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1 Introduction
In recent years, fractional calculus has been one of the most popular topics in research
[1–5]. There are many different definitions and representations of fractional integrals and
derivatives in the literature, for instance, Riemann–Liouville integral, Riemann–Liouville
derivatives, Caputo derivative, Hilfer derivative, and so on (see [6–16]).

The fractional calculus has been used effectively to solve different kinds of problems
such as fractional relaxation and oscillation process, time fractional diffusive and wave
processes [4, 17–21], generalized Langevin and fractional Fokker–Planck equations [22–
33]. Furthermore, many authors have obtained the solutions of time fractional diffusion-
wave equations in a bounded domain in terms of the Mittag-Leffler type functions (see
[22, 31, 34–44]).

Here, we solve the following wave equation for a vibrating string:

Cγ
∗ w(x, t) =

∂2w(x, t)
∂x2 – bCα

∗ w(x, t) + g(x, t), (1)

with Caputo time fractional derivatives Cγ
∗ and Cα∗ of orders 1 < γ < 2 and 0 < α < 1, re-

spectively, using the conditions

w(x, t)|x=0 = h1(t), w(x, t)|x=l = h2(t) (2)
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and

w(x, t)|t=0+ = Θ(x),
∂w(x, t)

∂t

∣
∣
∣
∣
t=0+

= Φ(x), (3)

where t > 0, 0 ≤ x ≤ l, g(x, t), h1(t), h2(t), Θ(x) and Φ(x) are sufficiently well-behaved func-
tions, b is a positive constant, τ is the memory time, and g(x, t) is the external force.

This problem has the solutions for x ∈ [0, l] and in L(0,∞) such that

L(0,∞) =
{

f : ‖f ‖1 =
∫ ∞

0

∣
∣f (t)

∣
∣dt < ∞

}

,

where L(0,∞)the Lebesgue integrable function deals with t.
This paper is organized as follows. In Sect. 2, definitions and properties of Mittag-Leffler

functions and fractional integrals and derivatives are presented. In Sect. 3, we consider the
fractional wave equation (1) and solve this problem by using the separation of variables
and Fourier expansion method. Also, some examples under the conditions are presented
in Sect. 4. Finally, in Sect. 5, we give a concluding remark.

2 Mathematical background
2.1 The Mittag-Leffler functions
The Mittag-Leffler functions [45] were studied and introduced in the following series:

Eα(z) =
∞

∑

k=0

zk

Γ (αk + 1)
,

(

z ∈ C, Re(α) > 0
)

.

(4)

A more general form of (4) was given by Wiman [46] in the form

Eα,β (z) =
∞

∑

k=0

zk

Γ (αk + β)
,

(

z,β ∈ C, Re(α) > 0
)

.

(5)

It is obvious that, by using (4) and (5), we have Eα,1(z) = Eα(z). The Mittag-Leffler func-
tions are a generalization of the exponential, hyperbolic, and trigonometric functions since
E1,1(z) = ez , E2,1(z2) = cosh(z), E2,1(–z2) = cos(z), and E2,2(–z2) = sin(z)/z.

The generalized Mittag-Leffler functions were defined by Praphakar [47], that is,

Eγ

α,β (z) =
∞

∑

k=0

(γ )k

Γ (αk + β)
zk

k!
,

(

α,β ,γ ∈ C, Re(α) > 0, Re(β) > 0; z ∈C
)

,

(6)

where (γ )k is the Pochhammer symbol [48] defined by

(γ )k =
Γ (γ + k)

Γ (γ )
=

⎧

⎨

⎩

1; k = 0,γ �= 0,

γ (γ + 1) · · · (γ + k – 1); k = 1, 2, . . . .
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Note that E1
α,β(x) = Eα,β (x). The four parameter Mittag-Leffler function [49] was defined

by

Eγ ,κ
α,β (z) =

∞
∑

n=0

(γ )κn

Γ (αn + β)
zn

n!
,

(

α,β ,γ ∈ C, Re(α) > max
{

0, Re(κ) – 1
}

, Re(κ) > 0
)

.

(7)

From (6) and (7), we see that Eγ ,1
α,β (z) = Eγ

α,β(z).
The Laplace transform of the Mittag-Leffler functions (6) is represented by (see [47, 50])

L
[

tβ–1Eγ

α,β
(

utα
)]

(s) =
sαγ –β

(sα – u)γ
, (8)

where | u
sα | < 1.

Now, we give basic definitions and properties that will be used throughout the paper.

Definition 2.1 (Riemann–Liouville integral (see [5])) Let Ω = [a, b] be a finite interval
of the real axis. The Riemann–Liouville fractional integral of order μ ∈ C (Re(μ) > 0) is
defined by

xIγ

a+ [g] =
1

Γ (γ )

∫ x

a

g(t) dt
(x – t)1–γ

(

x > a, Re(μ) > 0
)

. (9)

Definition 2.2 (Caputo derivative (see [4] and [51])) Let γ > 0, n = �γ 	, and g ∈ ACn[a, b].
The Caputo derivative of γ > 0 is defined as

Cγ
∗ g(t) =

⎧

⎨

⎩

1
Γ (n–γ )

∫ t
0

g(n)(s)
(t–s)γ +1–n ds; n – 1 < γ < n,

dng(t)
dtn ; γ = n.

