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Abstract
In this paper, we mainly study an initial and boundary value problem of a
two-dimensional fourth-order hyperbolic equation. Firstly, the fourth-order equation
is written as a system of two second-order equations by introducing two new
variables. Next, in order to design an implicit compact finite difference scheme for the
problem, we apply the compact finite difference operators to obtain a fourth-order
discretization for the second-order spatial derivatives and the Crank–Nicolson
difference scheme to obtain a second-order discretization for the first-order time
derivative. We prove the unconditional stability of the scheme by the Fourier method.
Then a convergence analysis is given by the energy method. Numerical results are
provided to verify the accuracy and efficiency of this scheme.
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1 Introduction
Let Ω = (0, a)× (0, b) and we consider the two-dimensional fourth-order hyperbolic equa-
tion with initial and boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) utt + ρ�2u = f (x, y, t), (x, y, t) ∈ Ω × (0, T],

(b) u(x, y, 0) = f1(x, y), ∂u
∂t |(x,y,0) = f2(x, y), (x, y) ∈ Ω ,

(c) u|x=0 = h1(y, t), u|x=a = h2(y, t),

u|y=0 = h3(x, t), u|y=b = h4(x, t), t ∈ [0, T],

(d) �u|x=0 = g1(y, t), �u|x=a = g2(y, t),

�u|y=0 = g3(x, t), �u|y=b = g4(x, t), t ∈ [0, T],

(1)

where utt = ∂2u
∂t2 , �2u = ∂4u

∂x4 + 2 ∂4u
∂x2∂y2 + ∂4u

∂y4 . f (x, y, t) is the given source term. f1(x, y) and
f2(x, y) are initial value functions. h1(y, t), h2(y, t), h3(x, t), h4(x, t) and g1(y, t), g2(y, t), g3(x, t),
g4(x, t) are boundary value functions. ρ is a given positive constant.

The two-dimensional fourth-order hyperbolic equations have very important physical
background and a wide range of applications. For example, they can be used to describe the
vibration of a plate and in large-scale civil engineering, spaceflight, and active noise control
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(see [1–5]). Compared with the second-order equations [6–11], it is usually necessary to
use higher-order finite element methods or thirteen-point difference schemes in order to
solve the numerical solution of the two-dimensional fourth-order equations. The former
is difficult to calculate. The latter has some difficulties to deal with the boundary and only
achieves second-order accuracy.

The compact finite difference method, compared to the traditional finite difference
method, has a narrower band width and achieves a higher accuracy. Hence, they have
long been studied, for example, in [12, 13]. In the last few years, high-order computational
methods for different kinds of differential equations were studied (see [6–8, 12–17]). In
[14–16] fourth-order equations are written as a system of two second-order equations
by introducing two new variables. Then, in order to design a high-order scheme for the
problem, the spatial derivatives are discretized by applying the compact finite difference
method or compact volume method.

In this paper, we apply similar ideas to the two-dimensional fourth-order hyperbolic
equation (1). Firstly, the fourth-order equation is written as a system of two second-order
equations by introducing two new variables. Next, we use the compact operators to ap-
proximate the second-order derivatives in the space variables and rewrite the above prob-
lem as an initial value problem for a system of two second-order ordinary differential equa-
tions. Then we develop a two time level compact finite difference scheme. We prove the
stability for the high-order compact difference scheme by the Fourier method. The con-
vergence of the high-order compact difference scheme is given by the energy method.

The rest of the paper is arranged as follows. In Sect. 2 we formulate the fourth-order
compact finite difference scheme for problem (1). A stability analysis is given by the Fourier
method in Sect. 3, and a convergence analysis is given by the energy method in Sect. 4.
Numerical experiments are performed in Sect. 5 to test the accuracy and efficiency of the
proposed compact finite difference scheme. Conclusions are given in Sect. 6.

2 Compact finite difference scheme
To design a proper finite difference scheme, we set v = –ρ�u, w = ∂u

∂t and reformulate
problem (1) in terms of the coupled system of second-order equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ∂w
∂t – �v = f (x, y, t), (x, y, t) ∈ Ω × (0, T],

(b) ρ�w + ∂v
∂t = 0, (x, y, t) ∈ Ω × (0, T],

(c) w(x, y, 0) = f2(x, y), v(x, y, 0) = –ρ�f1(x, y), (x, y) ∈ Ω ,

(d) w|x=0 = ∂h1
∂t (y, t), w|x=a = ∂h2

∂t (y, t),

w|y=0 = ∂h3
∂t (x, t), w|y=b = ∂h4

∂t (x, t), t ∈ [0, T],

(e) v|x=0 = –ρg1(y, t), v|x=a = –ρg2(y, t),

v|y=0 = –ρg3(x, t), v|y=b = –ρg4(x, t), t ∈ [0, T].

(2)

Obviously, u is a solution to (1), if and only if (v, w) is a solution to (2).
Let hx = a

Nx+1 , hy = b
Ny+1 be the spatial step in the x and y directions, τ = T

N be the time
step and xi = ihx, 0 ≤ i ≤ Nx + 1, yj = jhy, 0 ≤ j ≤ Ny + 1, tk = kτ , 0 ≤ k ≤ N , h = max{hx, hy}.
The theoretical solutions u, v, w at the point (xi, yj, tk) are denoted by uk

ij, vk
ij, wk

ij and the
numerical solutions at the same mesh point will be represented by Uk

ij , V k
ij , W k

ij . At each
time level the number of unknowns is Nxy = Nx × Ny. Besides, we set tk+ 1

2
= 1

2 (tk + tk+1).
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Our compact method for (1) is based on the system (2). To do this, we set

vk+ 1
2

ij =
1
2
(
vk

ij + vk+1
ij

)
, wk+ 1

2
ij =

1
2
(
wk

ij + wk+1
ij

)
,

δtv
k+ 1

2
ij =

1
τ

(
vk+1

ij – vk
ij
)
, δtw

k+ 1
2

ij =
1
τ

(
wk+1

ij – wk
ij
)
,

δxvk
i– 1

2 ,j =
1
hx

(
vk

ij – vk
i–1,j

)
, δxwk

i– 1
2 ,j =

1
hx

(
wk

ij – wk
i–1,j

)
,

δyvk
i,j– 1

2
=

1
hy

(
vk

ij – vk
i,j–1

)
, δywk

i,j– 1
2

=
1
hy

(
wk

ij – wk
i,j–1

)
,

δ2
x vk

ij =
1
h2

x

(
vk

i+1,j – 2vk
ij + vk

i–1,j
)
, δ2

x wk
ij =

1
h2

x

(
wk

i+1,j – 2wk
ij + wk

i–1,j
)
,

δ2
y vk

ij =
1
h2

y

(
vk

i,j+1 – 2vk
ij + vk

i,j–1
)
, δ2

y wk
ij =

1
h2

y

(
wk

i,j+1 – 2wk
ij + wk

i,j–1
)
.

