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Abstract
In this paper, synchronization of fractional-order network is investigated. The
aperiodically intermittent pinning control scheme is adopted to design effective
controllers for achieving the synchronization. Noticeably, the topology is directed and
only the first node is controlled. Based on the Lyapunov function method and
mathematical analysis technique, some sufficient conditions are derived and
demonstrated to be effective by a numerical example.

Keywords: Synchronization; Fractional-order network; Aperiodically intermittent
control; Pinning control

1 Introduction
Synchronization as a typical and important collective behavior of dynamical networks has
been extensively investigated [1–23]. For many networks, especially those coupled with
large number of nodes, they cannot synchronize themselves or synchronize with desired
goals without external controls. Therefore, different control schemes, such as feedback
control, intermittent control, impulsive control, pinning control, and so on, have been
developed.

Intermittent control is a kind of discontinuous control consisting of work time and rest
time in a sequence of intervals. In virtue of its high efficiency and strong practicability,
it has been adopted to design effective controllers in practical applications, and lots of
results have been obtained. For instance, the signal will become weak in transmission,
so an external control should be added to increase the strength of the signal. Zhou et al.
[16] studied the exponential lag synchronization for neural networks with mixed delays
via intermittent control. Zhang et al. [17] considered the intermittent control for cluster-
delay synchronization in directed networks. He et al. [23] investigated the exponential syn-
chronization of dynamical network with distributed delays via intermittent control. From
practical point of view, periodically intermittent control is unreasonable in some cases.
As we know, the generation of wind power is typically aperiodically intermittent [8]. The
heating system of central air-conditioning can run by the aperiodically intermittent oper-
ation mode (off-preheat-occupancy-off) [2]. Therefore, aperiodically intermittent control
is adopted to study the synchronization of dynamical networks. Guan et al. [4] studied the
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cluster synchronization of coupled genetic regulatory networks with delays via aperiod-
ically adaptive intermittent control. Liu et al. [6] studied the finite-time synchronization
of delayed dynamical networks via aperiodically intermittent control. On the other hand,
for large-scale networks, it is impractical to add controllers onto all nodes. Therefore,
intermittent control and pinning control are combined together to design effective con-
trollers. That is, only a fraction of network nodes is controlled. Liu and Chen [8] studied
the synchronization of nonlinear coupled networks via aperiodically intermittent pinning
control. Cai et al. [12] studied the outer synchronization between two hybrid-coupled de-
layed dynamical networks via aperiodically adaptive intermittent pinning control.

The above results mainly concentrated on integer-order dynamical networks. Com-
pared with integer-order dynamical networks, fractional-order dynamical networks can
excellently describe the memory and hereditary properties of various models. In fact,
fractional-order systems, such as viscoelastic systems, dielectric polarization, electromag-
netic waves, heat conduction, robotics, finance, and so on [24–30], are ubiquitous in real
world. Recently, synchronization of fractional-order complex networks has been investi-
gated as well [31–40]. Particularly, Li et al. [38] studied the synchronization of fractional-
order dynamical networks via periodically intermittent pinning control. Zhou et al. [40]
studied the cluster synchronization of fractional-order directed networks via intermittent
pinning control. Naturally, how to design aperiodically intermittent pinning controllers
for achieving synchronization of fractional-order networks is an important issue and de-
serves further investigations. The main contribution of this paper is the design of ape-
riodically intermittent pinning controllers and the derivation of the sufficient conditions
for achieving synchronization of fractional-order network. It is noted that the obtained
results generalize some of the results in Refs. [8, 38]. For example, periodically intermit-
tent pinning control of fractional-order dynamical network is generalized to aperiodically
intermittent pinning control.

The paper is organized as follows. In Sect. 2, some necessary preliminaries about frac-
tional calculus and the model of fractional-order networks are presented. In Sect. 3, aperi-
odically intermittent pinning controllers are designed and sufficient conditions for achiev-
ing synchronization are derived based on Lyapunov stability theory and mathematical
analysis method. In Sect. 4, numerical simulation is performed to demonstrate the ef-
fectiveness of the obtained results. Finally, some conclusions are presented in Sect. 5.

Notations. For real matrix A ∈ R
N×N , As = (A + AT )/2 denotes the symmetric part. If all

the eigenvalues of A are real, let λmax(A) and λmin(A) be its largest and smallest eigenvalues,
respectively. The symbol ⊗ denotes the Kronecker product.

2 Model description and preliminaries
In this section, some definitions, lemmas, and well-known results about fractional dif-
ferential equations are recalled. In addition, the mathematic model of fractional complex
network is introduced.