(10)

Note that the following expression gives us the relationship between the Caputo frac-
tional derivative (10) and the Riemann–Liouville fractional integral operator (9) (see [4])

Cγ
∗ g(t) = In–γ

0+ g(n)(t),

where g(n) is denoted by n-order derivative.
We give the Laplace transform for the Caputo fractional derivative in the following for-

mula (see [5, 52]):

L
[

Cγ
∗ g(t)

]

(s) =
∫ ∞

0
e–stCγ

∗ g(t) dt = sγ G(s) –
n–1
∑

k=0

g(k)(0+)sγ –1–k , (11)

where γ ∈ (n – 1, n) and G(s) is the representation of Laplace transform for the function
g(t). Clearly, Cγ

∗ 1 ≡ 0 for γ > 0.
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Definition 2.3 The integral operator Eu;γ ,κ
a+;α,βϕ (see [49]) was introduced by Srivastava and

Tomovski in the following form:

(

Eu;γ ,κ
a+;α,βϕ

)

(x) =
∫ x

a
(x – t)β–1Eγ ,κ

α,β
[

u(x – t)α
]

ϕ(t) dt,

(

ρ,μ, u,γ ∈C, Re(ρ), Re(μ) > 0
)

,
(12)

where Eγ ,κ
α,β (z) is the four parameter Mittag-Leffler function given in (7).

When u = 0 and a = 0, the integral operator (12) coincides with the Riemann–Liouville
integral operator (9) such that

(

E0;γ ,κ
0+;α,βϕ

)

(x) =
(

Iβ

0+ϕ
)

(x).

3 Analytical results for the problem
In this section, we investigate the analytical solution of the proposed problem (1)–(3). In
order to obtain the solution, we need the following lemmas.

Lemma 3.1 Let s, b,α,λn ∈R
+ and u ∈R. Then the inverse Laplace transform of the func-

tion

f (s) =
sγ –1 + bsα–1 + usγ –2

sγ + bsα + λn
(13)

deals with

(

L
–1f

)

(t) = L
–1[f (s)

]

(t)

=
∞

∑

p=0

(–b)pt(γ –α)pE(p+1)
γ ,(γ –α)p+1

(

–λntγ
)

+ b
∞

∑

p=0

(–b)pt(γ –α)(p+1)E(p+1)
γ ,(γ –α)(p+1)+1

(

–λntγ
)

+ u
∞

∑

p=0

(–b)pt(γ –α)p+1E(p+1)
γ ,(γ –α)p+2

(

–λntγ
)

, (14)

where 0 < λn
sγ +bsα < 1 and 0 < b

sγ –α < 1,

Proof Since 0 < λn
sγ +bsα < 1 and 0 < b

sγ –α < 1, we rewrite relation (13) in the following way:

f (s) =
(

sγ –1 + bsα–1 + usγ –2).
s–α

sγ –α + b
.

1
1 + λns–α

sγ –α+b

=
∞

∑

j=0

(–λn)j
{

s–α(j+1)+γ –1

(sγ –α + b)j+1 + b
s–αj–1

(sγ –α + b)j+1 + u
s–α(j+1)+γ –2

(sγ –α + b)j+1

}

.
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By using relation (8), we get

L
–1[f (s)

]

(t)

=
∞

∑

j=0

(–λn)jtγ jE(j+1)
γ –α,γ j+1

(

–btγ –α
)

+ b
∞

∑

j=0

(–λn)jtγ (j+1)–αE(j+1)
γ –α,γ (j+1)–α+1

(

–btγ –α
)

+ u
∞

∑

j=0

(–λn)jtγ j+1Ej+1
γ –α,γ j+2

(

–btγ –α
)

=
∞

∑

j=0

∞
∑

p=0

(–λn)jtγ j (j + 1)p

Γ ((γ – α)p + γ j + 1)
(–btγ –α)p

p!

+ b
∞

∑

j=0

∞
∑

p=0

(–λn)jtγ j+1–α (j + 1)p

Γ ((γ – α)p + γ (j + 1) – α + 1)
(–btγ –α)p

p!

+ u
∞

∑

j=0

∞
∑

p=0

(–λn)jtγ j+1 (j + 1)p

Γ ((γ – α)p + γ j + 2)
(–btγ –α)p

p!

=
∞

∑

j=0

∞
∑

p=0

(–b)pt(γ –α)p (p + 1)j

Γ ((γ – α)p + γ j + 1)
(–λntγ )j

j!

+ b
∞

∑

j=0

∞
∑

p=0

(–b)pt(γ –α)(p+1) (p + 1)j

Γ (γ j + (γ – α)(p + 1) + 1)
(–λntγ )j

j!

+ u
∞

∑

j=0

∞
∑

p=0

(–b)pt(γ –α)p+1 (p + 1)j

Γ ((γ – α)p + γ j + 2)
(–λntγ )j

j!

