fractional frequency Fourier transform (FFFT) of u(t) is defined as
follows:

Fh,ν
(
u(t)

)
= U(ω) = �–1

h u(t)e–iω1/ν t∣∣∞
t=–∞, (16)

and the inverse generalized discrete Fourier transform of U(s) is given by

u(t) =
1

2π
�–1

h U(ω)eiω1/ν t
∣∣∣∣
∞

ω=–∞
. (17)

Similarly, the fractional frequency Fourier sine and cosine transforms of u(t) are defined
as follows:

sFh,ν
(
u(t)

)
= Us(ω) = �–1

h u(t) sinω1/νt
∣∣∞
t=0, (18)

cFh,ν
(
u(t)

)
= Uc(ω) = �–1

h u(t) cosω1/νt
∣∣∞
t=0. (19)

The inverse of Fourier sine and cosine transforms of the above are respectively given by

u(t) =
2
π

�–1
h Us(ω) sinω1/νt

∣∣∣∣
∞

s=0
, (20)

u(t) =
2
π

�–1
h Uc(ω) cosω1/νt

∣∣∣∣
∞

s=0
. (21)

Let c1 and c2 be constants. From Definition 3.1, we can obtain the following linearity,
change of scale, and shifting properties of fractional frequency Fourier transform.

Property 3.2 If Fh,ν(u(t)) = U(ω) and Fh,ν(v(t)) = V (ω), then

(i) Fh,ν
(
c1u(t) + c2v(t)

)
= c1U(ω) + c2V (ω), (22)

(ii) If Fh,ν
(
u(t)

)
= U(ω), then Fh,ν

(
u(at)

)
=

1
a

U
(

ω

a

)
, (23)

(iii) If sFh,ν
(
u(t)

)
= Us(ω), then sFh,ν

(
u(at)

)
=

1
a

Us

(
ω

a

)
, (24)

(iv) If cFh,ν
(
u(t)

)
= Uc(ω), then cFh,ν

(
u(at)

)
=

1
a

Uc

(
ω

a

)
. (25)

Example 3.3 Take u(t) = t(3)
h for –4 < t < 4. Then from (13) we get

Fh,ν
(
t(3)
h

)
= U(ω) = �–1

h t(3)
h e–iω1/ν t∣∣4

t=–4 =
3∑

r=0

(–1)r(3)(r)
1 hr+1t(3–r)

h e–iω1/ν (t+rh)

(e–iω1/νh – 1)r+1

∣∣∣∣
4

t=–4

=
h4(3)

h e–4iω1/ν

(e–iω1/νh – 1)
–

3h24(2)
h e–iω1/ν (4+h)

(e–iω1/νh – 1)2
+

6h34(1)
h e–iω1/ν (4+2h)

(e–iω1/νh – 1)3
–

6e–iω1/ν (4+3h)

(e–iω1/νh – 1)4

–
h(–4)(3)

h e4iω1/ν

(e–iω1/νh – 1)
+

3h2(–4)(2)
h e–iω1/ν (–4+h)

(e–iω1/νh – 1)2
–

6h3(–4)(1)
h e–iω1/ν (–4+2h)

(e–iω1/νh – 1)3

+
6e–iω1/ν (–4+3h)

(e–iω1/νh – 1)4
. (26)
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Figure 1 Time domain Signal(t)

Figure 2 Frequency (ω)

For particular values of ν = 0.5, ω = 3, and h = 1, we provide MATLAB coding for verifi-
cation as follows: U(ω) = symsum((4 – r) × (3 – r) × (2 – r) × exp(–i × 3(1/0.5) × (4 – r)),
r, 1, 8) = (24 × (exp(–i × 3(1/0.5) × 4)))/((exp(–i × 3(1/0.5)) – 1)) – (36 × (exp(–i × 3(1/0.5) ×
5)))/((exp(–i × 3(1/0.5)) – 1)2) + (24 × (exp(–i × 3(1/0.5) × 6)))/((exp(–i × 3(1/0.5)) – 1)3) – (6 ×
(exp(–i × 3(1/0.5) × 7)))/((exp(–i × 3(1/0.5)) – 1)4) + (120 × (exp(i × 3(1/0.5) × 4)))/((exp(–i ×
3(1/0.5)) – 1)) + (60 × (exp(i × 3(1/0.5) × 3)))/((exp(–i × 3(1/0.5)) – 1)2) + (24 × (exp(i × 3(1/0.5) ×
2)))/((exp(–i × 3(1/0.5)) – 1)3) + (6 × (exp(i × 3(1/0.5))))/((exp(–i × 3(1/0.5)) – 1)4).

The outcomes are generated by MATLAB as diagrams. Figure 1 is the input function
(signal) as polynomial factorial for the time factor t. Figure 2 is the fractional frequency
Fourier transform in the frequency domain ω for the particular values of ω = 3 and ν = 0.5
which are generated. This shows that the signal runs smoothly in both real and imaginary
parts of the frequency domain. One can generate functions easily by varying ω and ν to
analyze the signal processing in the axis.

4 Convolution product and fractional Fourier transform
In this section, we establish discrete convolution theorem and fractional Fourier transform
based on generalized operator �h. When h → 0, we get convolution theorem and Fourier
transform.
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Definition 4.1 Let u and v be two bounded functions on (–∞, +∞). Then the convolution
of u and v is defined as

w(x) = (u ◦ v)(x) = �–1
h u(t)v(x – t)

∣∣∞
t=–∞. (27)

It is easy to see that u ◦ v = v ◦ u.