2.1 Caputo fractional operator and Mittag-Leffler function
Caputo fractional operator plays an important role in the fractional systems, since the ini-
tial conditions for fractional differential equations with Caputo derivatives take the same
form as for integer-order differential, which have well-understood physical meanings [24].
Thus, we use Caputo derivatives as a main tool in this paper. The formula of the Caputo
fractional derivative is defined as follows.
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Definition 1 ([24]) The Caputo fractional derivative of function x(t) is defined as

C
0 Dα

t x(t) =
1

Γ (m – α)

∫ t

0
(t – τ )m–α–1x(m)(τ ) dτ ,

where m – 1 < α < m, m ∈ Z+. Let m = 1, 0 < α < 1, then

C
0 Dα

t x(t) =
1

Γ (1 – α)

∫ t

0
(t – τ )–αx′(τ ) dτ .

For simplicity, denote Dα
t x(t) as C

0 Dα
t x(t). The following properties of Caputo operators are

specially provided.

Lemma 1 ([24]) If w(t), u(t) ∈ C1[t0, b], and α > 0,β > 0, then
(1) Dα

t D–βw(t) = Dα–β
t w(t),

(2) Dα
t (w(t) ± u(t)) = Dα

t w(t) ± Dα
t u(t).

The Mittag-Leffler function is defined by

Eα,β (z) :=
∞∑
i=0

zi

Γ (αi + β)
,

where α > 0,β > 0, and Γ (·) is the gamma function. For short, Eα(z) := Eα,1(z). The following
properties of Mittag-Leffler function will be used below.

Lemma 2 ([38, 39]) Let V (t) be a continuous function on [t0, +∞) and satisfy

Dα
t V (t) ≤ θV (t),

where 0 < α < 1, θ is a constant and t0 is the initial time, then

V (t) ≤ V (t0)Eα

(
θ (t – t0)α

)
.

2.2 Model description
Consider a fractional-order network consisting of N individuals described by

Dα
t xi(t) = f

(
xi(t)

)
+ b

N∑
j=1

cijΓ xj(t), i = 1, 2, . . . , N , (1)

where 0 < α < 1, xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ R
n is the state variable of the ith node, f :

R
n →R

n is a continuously vector-valued function, b > 0 is the coupling strength, and Γ =
diag(γ1, . . . ,γn) ∈R

n×n is the inner coupling matrix, C = (cij) ∈R
N×N is the zero-row-sum

outer coupling matrix determining the topology and coupling strength of the network,
which are defined as follows: if there exists a connection from node j to node i (i �= j), then
cij > 0; otherwise, cij = 0.

The objective here is to synchronize network (1) to the desired orbit η(t) by design-
ing aperiodically intermittent pinning controllers, where η(t) is a solution of an isolated
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node satisfying Dα
t η(t) = f (η(t)). For simplicity, only the first node is controlled and the

controlled network is written as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
t x1(t) = f (x1(t)) + b

∑N
j=1 c1jΓ xj(t)

+ bkΓ (η(t) – x1(t)), t ∈ [tp, sp),

Dα
t xi(t) = f (xi(t)) + b

∑N
j=1 cijΓ xj(t), i = 2, . . . , N , t ∈ [tp, sp),

Dα
t xi(t) = f (xi(t)) + b

∑N
j=1 cijΓ xj(t), i = 1, . . . , N , t ∈ [sp, tp+1),

(2)

where p = 1, 2, 3, . . . , k > 0 is the control gain, 0 = t1 < s1 < t2 < s2 < · · · < tp < sp < · · · . Then
sp – tp and tp+1 – sp denote the pth control and rest width respectively.

Let ei(t) = xi(t) – η(t) be the synchronization errors. Then the error system is

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dα
t e1(t) = f (x1(t)) – f (s(t)) + b

∑N
j=1 c1jΓ ej(t)

– bkΓ e1(t), t ∈ [tp, sp),

Dα
t ei(t) = f (xi(t)) – f (s(t)) + b

∑N
j=1 cijΓ ej(t), i = 2, . . . , N , t ∈ [tp, sp),

Dα
t ei(t) = f (xi(t)) – f (s(t)) + b

∑N
j=1 cijΓ ej(t), i = 1, . . . , N , t ∈ [sp, tp+1).