Using the Crank–Nicolson method to approximate (2a) and (2b) at the point (xi, yj, tk+ 1
2

),
we get

⎧
⎨

⎩

(a) δtw
k+ 1

2
ij – �vk+ 1

2
ij = f k+ 1

2
ij + gk+ 1

2
ij ,

(b) ρ�wk+ 1
2

ij + δtv
k+ 1

2
ij = g̃k+ 1

2
ij ,

(3)

where

f k+ 1
2

i,j = f (xi, yj, tk+ 1
2

),

gk+ 1
2

ij =
{

τ 2

24
∂3w
∂t3 –

τ 2

8

[
∂4v

∂x2∂t2 +
∂4v

∂y2∂t2

]}∣
∣
∣
∣
(xi ,yj ,tk+ 1

2
)

+ O
(
τ 4),

g̃k+ 1
2

ij =
{

ρτ 2

8

[
∂4w

∂x2∂t2 +
∂4w

∂y2∂t2

]

+
τ 2

24
∂3v
∂t3

}∣
∣
∣
∣
(xi ,yj ,tk+ 1

2
)

+ O
(
τ 4).

Setting vxx = θ , vyy = ϑ and wxx = ϕ, wyy = ψ , (3a) and (3b) can be rewritten as

⎧
⎨

⎩

(a) δtw
k+ 1

2
ij – (θ k+ 1

2
ij + ϑ

k+ 1
2

ij ) = f k+ 1
2

ij + gk+ 1
2

ij ,

(b) ρ(ϕk+ 1
2

ij + ψ
k+ 1

2
ij ) + δtv

k+ 1
2

ij = g̃k+ 1
2

ij .
(4)

Defining the difference operators

Ax = 1 +
h2

x
12

δ2
x , Ay = 1 +

h2
y

12
δ2

y ,

and applying a Taylor expansion, we get

δ2
x vk

ij = Axθ
k
ij + (Rx)k

ij, δ2
y vk

ij = Ayϑ
k
ij + (Ry)k

ij,

δ2
x wk

ij = Axϕ
k
ij + (rx)k

ij, δ2
y wk

ij = Ayψ
k
ij + (ry)k

ij,
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where

(Rx)k
ij = –

h4
x

240
∂6vk

ij

∂x6 + O
(
h6

x
)
, (Ry)k

ij = –
h4

y

240
∂6vk

ij

∂y6 + O
(
h6

y
)
.

(rx)k
ij = –

h4
x

240
∂6wk

ij

∂x6 + O
(
h6

x
)
, (ry)k

ij = –
h4

y

240
∂6wk

ij

∂y6 + O
(
h6

y
)
.

Denote Ah = AxAy and Bh = Ayδ
2
x + Axδ

2
y . Hence, multiplying by Ah both sides of (4), we

get

⎧
⎨

⎩

(a) Ah(δtw
k+ 1

2
ij ) – Bhvk+ 1

2
ij = Ahf k+ 1

2
ij + gk+ 1

2
ij ,

(b) ρBhwk+ 1
2

ij + Ah(δtv
k+ 1

2
ij ) = ĝk+ 1

2
ij ,

(5)

where

gk+ 1
2

ij = Ahgk+ 1
2

ij – Ay(Rx)k+ 1
2

i,j – Ax(Ry)k+ 1
2

i,j = O
(
τ 2 + h4

x + h4
y
)
,

ĝk+ 1
2

ij = Ah̃gk+ 1
2

ij – Ay(rx)k+ 1
2

i,j – Ax(ry)k+ 1
2

i,j = O
(
τ 2 + h4

x + h4
y
)
.

Replacing vk
i,j, wk

i,j by their approximations V k
i,j, W k

i,j and neglecting the higher-order terms,
we derive a finite difference scheme as follows:

⎧
⎨

⎩

Ah(δtW
k+ 1

2
ij ) – BhV k+ 1

2
ij = Ahf k+ 1

2
ij , 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N ,

ρBhW k+ 1
2

ij + Ah(δtV
k+ 1

2
ij ) = 0, 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N ,

(6)

where the discretized boundary values and initial values are denoted by

W k
0,j =

∂h1

∂t
(yj, tk), W k

Nx+1,j =
∂h2

∂t
(yj, tk), 0 ≤ j ≤ Ny + 1, 0 ≤ k ≤ N ,

W k
i,0 =

∂h3

∂t
(xi, tk), W k

i,Ny+1 =
∂h4

∂t
(xi, tk), 0 ≤ i ≤ Mx + 1, 0 ≤ k ≤ N ,

V k
0,j = –ρg1(yj, tk), V k

Nx+1,j = –ρg2(yj, tk), 0 ≤ j ≤ Ny + 1, 0 ≤ k ≤ N ,

V k
i,0 = –ρg3(xi, tk), V k

i,Ny+1 = –ρg4(xi, tk), 0 ≤ i ≤ Nx + 1, 0 ≤ k ≤ N ,

W 0
i,j = f2(xi, yj), 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1,

V 0
i,j = –ρ�f1(xi, yj), 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1.

Remark 2.1 From (5) it is easy to see that the local truncation error for this scheme is
O(τ 2 + h4).

3 Stability analysis
In this section, we adopt the Fourier method to analyze stability of the scheme (6). Assume
that h = g(τ ), where g(τ ) is a continuous function and g(0) = 0. In order to prove stability
of the scheme (6), we consider a difference scheme of the form

∑

m∈N1

AmUn+1
j+m =

∑

m∈N0

BmUn
j+m, (7)
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where Am and Bm are 2 × 2 matrices, N0 and N1 are finite sets containing 0, positive in-
tegers and negative integers, Um

j is a two-dimensional column vector. Using the Fourier
method we get the growth factor G(xi, yj). Then the scheme (7) is stable if and only if the
family of matrices

{
Gn(xi, yj); x0 = 0 < x1 < · · · < xNx+1 = a,

y0 = 0 < y1 < · · · < yNy+1 = b, n = 1, 2, . . . , N
}

(8)

is uniformly bounded. We introduce the following two lemmas.