Remark 4.2 When both u and v vanish on the negative real axis, v(x – t) = 0 if t > x and
(27) becomes

w(x) = (u ◦ v)(x) = �–1
h u(t)v(x – t)

∣∣x
t=0. (28)

Theorem 4.3 Let R = (–∞,∞). Assume that u, v ∈ L(R) = set of all Lebesgue integrable
functions on R and that either u or v is bounded on R. Then the convolution

w(x) = (u ◦ v)(x) = �–1
h u(t)v(x – t)

∣∣∞
–∞ (29)

exists for every x in R and the function w so defined is bounded on R. If, in addition, the
bounded function u or v is continuous on R, then w is also continuous on R and w ∈ L(R).

Proof Since u ◦ v = v ◦ u, it suffices to consider the case in which v is bounded. Suppose
|v| ≤ M. Then

∣∣u(t)v(x – t)
∣∣ ≤ M

∣∣u(t)
∣∣. (30)

Since u(t)v(x – t) is a measurable function of t on R, from (27) and (30), we get �–1
� |u(t) ×

v(x – t)||∞–∞ ≤ M�–1
h |u(t)||∞–∞ ⇒ |w(x)| ≤ M�–1

h |u(t)||∞–∞, which tells that w is bounded
on R. Also, if v is continuous on R, then w is continuous on R. Now, for every compact
interval [a, b], we have

(
�–1

h
∣∣w(x)

∣∣)∣∣b
a ≤ �–1

h
∣∣u(t)

∣∣∞
–∞�–1

h
∣∣v(x – t)

∣∣b
a ≤ �–1

h
∣∣u(t)

∣∣∞
–∞�–1

�

∣∣v(y)
∣∣∞
–∞,

where y = x – t. �

Since w is bounded and continuous on R, w ∈ L(R).

5 Discrete convolution theorem for discrete Fourier transform
The following theorem illustrates the relation between convolution and Fourier transform.

Theorem 5.1 Assume that u, v ∈ L(R) and that at least one of u or v is continuous and
bounded on R. Let h denote the convolution and w = u ◦ v. Then, for every real ν , we have

�–1
h w(x)e–ixν

∣∣∞
–∞ =

(
�–1

h u(t)e–itν)∣∣∞
–∞

(
�–1

h v(y)e–iyν)∣∣∞
–∞. (31)

Proof Assume that v is continuous and bounded on R. Let an and bn be two increasing
sequences of positive real numbers such that an → +∞ and bn → +∞. Define a sequence
of functions un on R as un(t) = �–1

h e–ixνv(x – t)|bn
–an .
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Since |�–1
h e–ixνv(x – t)||bn

–an ≤ |v|∞–∞ for all compact intervals [a, b]. Now, for translation
y = x – t, we get

lim
n→∞ un(t) = �–1

h e–ixνv(x – t)
∣∣∞
–∞ = �–1

h e–iν(t+y)v(y)
∣∣∞
–∞. (32)

By Lebesgue dominated convergence theorem,

lim
n→∞�–1

h u(t)un(t)
∣∣∣
∞
–∞

=
(
�–1

h u(t)e–itν)∣∣∞
–∞

(
�–1

h v(y)e–iyν)∣∣∞
–∞. (33)

But from (32) and (27), limn→∞ �–1
h u(t)un(t)|∞–∞ = �–1

h e–ixνw(x)|∞–∞, which completes the
proof. The discrete integral on the left also exists as an improper Riemann integral is con-
tinuous and bounded on R and �–1

h |w(x)e–ixν | ≤ �–1
h w|∞–∞ for every interval [a, b]. �

The following example provides the numerical verification of convolution and the solu-
tions are analyzed by graphs.

Example 5.2 Consider the following functions:

u(t) =

⎧
⎨

⎩
at , |t| ≤ 2,

0, otherwise,
v(t) =

⎧
⎨

⎩
e–iω1/ν (x–t), |t| ≤ 2,

0, otherwise.

Now from (27) we get (u ◦ v)(t) = �–1
h ate–iω1/ν t|2t=–2. Then, using (15) gives (u ◦ v)(t) =

hate±iω1/ν t

(ahe±iω1/ν h–1)
|2–2. By (6), we get

(u ◦ v)(t) = h
4∑

r=1

a2–rhe–iω1/ν (2–rh) =
ha2e±iω1/ν2

(ahe±iω1/νh – 1)
–

ha–2e±iω1/ν (–2)

(ahe±iω1/νh – 1)
, (34)

which is verified for the particular values h = 3, a = 5, ω = 0.3, and ν = 0.2 by MATLAB
coding given below: symsum(3 × 5(2–3×r) × exp(–i × (0.3)(1/0.2) × (2 – r × 3)), r, 1, 4) = 75 ×
exp(–i × (0.3)(1/0.2) × 2)/(125 × exp(–i × (0.3)(1/0.2) × 3) – 1) – 3 × exp(–i × (0.3)(1/0.2) ×
–2)/(25 × (125 × exp(–i × (0.3)(1/0.2) × 3) – 1)).

6 Conclusion
In this work, we proved some properties and results with frequency fractional factor ω1/ν

using the inverse difference operator. We defined one dimensional fractional frequency
Fourier transform and its convolution. The biggest advantage of our findings is that, when
h → 0 and ν = 1, the one dimensional fractional frequency Fourier transform becomes the
Fourier transform which exists in the literature. We believe that the new extension and
definitions will be valuable for researchers to develop the models in Fourier transform.
When the Fourier transform does not exist for any function (signal), we can apply one
dimensional fractional Fourier transform using (5) and (16) and get several applications
in the field of digital signal processing.
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