(3)

Let E (t) = (e1(t)T , . . . , eN (t)T )T and

F
(
E (t)

)
=

((
f
(
x1(t)

)
– f

(
η(t)

))T , . . . ,
(
f
(
xN (t)

)
– f

(
η(t)

))T)T ,

the error system can be rewritten as

⎧⎨
⎩

Dα
t E (t) = F(E (t)) + b(C ⊗ Γ )E (t), t ∈ [tp, sp),

Dα
t E (t) = F(E (t)) + b(C ⊗ Γ )E (t), t ∈ [sp, tp+1),

(4)

where C = C – diag(k, 0, . . . , 0).

Assumption 1 ([1]) Suppose that there exist two positive definite diagonal matrices P =
diag(p1, p2, . . . , pn) and 
 = diag(δ1, δ2, . . . , δn) such that

(u – v)T P
(
f (u) – f (v) – 
u + 
v

) ≤ 0 (5)

for any u, v ∈R
n.

Lemma 3 ([1]) Suppose that C is an irreducible zero-row-sum matrix with nonnegative
off-diagonal elements and μ < 0. Then there exists a positive definite diagonal matrix Φ =
diag(φ1, . . . ,φN ) such that Cμ = C +diag(μ, 0, . . . , 0) is Lyapunov stable, i.e., ΦCμ +CT

μΦ < 0.

Assumption 2 ([2]) For the aperiodically intermittent control strategy, there exist two
positive scalars σ and ψ such that

⎧⎨
⎩

infp(sp – tp) = σ > 0,

supp(tp+1 – sp) = ψ < +∞.
(6)



Zhou et al. Advances in Difference Equations        (2019) 2019:165 Page 5 of 11

Assumption 3 Suppose that the outer coupling matrix C is irreducible and the inner cou-
pling matrix Γ is positive definite.

3 Main results
In this section, some sufficient conditions for achieving synchronization of the controlled
network (2) are provided.

Theorem 1 Suppose that Assumptions 1–3 hold. The controlled network (2) with the in-
termittent pinning control can achieve synchronization if there exist positive constants a1,
a2 and 0 < � < 1 such that the following conditions hold:

(i) Φ ⊗ (P
) + a1Φ ⊗ P + bC̃1 ⊗ (PΓ ) ≤ 0,

(ii) Φ ⊗ (P
) – a2Φ ⊗ P + bC̃2 ⊗ (PΓ ) ≤ 0,

(iii) Eα

(
–a1σ

α
)
Eα

(
a2ψ

α
)

< � ,

where P and 
 are defined in (5), C̃1 = (ΦC)s, C̃2 = (ΦC)s, and Φ is defined according to
Lemma 3, i.e., C̃1 < 0.

Proof Consider the following Lyapunov function:

V (t) =
1
2
E T (t)(Φ ⊗ P)E (t).

Then the derivative of V (t) along the trajectories of (4) satisfies the following:
When t ∈ [tp, sp),

Dα
t V (t) ≤ E (t)T (Φ ⊗ P)Dα

t E (t)

= E (t)T (Φ ⊗ P)
(
F
(
E (t)

)
+ b(C ⊗ Γ )E (t)

)

≤ E (t)T[
Φ ⊗ (P
)

]
E (t) + bE (t)T[

ΦC ⊗ (PΓ )
]
E (t)

= E (t)T[
Φ ⊗ (P
) + a1Φ ⊗ P + bC̃1 ⊗ (PΓ )

]
E (t)

– a1E (t)T (Φ ⊗ P)E (t)

≤ –a1V (t).

Therefore, from Lemma 2,

V (t) ≤ V (tp)Eα

(
–a1(t – tp)α

)
. (7)

Similarly, when t ∈ [sp, tp+1),

Dα
t V (t) ≤ E (t)T (Φ ⊗ P)Dα

t E (t)

= E (t)T (Φ ⊗ P)
(
F
(
E (t)

)
+ b(C ⊗ Γ )E (t)

)

≤ E (t)T[
Φ ⊗ (P
)

]
E (t) + bE (t)T[

ΦC ⊗ (PΓ )
]
E (t)

= E (t)T[
Φ ⊗ (P
) – a2Φ ⊗ P + bC̃1 ⊗ (PΓ )

]
E (t)
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+ a2E (t)T (Φ ⊗ P)E (t)

≤ a2V (t),

which implies

V (t) ≤ V (sp)Eα

(
a2(t – sp)α

)
. (8)

For 0 = t1 ≤ t < s1, from (7),

V (t) ≤ V (0)Eα

(
–a1tα

)
, V (s1) ≤ V (0)Eα

(
–a1sα

1
)
. (9)

For s1 ≤ t < t2, from (8) and (9),

V (t) ≤ V (s1)Eα

(
a2(t – s1)α

) ≤ V (0)Eα

(
–a1sα

1
)
Eα

(
a2(t – s1)α

)
,

V (t2) ≤ V (s1)Eα

(
a2(t2 – s1)α

) ≤ V (0)Eα

(
–a1sα

1
)
Eα

(
a2(t2 – s1)α

)
.