Lemma 3.1 ([18]) To prove that the family of matrices (8) is uniformly bounded, it is nec-
essary and sufficient to prove that the family of matrices

{
Gn(x, y); 0 < x < a, 0 < y < b, n = 1, 2, . . .

}
(9)

is uniformly bounded.

Proof Accuracy is obvious, we now prove the necessity. We use the meshes with Nx = 2m,
Ny = 2k , m = 1, 2, . . . , k = 1, 2, . . . . Denote by (xp, yq) the grid points in the mesh for given
m and k, where xp = a

2p , yq = b
2q , p = 1, 2, . . . , m, q = 1, 2, . . . , k. Assume

∥
∥Gn(xp, yq)

∥
∥ ≤ M, 0 ≤ nτ ≤ T ,

where M is a constant that has nothing to do with partition. We set τ → 0, therefore,
h → 0, then

∥
∥Gn(xp, yq)

∥
∥ ≤ M, n = 1, 2, . . . .

Noting that the bisecting points {(xp, yq)} are dense on [0, a] × [0, b], and G(x, y) is a con-
tinuous function, we get

∥
∥Gn(x, y)

∥
∥ ≤ M, 0 ≤ x ≤ a, 0 ≤ y ≤ b, n = 1, 2, . . . . �

Lemma 3.2 ([18]) Assume G(x, y) is an 2 × 2 matrices and use gij to represent the element
of the ith row and the jth column. The eigenvalues of G are λ1 and λ2. The family of matrices
{Gn(x, y)} is uniformly bounded if and only if

⎧
⎪⎪⎨

⎪⎪⎩

(α) |λi(x, y)| ≤ 1, i = 1, 2, 0 ≤ x ≤ a, 0 ≤ y ≤ b,

(β) ‖G(x, y) – 1
2 (g11(x, y) + g22(x, y))I‖

≤ M(|1 – |λ1(x, y)|| + |λ1(x, y) – λ2(x, y)|), 0 ≤ x ≤ a, 0 ≤ y ≤ b.

(10)

Remark 3.1
(1) From the relationship between roots and coefficients in the quadric equation

λ2 – bλ – c = 0, the modulo of two roots is not bigger than one if and only if

|b| ≤ 1 – c ≤ 2. (11)
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(2) In the condition (β),we need to calculate the norm of a 2 × 2 matrix. We usually use
the Frobenius-norm, which is defined as

‖K‖F =

( 2∑

i,j=1

|kij|2
) 1

2

, (12)

for a matrix K = (kij).

Theorem 3.1 The scheme (6) is unconditionally stable.

Proof We use the Fourier method to prove the stability of the scheme (6). Using the defi-
nitions of Ah and Bh, the scheme (6) is written as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(1) 1
144 [c1 + 10(c2 + c3) + 100c4] – 1

24 (r1d1 + 2r2d2 + 2r3d3 – 20r1d4)

= 1
144 [ĉ1 + 10(ĉ2 + ĉ3) + 100ĉ4] + 1

24 (r1d̂1 + 2r2d̂2 + 2r3d̂3 – 20r1d̂4),

(2) ρ

24 (r1c1 + 2r2c2 + 2r3c3 – 20r1c4) + 1
144 [d1 + 10(d2 + d3) + 100d4]

= –ρ

24 (r1ĉ1 + 2r2ĉ2 + 2r3ĉ3 – 20r1ĉ4) + 1
144 [d̂1 + 10(d̂2 + d̂3) + 100d̂4],

(13)

where

rx =
τ

h2
x

, ry =
τ

h2
y

, r1 = rx + ry, r2 = 5rx – ry, r3 = 5ry – rx,

c1 = W k+1
i–1,j–1 + W k+1

i–1,j+1 + W k+1
i+1,j–1 + W k+1

i+1,j+1,

c2 = W k+1
i–1,j + W k+1

i+1,j, c3 = W k+1
i,j–1 + W k+1

i,j+1, c4 = W k+1
i,j ,

d1 = V k+1
i–1,j–1 + V k+1

i–1,j+1 + V k+1
i+1,j–1 + V k+1

i+1,j+1,

d2 = V k+1
i–1,j + V k+1

i+1,j, d3 = V k+1
i,j–1 + V k+1

i,j+1, d4 = V k+1
i,j ,

ĉ1 = W k
i–1,j–1 + W k

i–1,j+1 + W k
i+1,j–1 + W k

i+1,j+1,

ĉ2 = W k
i–1,j + W k

i+1,j, ĉ3 = W k
i,j–1 + W k

i,j+1, ĉ4 = W k
i,j,

d̂1 = V k
i–1,j–1 + V k

i–1,j+1 + V k
i+1,j–1 + V k

i+1,j+1,

d̂2 = V k
i–1,j + V k

i+1,j, d̂3 = V k
i,j–1 + V k

i,j+1, d̂4 = V k
i,j.

Let W k
jm = vk

1eiσ1jhx eiσ2mhy , V k
jm = vk

2eiσ1jhx eiσ2mhy , where vk
1 and vk

2 are the amplitude at time
level k, σ1 and σ2 represent the wave numbers in the x and y directions. By inserting these
expressions into the coupled scheme (13), we have

[
1

144
(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy + eiσ1(j+1)hx eiσ2(m–1)hy

+ eiσ1(j+1)hx eiσ2(m+1)hy
)

+
10

144
(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

+ eiσ1(j–1)hx eiσ2mhy + eiσ1(j+1)hx eiσ2mhy
)

+
100
144

eiσ1jhx eiσ2mhy

]

vk+1
1

–
[

1
24

(rx + ry)
(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy
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+ eiσ1(j+1)hx eiσ2(m–1)hy + eiσ1(j+1)hx eiσ2(m+1)hy
)

+
1

12
(5rx – ry)

(
eiσ1(j–1)hx eiσ2mhy

+ eiσ1(j+1)hx eiσ2mhy
)

+
1

12
(5ry – rx)

(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

)

–
10
12

(rx + ry)eiσ1jhx eiσ2mhy

]

vk+1
2

=
[

1
144

(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy + eiσ1(j+1)hx eiσ2(m–1)hy

+ eiσ1(j+1)hx eiσ2(m+1)hy
)

+
10

144
(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

+ eiσ1(j–1)hx eiσ2mhy + eiσ1(j+1)hx eiσ2mhy
)

+
100
144

eiσ1jhx eiσ2mhy

]

vk
1

+
[

1
24

(rx + ry)
(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy

+ eiσ1(j+1)hx eiσ2(m–1)hy + eiσ1(j+1)hx eiσ2(m+1)hy
)

+
1

12
(5rx – ry)

(
eiσ1(j–1)hx eiσ2mhy

+ eiσ1(j+1)hx eiσ2mhy
)

+
1

12
(5ry – rx)

(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

)

–
10
12

(rx + ry)eiσ1jhx eiσ2mhy

]

vk
2

and

ρ

[
1

24
(rx + ry)

(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy + eiσ1(j+1)hx eiσ2(m–1)hy

+ eiσ1(j+1)hx eiσ2(m+1)hy
)

+
1

12
(5rx – ry)

(
eiσ1(j–1)hx eiσ2mhy + eiσ1(j+1)hx eiσ2mhy

)

+
1

12
(5ry – rx)

(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

)
–

10
12

(rx + ry)eiσ1jhx eiσ2mhy

]

vk+1
1

+
[

1
144

(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy + eiσ1(j+1)hx eiσ2(m–1)hy

+ eiσ1(j+1)hx eiσ2(m+1)hy
)

+
10

144
(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

+ eiσ1(j–1)hx eiσ2mhy + eiσ1(j+1)hx eiσ2mhy
)

+
100
144

eiσ1jhx eiσ2mhy

]

vk+1
2

= –ρ

[
1

24
(rx + ry)

(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy + eiσ1(j+1)hx eiσ2(m–1)hy

+ eiσ1(j+1)hx eiσ2(m+1)hy
)

+
1

12
(5rx – ry)

(
eiσ1(j–1)hx eiσ2mhy + eiσ1(j+1)hx eiσ2mhy

)

+
1

12
(5ry – rx)

(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

)
–

10
12

(rx + ry)eiσ1jhx eiσ2mhy

]

vk
1

+
[

1
144

(
eiσ1(j–1)hx eiσ2(m–1)hy + eiσ1(j–1)hx eiσ2(m+1)hy + eiσ1(j+1)hx eiσ2(m–1)hy

+ eiσ1(j+1)hx eiσ2(m+1)hy
)

+
10

144
(
eiσ1jhx eiσ2(m–1)hy + eiσ1jhx eiσ2(m+1)hy

+ eiσ1(j–1)hx eiσ2mhy + eiσ1(j+1)hx eiσ2mhy
)

+
100
144

eiσ1jhx eiσ2mhy

]

vk
2.
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Dividing the above equations by eiσ1jhx eiσ2mhy , we get

[
1

144
(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy)

+ eiσ1hx eiσ2hy
)

+
10

144
(
eiσ2(–hy) + eiσ2hy + eiσ1(–hx) + eiσ1hx

)
+

100
144

]

vn+1
1

–
[

1
24

(rx + ry)
(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy)

+ eiσ1hx eiσ2hy
)

+
1

12
(5rx – ry)

(
eiσ1(–hx) + eiσ1hx

)

+
1

12
(5ry – rx)

(
eiσ2(–hy) + eiσ2hy

)
–

10
12

(rx + ry)
]

vn+1
2

=
[

1
144

(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy)

+ eiσ1hx eiσ2hy
)

+
10

144
(
eiσ2(–hy) + eiσ2hy + eiσ1(–hx) + eiσ1hx

)
+

100
144

]

vn
1

+
[

1
24

(rx + ry)
(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy)

+ eiσ1hx eiσ2hy
)

+
1

12
(5rx – ry)

(
eiσ1(–hx) + eiσ1hx

)

+
1

12
(5ry – rx)

(
eiσ2(–hy) + eiσ2hy

)
–

10
12

(rx + ry)
]

vn
2 (14)

and

ρ

[
1

24
(rx + ry)

(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy)

+ eiσ1hx eiσ2hy
)

+
1

12
(5rx – ry)

(
eiσ1(–hx) + eiσ1hx

)

+
1

12
(5ry – rx)

(
eiσ2(–hy) + eiσ2hy

)
–

10
12

(rx + ry)
]

vn+1
1

+
[

1
144

(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy) + eiσ1hx eiσ2hy

)

+
10

144
(
eiσ2(–hy) + eiσ2hy + eiσ1(–hx) + eiσ1hx

)
+

100
144

]

vn+1
2

= –ρ

[
1

24
(rx + ry)

(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy)

+ eiσ1hx eiσ2hy
)

+
1

12
(5rx – ry)

(
eiσ1(–hx) + eiσ1hx

)

+
1

12
(5ry – rx)

(
eiσ2(–hy) + eiσ2hy

)
–

10
12

(rx + ry)
]

vn
1

+
[

1
144

(
eiσ1(–hx)eiσ2(–hy) + eiσ1(–hx)eiσ2hy + eiσ1hx eiσ2(–hy) + eiσ1hx eiσ2hy

)

+
10

144
(
eiσ2(–hy) + eiσ2hy + eiσ1(–hx) + eiσ1hx

)
+

100
144

]

vn
2. (15)
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Equations (14) and (15) can be written as

(
a b

–ρb a

)(
vk+1

1

vk+1
2

)

=

(
a –b
ρb a

)(
vk

1

vk
2

)

, (16)

where

a =
1

144
[
4 cosσ1hx cosσ2hy + 20(cosσ1hx + cosσ2hy) + 100

]

=
1

36

[

2
(

cos2 σ1hx

2
cos2 σ2hy

2
+ sin2 σ1hx

2
sin2 σ2hy

2

)

+ 10
(

cos2 σ1hx

2
+ cos2 σ2hy

2

)

+ 14
]

> 0,

b = –
1

24
[
4(rx + ry) cosσ1hx cosσ2hy + 4(5rx – ry) cosσ1hx

+ 4(5ry – rx) cosσ2hy – 20(rx + ry)
]

= –
rx

6
(cosσ1hx cosσ2hy + 5 cosσ1hx – cosσ2hy – 5)

–
ry

6
(cosσ1hx cosσ2hy – cosσ1hx + 5 cosσ2hy – 5)

= –
2rx

3

(

cos2 σ1hx

2
cos2 σ2hy

2
– cos2 σ2hy

2
+ 2 cos2 σ1hx

2
– 2

)

–
2ry

3

(

cos2 σ1hx

2
cos2 σ2hy

2
– cos2 σ1hx

2
+ 2 cos2 σ2hy

2
– 2

)

≥ 0.