(10)

For t2 ≤ t < s2, from (7) and (10),

V (t) ≤ V (t2)Eα

(
–a1(t – t2)α

)

≤ V (0)Eα

(
–a1sα

1
)
Eα

(
a2(t2 – s1)α

)
Eα

(
–a1(t – t2)α

)
,

V (s2) ≤ V (t2)Eα

(
–a1(s2 – t2)α

)

≤ V (0)Eα

(
–a1sα

1
)
Eα

(
a2(t2 – s1)α

)
Eα

(
–a1(s2 – t2)α

)
.

(11)

For s2 ≤ t < t3, from (8) and (11),

V (t) ≤ V (s2)Eα

(
a2(t – s2)α

)

≤ V (0)Eα

(
–a1(s2 – t2)α

)
Eα

(
–a1sα

1
)

× Eα

(
a2(t2 – s1)α

)
Eα

(
a2(t – s2)α

)
,

V (t3) ≤ V (s2)Eα

(
a2(t3 – s2)α

)

≤ V (0)Eα

(
–a1(s2 – t2)α

)
Eα

(
–a1sα

1
)

× Eα

(
a2(t2 – s1)α

)
Eα

(
a2(t3 – s2)α

)
.

(12)

By mathematical induction, for tl ≤ t < sl ,

V (t) ≤ V (0)Eα

(
–a1(t – tl)α

) l–1∏
p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)
, (13)

and for sl ≤ t < tl+1,

V (t) ≤ V (0)Eα

(
a2(t – sl)α

)
Eα

(
–a1(sl – tl)α

)

×
l–1∏
p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)
. (14)
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Assume that inequalities (13) and (14) hold when l ≤ k. Then

V (tk+1) ≤ V (0)
k∏

p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)
.

Now, for tk+1 ≤ t < sk+1,

V (t) ≤ V (tk+1)Eα

(
–a1(t – tk+1)α

)

≤ V (0)Eα

(
–a1(t – tk+1)α

)

×
k∏

p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)
,

V (sk+1) ≤ V (0)Eα

(
–a1(sk+1 – tk+1)α

)

×
k∏

p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)
,

and for sk+1 ≤ t < tk+2,

V (t) ≤ V (sk+1)Eα

(
a2(t – sk+1)α

)

≤ V (0)Eα

(
a2(t – sk+1)α

)
Eα

(
–a1(sk+1 – tk+1)α

)

×
k∏

p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)
,

that is, inequalities (13) and (14) hold for l = k + 1. Thus, for any l,

V (tl) ≤ V (0)
l–1∏
p=1

Eα

(
–a1(sp – tp)α

)
Eα

(
a2(tp+1 – sp)α

)

≤ V (0)
l–1∏
p=1

Eα

(
–a1σ

α
)
Eα

(
a2ψ

α
)

≤ V (0)� l–1, (15)

i.e., V (tl) → 0 as l → ∞. And for tl ≤ t < sl ,

V (t) ≤ V (tl)Eα

(
–a1(t – tl)α

)
,

which implies that V (t) → 0 as t → ∞. Similarly, one can show that V (t) → 0 as t → ∞
for sl ≤ t < tl+1. Then, the synchronization is achieved and the proof is completed. �

Let κ∗ = λmax(Φ ⊗ (P
)), ϑ∗ = λmax(Φ ⊗ P), ϑ∗ = λmin(Φ ⊗ P), c∗
1 = λmax(C̃1 ⊗ (PΓ )), and

c∗
2 = λmax(C̃2 ⊗ (PΓ )). We have the following corollary.

Corollary 1 Suppose that Assumptions 1–3 hold. The controlled network (2) with the in-
termittent pinning control can achieve synchronization if there exist positive constants a1,
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a2, and 0 < � < 1 such that the following conditions hold:

(i) κ∗ + a1ϑ
∗ + bc∗

1 ≤ 0,

(ii) κ∗ – a2ϑ∗ + bc∗
2 ≤ 0,

(iii) Eα

(
–a1σ

α
)
Eα

(
a2ψ

α
)

< � .