Then from (16) we immediately get the matrix of growth of the scheme (13),

G(σ1hx,σ2hy) =

(
a b

–ρb a

)–1 (
a –b
ρb a

)

=
1

a2 + b2ρ

(
a2 – b2ρ –2ab

2ρab a2 – b2ρ

)

. (17)

By calculation, we achieve the quadratic equation about eigenvalues of the growth matrix
G(σ1hx,σ2hy) as follows:

λ2 – 2
a2 – b2ρ

a2 + b2ρ
λ +

[a2 – b2ρ]2

[a2 + b2ρ]2 + 4
a2b2ρ

[a2 + b2ρ]2 = 0. (18)

Obviously, we have

λ1,2 =
a2 – b2ρ

a2 + b2ρ
± 2i

ab√
ρ

a2 + b2ρ
, (19)

|λ1,2|2 =
(a2 – b2ρ)2 + (2ab√

ρ)2

(a2 + b2ρ)2 =
(a2 + b2ρ)2

(a2 + b2ρ)2 = 1. (20)

That is, the condition (10α) in Lemma 3.2 is satisfied.
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Next, we have
∥
∥
∥
∥G(σ1hx,σ2hy) –

1
2
(
g11(σ1hx,σ2hy) + g22(σ1hx,σ2hy)

)
I
∥
∥
∥
∥

= 2
√

1 + ρ2 ab
a2 + b2ρ

, (21)

∣
∣1 –

∣
∣λ1(σ1hx,σ2hy)

∣
∣
∣
∣ +

∣
∣λ1(σ1hx,σ2hy) – λ2(σ1hx,σ2hy)

∣
∣ = 4

√
ρ

ab
a2 + b2ρ

. (22)

Hence, there exists a constant M ≥ 1
2

√
1+ρ2
√

ρ
such that (10β) holds for any rx > 0, ry > 0.

Then from Lemma 3.2 we know that the difference scheme (13) is stable. �

4 Error analysis
In this section we give the convergence analysis by the energy method. We introduce the
spaces Sh = {u|u ∈ R(Nx+2)×(Ny+2)}, S0

h = {u|u ∈ R(Nx+2)×(Ny+2), u0,j = uNx+1,j = ui,0 = uNy+1,0 =
0, 0 ≤ i ≤ Nx + 1, 0 ≤ j ≤ Ny + 1}. ∀u, v ∈ S0

h, we define inner products and norms as follows:

(u, v) =
Nx∑

i=1

Ny∑

j=1

uijvijhxhy,

(δxu, δxv) =
Nx+1∑

i=1

Ny∑

j=1

(δxui– 1
2 ,j)(δxvi– 1

2 ,j)hxhy,

(
δ2

x u, v
)

=
Nx∑

i=1

Ny∑

j=1

(
δ2

x uij
)
vijhxhy,

(
δ2

y δxu, δxv
)

=
Nx+1∑

i=1

Ny∑

j=1

(
δ2

y δxui– 1
2 ,j

)
(δxvi– 1

2 ,j)hxhy,

(
δ2

xδyu, δyv
)

=
Nx∑

i=1

Ny+1
∑

j=1

(
δ2

xδyui,j– 1
2

)
(δyvi,j– 1

2
)hxhy,

(
δ2

xδ
2
y u, v

)
=

Nx∑

i=1

Ny∑

j=1

(
δ2

xδ
2
y uij

)
vijhxhy,

‖u‖2 = (u, u), ‖δxu‖2 = (δxu, δxu),

‖δxδyu‖2 =
Nx+1∑

i=1

Ny+1
∑

j=1

(δxδyui– 1
2 ,j– 1

2
)2hxhy.

Similarly, (δ2
y u, v), (δyu, δyv), ‖δyu‖2 and ‖δyδxu‖2 can be defined.

For the error analysis, we first note that our numerical scheme is based on (5) with
higher-order terms dropped,

Ah

(wk+1
ij – wk

ij

τ

)

–
1
2

Bh
(
vk+1

ij + vk
ij
)

= Ahf k+ 1
2

ij + gk+ 1
2

ij ,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N ,
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ρ

2
Bh

(
wk+1

ij + wk
ij
)

+ Ah

(vk+1
ij – vk

ij

τ

)

= ĝk+ 1
2

ij ,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N ,

where

∥
∥gk+ 1

2
∥
∥ ≤ C1

(
τ 2 + h4),

∥
∥̂gk+ 1

2
∥
∥ ≤ C2

(
τ 2 + h4), (23)

with C1, C2 positive constants. And our numerical scheme (6) is equivalent to

Ah

(W k+1
ij – W k

ij

τ

)

–
1
2

Bh
(
V k+1

ij + V k
ij
)

= Ahf k+ 1
2

ij ,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N ,

ρ

2
Bh

(
W k+1

ij + W k
ij
)

+ Ah

(V k+1
ij – V k

ij

τ

)

= 0,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N .

Letting ξ k
i,j = wk

i,j – W k
i,j and ηk

i,j = vk
i,j – V k

i,j replace the approximation errors, we can get
the error equations

Ah
(
ξ k+1

ij – ξ k
ij
)

–
τ

2
Bh

(
ηk+1

ij + ηk
ij
)

= τgk+ 1
2

ij ,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N , (24)

ρτ

2
Bh

(
ξ k+1

ij + ξ k
ij
)

+ Ah
(
ηk+1

ij – ηk
ij
)

= τ ĝk+ 1
2

ij ,

1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ N . (25)

Using the discrete Green formula, we know that the difference operators δ2
x and δ2

y are
self-adjoint and symmetric positive definite. We find that the difference operators Ah, Bh

are self-adjoint and symmetric positive definite as well. To give the error estimate, the
lemmas used later are first given as follows.

Lemma 4.1 ([7]) For any grid function u, v ∈ S0
h, we have

(1) (Ahu, v) = (u, Ahv), (Bhu, v) = (u, Bhv),
(2) (δ2

x u, v) = (u, δ2
x v), (δ2

y u, v) = (u, δ2
y v).

Lemma 4.2 ([19, 20]) For any grid function u ∈ S0
h, we have

(1) 2
3‖u‖2 ≤ (Axu, u) ≤ ‖u‖2, 2

3‖u‖2 ≤ (Ayu, u) ≤ ‖u‖2;
(2) 4

9‖u‖2 ≤ (Ahu, u) ≤ ‖u‖2;
(3) h2

x(Ayδxu, δxu) ≤ 4(Ayu, u), h2
y(Axδyu, δyu) ≤ 4(Axu, u).

Theorem 4.1 Let {wk , vk} be the solution of Eq. (2) and {W k , V k} be the solution of scheme
(6). For the compact finite difference scheme, assuming that both rx and ry are bounded, we
have

max
0≤kτ≤T

{∥
∥wk – W k∥∥ +

∥
∥vk – V k∥∥

} ≤ C
(
τ 2 + h4). (26)
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Proof Taking the inner product with ξ k+1 + ξ k on both sides of (24), we have

(
Ah

(
ξ k+1 – ξ k), ξ k+1 + ξ k) –

τ

2
(
Bh

(
ηk+1 + ηk), ξ k+1 + ξ k) = τ

(
gk+ 1

2 , ξ k+1 + ξ k). (27)

Taking the inner product with ηk+1 + ηk on both sides of (25), we have

ρτ

2
(
Bh

(
ξ k+1 + ξ k),ηk+1 + ηk) +

(
Ah

(
ηk+1 – ηk),ηk+1 + ηk) = τ

(
ĝk+ 1

2 ,ηk+1 + ηk). (28)

From Lemma 4.1 we have

(
Bh

(
ηk+1 + ηk), ξ k+1 + ξ k) =

(
Bh

(
ξ k+1 + ξ k),ηk+1 + ηk). (29)

Multiplying by ρ both sides of (27), we have

ρ
(
Ah

(
ξ k+1 – ξ k), ξ k+1 + ξ k) –

ρτ

2
(
Bh

(
ηk+1 + ηk), ξ k+1 + ξ k)

= ρτ
(
gk+ 1

2 , ξ k+1 + ξ k). (30)

Combining (28) with (30), we obtain

ρ
(
Ah

(
ξ k+1 – ξ k), ξ k+1 + ξ k) +

(
Ah

(
ηk+1 – ηk),ηk+1 + ηk)

= ρτ
(
gk+ 1

2 , ξ k+1 + ξ k) + τ
(
ĝk+ 1

2 ,ηk+1 + ηk).

Using Lemma 4.1, we obtain

ρ
(
Ahξ

k+1, ξ k+1) – ρ
(
Ahξ

k , ξ k) +
(
Ahη

k+1,ηk+1) –
(
Ahη

k ,ηk)

= ρτ
(
gk+ 1

2 , ξ k+1 + ξ k) + τ
(
ĝk+ 1

2 ,ηk+1 + ηk).

By the inequality ab ≤ 1
2 (a2 + b2) and (a + b)2 ≤ 2(a2 + b2), we get

ρ
(
Ahξ

k+1, ξ k+1) – ρ
(
Ahξ

k , ξ k) +
(
Ahη

k+1,ηk+1) –
(
Ahη

k ,ηk)

≤ ρτ

2
∥
∥gk+ 1

2
∥
∥2 + ρτ

(∥
∥ξ k+1∥∥2 +

∥
∥ξ k∥∥2) +

τ

2
∥
∥̂gk+ 1

2
∥
∥2 + τ

(∥
∥ηk+1∥∥2 +

∥
∥ηk∥∥2).

Summing k from 0 to n, then

ρ
(
Ahξ

n+1, ξn+1) – ρ
(
Ahξ

0, ξ 0) +
(
Ahη

n+1,ηn+1) –
(
Ahη

0,η0)

≤ τ

2

n∑

k=0

(
ρ
∥
∥gk+ 1

2
∥
∥2 +

∥
∥̂gk+ 1

2
∥
∥2) + ρτ

n∑

k=0

(∥
∥ξ k+1∥∥2 +

∥
∥ξ k∥∥2)

+ τ

n∑

k=0

(∥
∥ηk+1∥∥2 +

∥
∥ηk∥∥2),
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which implies that

ρ
(
Ahξ

n+1, ξn+1) +
(
Ahη

n+1,ηn+1)

≤ ρ
(
Ahξ

0, ξ 0) +
(
Ahη

0,η0) +
τ

2

n∑

k=0

(
ρ
∥
∥gk+ 1

2
∥
∥2 +

∥
∥̂gk+ 1

2
∥
∥2)

+ 2ρτ

n+1∑

k=0

∥
∥ξ k∥∥2 + 2τ

n+1∑

k=0

∥
∥ηk∥∥2.

From Lemma 4.2 and ξ 0
i,j = 0, η0

i,j = 0 we have

4
9
(
ρ
∥
∥ξn+1∥∥2 +

∥
∥ηn+1∥∥2) ≤ τ

2

n∑

k=0

(
ρ
∥
∥gk+ 1

2
∥
∥2 +

∥
∥̂gk+ 1

2
∥
∥2)+ 2τ

n+1∑

k=0

(
ρ
∥
∥ξ k∥∥2 +

∥
∥ηk∥∥2), (31)

which implies that

ρ
∥
∥ξn+1∥∥2 +

∥
∥ηn+1∥∥2 ≤ 9τ

8

n∑

k=0

(
ρ
∥
∥gk+ 1

2
∥
∥2 +

∥
∥̂gk+ 1

2
∥
∥2) +

9τ

2

n+1∑

k=0

(
ρ
∥
∥ξ k∥∥2 +

∥
∥ηk∥∥2). (32)

Applying the discrete Gronwall lemma to (32), we get

ρ
∥
∥ξn+1∥∥2 +

∥
∥ηn+1∥∥2 ≤ Cτ

n∑

k=0

(
ρ
∥
∥gk+ 1

2
∥
∥2 +

∥
∥̂gk+ 1

2
∥
∥2). (33)

From (23) we obtain

ρτ

n∑

k=0

∥
∥gk+ 1

2
∥
∥2 ≤ C

(
τ 2 + h4)2, τ

n∑

k=0

∥
∥̂gk+ 1

2
∥
∥2 ≤ C

(
τ 2 + h4)2. (34)

Hence

ρ
∥
∥ξn+1∥∥2 +

∥
∥ηn+1∥∥2 ≤ C

(
τ 2 + h4)2. (35)

This completes the proof. �

5 Numerical experiments
In this section we give some numerical results for the two-dimensional model problems
given below. These results are obtained by using Matlab.