Remark 1 If we choose tp+1 – tp = T > 0 and sp – tp = κT with 0 < κ < 1, then the intermit-
tent control is periodic. And condition (iii) in Theorem 1 (or Corollary 1) is rewritten as
Eα(–a1(κT)α)Eα(a2((1 – κ)T)α) < � < 1, which is similar to condition (iii) in Theorem 1
of Ref. [38]. That is, the obtained results generalize the results in Ref. [38] from periodic
control to aperiodic control.

Remark 2 If we choose α = 1, then network (2) is an integer-order network and condition
(iii) in Theorem 1 (or Corollary 1) is rewritten as e–a1σ ea2ψ < � . Further, we have a2ψ –
a1σ < ln� < 0, which is similar to the condition in Corollary 4 of Ref. [8]. That is, we
generalize the results from integer-order network to fractional-order network.

4 Numerical simulations
Consider a fractional-order dynamical network consisting of 10 nodes. The node dynam-
ics is chosen as the following fractional-order Chua circuit [41]:

⎧⎪⎪⎨
⎪⎪⎩

Dα
t xi1 = 9(xi2 – xi1 – ϕ(xi1)),

Dα
t xi2 = xi1 – xi2 + xi3,

Dα
t xi3 = –100/7xi2,

(16)

where i = 1, 2, . . . , 10, α = 0.99, ϕ(xi1) = –5/7xi1 – 3/14(|xi1 + 1| – |xi1 – 1|).
For simplicity, choose P as an identity matrix. Then one has

(xi – s)T(
f (xi) – f (s)

)

= eT
i
(
9ei2 – 9ei1 – 9

(
ϕ(xi1) – ϕ(s1)

)
, ei1 – ei2 + ei3, –100/7ei2

)T

≤ 9/7e2
i1 – e2

i2 + 10ei1ei2 – 93/7ei2ei3

≤
(

9
7

+ 5ρ

)
e2

i1 +
(

–1 +
5
ρ

+
93β

14

)
e2

i2 +
93

14β
e2

i3.

Let ρ = 1.36 and β = 0.83, we can choose 
 = diag(8.19, 8.19, 8.19) such that Assumption 1
holds.
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Figure 1 The orbits of the synchronization errors eij(t), i = 1, 2, . . . , 10, j = 1, 2, 3.

In numerical simulations, we choose k = 1, b = 100, Γ as an identity matrix and

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

–3 0 1 1 1 0 0 0 0 0
1 –5 0 1 1 1 1 0 0 0
1 1 –5 0 1 1 1 0 0 0
1 1 0 –4 1 0 1 0 0 0
0 1 1 1 –4 0 1 0 0 0
1 1 1 1 0 –4 0 0 0 0
0 1 1 0 0 0 –4 1 1 0
1 0 0 0 0 0 0 –2 0 1
0 0 0 0 0 0 1 0 –2 1
0 0 0 0 0 0 0 1 1 –2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The real parts of the eigenvalues of C are 0, –0.7876, –2, –3.3482, –3.615, –3.615, –4.3919,
–4.6587, –6.2918, –6.2918. That is, the matrix C is irreducible. According to the discus-
sions in [1], we choose

Φ = diag(0.4206, 0.2602, 0.2409, 0.2764, 0.2995, 0.1253, 0.359, 0.359, 0.359, 0.359)

in Lemma 3. By simple calculations, we have κ∗ = 3.4447, ϑ∗ = 0.4206, ϑ∗ = 0.1253, c∗
1 =

–0.0857, and c∗
2 = 0. Then we choose a1 = 12 and a2 = 27.5 such that conditions (i) and

(ii) in Corollary 1 hold. Further, we choose σ = 0.05, ψ = 0.02, and � = 0.96. We have
Eα(–12σα)Eα(27.5ψα) = 0.9581 < � , i.e., condition (iii) in Corollary 1 holds. Specially, we
choose the first 7 elements of sequences {tp} and {sp} as (0, 0.06, 0.14, 0.21, 0.3, 0.36, 0.42)
and (0.05, 0.12, 0.19, 0.28, 0.35, 0.41, 0.5). Figure 1 shows the orbits of the synchronization
errors eij(t), i = 1, 2, . . . , 10, j = 1, 2, 3.

5 Conclusions
In this paper, the synchronization of complex network coupled with fractional-order dy-
namical systems is studied. Aperiodically intermittent control scheme is adopted to design
effective controllers combining with pinning strategy. That is, only the first node is con-
trolled. Sufficient conditions for achieving the synchronization are derived and verified by
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numerical example. Obviously, the obtained results for networks with only one controller
are also valid for networks with more controllers. Therefore, in practical applications, es-
pecially for large-scale networks, more nodes are usually controlled to reduce the coupling
strength and/or control gain.
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