Example 1 We seek the numerical solution for the following problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) utt + �2u = f (x, y, t), 0 < x, y < 1, t > 0,

(b) u(x, y, 0) = f1(x, y), ∂u
∂t |(x,y,0) = f2(x, y), 0 ≤ x, y ≤ 1,

(c) u|x=0 = h1(y, t), u|x=1 = h2(y, t),

u|y=0 = h3(x, t), u|y=1 = h4(x, t), t ≥ 0,

(d) �u|x=0 = g1(y, t), �u|x=1 = g2(y, t),

�u|y=0 = g3(x, t), �u|y=1 = g4(x, t), t ≥ 0.

(36)
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The theoretical solution is taken as u(x, y, t) = e–π t sin(πx) sin(πy). f (x, y, t), the initial
and boundary value functions in (36), can be obtained from u(x, y, t). We have v(x, y, t) =
2π2e–π t sin(πx) sin(πy) and w(x, y, t) = –πe–π t sin(πx) sin(πy). The compact difference
scheme (6) is used to solve the problem (36). As comparison with our method, the central
difference scheme is used to solve this problem.

In our numerical results, errors and computational orders in L2-norm and L∞-norm of
the compact difference scheme and the central difference scheme are given in Tables 1–4.
From these tables we can find that the compact difference scheme can achieve a higher
accuracy and efficiency than the central difference scheme in identical mesh. The exact

Table 1 Errors and computational orders of compact difference scheme forW

h τ ‖W –w‖L∞ order≈ ‖W –w‖L2 order≈ CPU (s)
1
10

1
102

2.408e–03 – 1.204e–03 – 0.210328
1
20

1
202

1.215e–04 4.31 6.076e–05 4.31 2.012129
1
30

1
302

2.192e–05 4.22 1.096e–05 4.22 16.707314
1
40

1
402

6.618e–06 4.16 3.309e–06 4.16 65.458675
1
50

1
502

2.634e–06 4.13 1.317e–06 4.13 192.643835
1
60

1
602

1.246e–06 4.11 6.230e–07 4.11 484.401023

Table 2 Errors and computational orders of central difference scheme forW

h τ ‖W –w‖L∞ order≈ ‖W –w‖L2 order≈ CPU (s)
1
10

1
102

1.279e–01 – 6.395e–02 – 0.187456
1
20

1
202

3.655e–02 1.81 1.827e–02 1.81 1.381777
1
30

1
302

1.646e–02 1.97 8.229e–03 1.97 12.942769
1
40

1
402

9.296e–03 1.99 4.648e–03 1.99 53.898653
1
50

1
502

5.960e–03 1.99 2.980e–03 1.99 161.459585
1
60

1
602

4.143e–03 1.99 2.071e–03 1.99 429.255721

Table 3 Errors and computational orders of compact difference scheme for V

h τ ‖V – v‖L∞ order≈ ‖V – v‖L2 order≈ CPU (s)
1
10

1
102

1.306e–03 – 6.532e–04 – 0.210328
1
20

1
202

5.261e–05 4.63 2.631e–05 4.63 2.012129
1
30

1
302

9.433e–06 4.24 4.717e–06 4.24 16.707314
1
40

1
402

2.850e–06 4.16 1.425e–06 4.16 65.458675
1
50

1
502

1.136e–06 4.12 5.680e–07 4.12 192.643835
1
60

1
602

5.379e–07 4.10 2.690e–07 4.10 484.401023

Table 4 Errors and computational orders of central difference scheme for V

h τ ‖V – v‖L∞ order≈ ‖V – v‖L2 order≈ CPU (s)
1
10

1
102

8.573e–02 – 4.286e–02 – 0.187456
1
20

1
202

1.447e–02 2.57 7.237e–03 2.57 1.381777
1
30

1
302

6.001e–03 2.17 3.006e–03 2.17 12.942769
1
40

1
402

3.304e–03 2.08 1.652e–03 2.08 53.898653
1
50

1
502

2.092e–03 2.05 1.046e–03 2.05 161.459585
1
60

1
602

1.445e–03 2.03 7.225e–04 2.03 429.255721
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Figure 1 Exact solution v

Figure 2 Exact solution w

Figure 3 Numerical solution V

results v(x, y, t) and w(x, y, t), with a mesh for hx = hy = 0.05 are plotted in Figs. 1 and 2
for t = 1, respectively. The numerical results {V n+1

ij } and {W n+1
ij }, with a mesh for hx = hy =

0.05, are plotted in Figs. 3 and 4 for t = 1.

Example 2 We consider the numerical solution for the problem (36) with the exact solu-
tion

u(x, y, t) = t2e
–(x–0.5)2–(y–0.5)2

β , 0 ≤ x, y ≤ 1, 0 ≤ t ≤ 1.
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Figure 4 Numerical solutionW

Table 5 Errors and computational orders of compact difference scheme with β = 10 forW

h τ ‖W –w‖L∞ order≈ ‖W –w‖L2 order≈ CPU (s)
1
10

1
102

5.803e–07 – 3.316e–07 – 0.315426
1
20

1
202

4.149e–08 3.81 1.840e–08 4.17 2.235077
1
30

1
302

7.796e–09 4.12 3.417e–09 4.15 16.917521
1
40

1
402

2.358e–09 4.16 1.046e–09 4.11 64.900482
1
50

1
502

9.320e–10 4.16 4.199e–10 4.10 193.079116
1
60

1
602

4.528e–10 3.96 1.998e–10 4.07 494.024067

Table 6 Errors and computational orders of central difference scheme with β = 10 forW

h τ ‖W –w‖L∞ order≈ ‖W –w‖L2 order≈ CPU (s)
1
10

1
102

2.906e–05 – 1.608e–05 – 0.141896
1
20

1
202

7.313e–06 1.99 4.063e–06 1.98 1.483480
1
30

1
302

3.253e–06 2.00 1.811e–06 1.99 13.124587
1
40

1
402

1.830e–06 2.00 1.019e–06 2.00 53.583567
1
50

1
502

1.172e–06 2.00 6.528e–07 2.00 166.170702
1
60

1
602

8.139e–07 2.00 4.534e–07 2.00 434.362674

Then f (x, y, t), the initial and boundary value functions in (36), can be obtained from
u(x, y, t). And we get the functions

v(x, y, t) =
(

4
β

–
(2x – 1)2

β2 –
(2y – 1)2

β2

)

t2e
–(x–0.5)2–(y–0.5)2

β , 0 ≤ x, y ≤ 1, 0 ≤ t ≤ 1,

w(x, y, t) = 2te
–(x–0.5)2–(y–0.5)2

β , 0 ≤ x, y ≤ 1, 0 ≤ t ≤ 1.

The compact difference scheme (6) is used to solve the non-homogeneous problem with
β = 10 and β = 1

10 .
Errors and computational orders in L2-norm and L∞-norm of the compact difference

scheme and the central difference scheme with β = 10 are given in Tables 5–8. Tables 9–12
show errors and computational orders in L2-norm and L∞-norm of the compact differ-
ence scheme and the central difference scheme with β = 1

10 . From these tables we can see
that the compact difference scheme can achieve a higher accuracy than the central differ-
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Table 7 Errors and computational orders of compact difference scheme with β = 10 for V

h τ ‖V – v‖L∞ order≈ ‖V – v‖L2 order≈ CPU (s)
1
10

1
102

2.711e–07 – 1.367e–07 – 0.315426
1
20

1
202

1.347e–08 4.33 9.382e–09 3.87 2.235077
1
30

1
302

2.201e–09 4.47 1.691e–09 4.23 16.917521
1
40

1
402

6.851e–10 4.01 5.122e–10 4.15 64.900482
1
50

1
502

2.889e–10 3.93 2.052e–10 4.10 193.079116
1
60

1
602

1.405e–10 3.95 9.756e–11 4.08 494.024067

Table 8 Errors and computational orders of central difference scheme with β = 10 for V

h τ ‖V – v‖L∞ order≈ ‖V – v‖L2 order≈ CPU (s)
1
10

1
102

1.673e–05 – 9.189e–06 – 0.141896
1
20

1
202

4.142e–06 2.01 2.230e–06 2.00 1.483480
1
30

1
302

1.844e–06 2.00 1.022e–06 2.00 13.124587
1
40

1
402

1.036e–06 2.00 5.752e–07 2.00 53.583567
1
50

1
502

6.628e–07 2.00 3.682e–07 2.00 166.170702
1
60

1
602

4.603e–07 2.00 2.558e–07 2.00 434.362674

Table 9 Errors and computational orders of compact difference scheme with β = 1
10 forW

h τ ‖W –w‖L∞ order≈ ‖W –w‖L2 order≈ CPU (s)
1
10

1
102

1.915e–03 – 1.065e–03 – 0.330710
1
20

1
202

1.379e–04 3.80 7.647e–05 3.80 3.542983
1
30

1
302

2.823e–05 3.91 1.539e–05 3.95 18.320414
1
40

1
402

9.027e–06 3.96 4.847e–06 4.02 68.516085
1
50

1
502

3.670e–06 4.03 1.976e–06 4.02 221.163513
1
60

1
602

1.767e–06 3.01 9.499e–07 4.02 540.818697

Table 10 Errors and computational orders of central difference scheme with β = 1
10 forW

h τ ‖W –w‖L∞ order≈ ‖W –w‖L2 order≈ CPU (s)
1
10

1
102

1.146e–01 – 3.162e–02 – 0.242853
1
20

1
202

2.780e–02 2.04 7.803e–03 2.02 1.429410
1
30

1
302

1.239e–02 1.99 3.480e–03 1.99 13.395006
1
40

1
402

6.961e–03 2.00 1.958e–03 2.00 53.665479
1
50

1
502

4.453e–03 2.00 1.253e–03 2.00 160.600921
1
60

1
602

3.092e–03 2.00 8.699e–04 2.00 411.886623

Table 11 Errors and computational orders of compact difference scheme with β = 1
10 for V

h τ ‖V – v‖L∞ order≈ ‖V – v‖L2 order≈ CPU (s)
1
10

1
102

9.674e–02 – 2.651e–02 – 0.330710
1
20

1
202

5.744e–03 4.07 1.572e–03 4.08 3.542983
1
30

1
302

1.130e–03 4.01 3.094e–04 4.01 18.320414
1
40

1
402

3.570e–04 4.01 9.772e–05 4.01 68.516085
1
50

1
502

1.461e–04 4.00 3.999e–05 4.00 221.163513
1
60

1
602

7.040e–05 4.00 1.928e–05 4.00 540.818697
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Table 12 Errors and computational orders of central difference scheme with β = 1
10 for V

h τ ‖V – v‖L∞ order≈ ‖V – v‖L2 order≈ CPU (s)
1
10

1
102

2.112 – 5.087e–01 – 0.242853
1
20

1
202

5.117e–01 2.04 1.234e–01 2.05 1.429410
1
30

1
302

2.261e–01 2.01 5.455e–02 2.01 13.395006
1
40

1
402

1.270e–01 2.01 3.063e–02 2.01 53.665479
1
50

1
502

8.118e–02 2.00 1.959e–02 2.00 160.600921
1
60

1
602

5.635e–02 2.00 1.360e–02 2.00 411.886623

ence scheme in identical mesh when they are applied to solving the problem based on the
Gaussian pulse.

6 Conclusions
In this article, we have developed a compact finite difference scheme for two-dimensional
fourth-order hyperbolic equation. The stability of the scheme is proved by using a Fourier
analysis and the convergence of the scheme is obtained. The numerical results show that
this scheme has high order of accuracy and is efficient.
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