=
∞

∑

p=0

(–b)pt(γ –α)pE(p+1)
γ ,(γ –α)p+1

(

–λntγ
)

+ b
∞

∑

p=0

(–b)pt(γ –α)(p+1)E(p+1)
γ ,(γ –α)(p+1)+1

(

–λntγ
)

+ u
∞

∑

p=0

(–b)pt(γ –α)p+1E(p+1)
γ ,(γ –α)p+2

(

–λntγ
)

.

Thus, we get the desired result. �

Lemma 3.2 Let s, b,α,λn ∈R
+. We have

L
–1

[
1

sγ + bsα + λn
L

[

g̃n(t)
]

(s)
]

(t) =
∞

∑

p=0

(–b)p(E–λn ;p+1,1
0+;γ ,(γ –α)p+γ g̃n

)

(t),

(

0 <
λn

sγ + bsα
< 1, 0 <

b
sγ –α

< 1
)

,

where E–λn ;p+1,1
0+;γ ,(γ –α)p+γ is given in (12) and g̃n(t) is a given function.
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Proof Let

h(s) =
1

sγ + bsα + λn
L

[

g̃n(t)
]

(s). (15)

We rewrite relation (15) in the following form:

h(s) =
s–α

sγ –α + b
.

1
1 + λns–α

sγ –α+b

L
[

g̃n(t)
]

(s).

Since 0 < λn
sγ +bsα < 1, we have

h(s) =
∞

∑

j=0

(–λn)j s–α(j+1)

(sγ –α + b)j+1 L
[

g̃n(t)
]

(s).

With the help of relation (8), we obtain

h(s) = L

[ ∞
∑

j=0

(–λn)jtγ (j+1)–1Ej+1
γ –α,γ (j+1)

(

–btγ –α
)

]

(s)L
[

g̃n(t)
]

(s)

= L

[ ∞
∑

p=0

(–b)pt(γ –α)p+γ –1Ep+1
γ ,(γ –α)p+γ

(

–λntγ
)

]

(s)L
[

g̃n(t)
]

(s).

Applying the Parseval theorem for the Laplace transform (see [53])

L

[∫ x

0
k(x – t)ϕ(t) dt

]

(s) = L
[

k(x)
]

(s)L
[

ϕ(x)
]

(s),

we have

h(s) =
∞

∑

p=0

(–b)p
L

[∫ t

0
(t – τ )(γ –α)p+γ –1Ep+1

γ ,(γ –α)p+γ

(

–λn[t – τ ]γ
)

g̃n(τ )
]

(s). (16)

Taking the inverse Laplace transform on both sides of (16), we get

L
–1[g(s)

]

(t)

= L
–1

[
1

sγ + bsα + λn
L

[

g̃n(t)
]

(s)
]

(t) =
∞

∑

p=0

(–b)p(E–λn ;p+1,1
0+;γ ,(γ –α)p+γ g̃n

)

(t),

which is the desired result. �

The solution of the problem given by (1)–(3) is given in the following theorem.
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Theorem 3.3 The problem given in (1), (2), and (3) has a summable solution in L(0,∞)
with respect to t as follows:

w(x, t) =
∞

∑

n=1

Tn(t) sin

(
nπx

l

)

+
∞

∑

n=1

∞
∑

p=0

(–b)p(E–λn ;p+1,1
0+;γ ,(γ –α)p+γ

g̃n
)

(t) sin

(
nπx

l

)

+ h1(t) +
x
l
[

h2(t) – h1(t)
]

for x ∈ [0, l], where

Tn(t) = T (0)
n (0+)

[ ∞
∑

p=0

(–b)pt(γ –α)pE(p+1)
γ ,(γ –α)p+1

(

–
n2π2

l2 tγ

)

+ b
∞

∑

p=0

(–b)pt(γ –α)(p+1)E(p+1)
γ ,(γ –α)(p+1)+1

(

–
n2π2

l2 tγ

)

+
T (1)

n (0+)
T (0)

n (0+)

∞
∑

p=0

(–b)pt(γ –α)p+1E(p+1)
γ ,(γ –α)+2

(

–
n2π2

l2 tγ

)]

,

g̃n(t) =
2
l

∫ l

0

[

g(x, t) +
∂2(h1(t) + x

l [h2(t) – h1(t)])
∂x2

– Cγ
∗

(

h1(t) +
x
l
[

h2(t) – h1(t)
]
)

– bCα
∗ w(x, t)

]

sin

(
nπx

l

)

dx, (17)

T (0)
n (0+) =

2
l

∫ l

0

(

Θ̃(x) –
(

h1(t) +
x
l
[

h2(t) – h1(t)
]
)∣

∣
∣
∣
t=0+

)

sin

(
nπx

l

)

dx,

and

T (1)
n (0+) =

2
l

∫ l

0

(

Φ̃(x) –
∂(h1(t) + x

l [h2(t) – h1(t)])
∂t

∣
∣
∣
∣
t=0+

)

sin

(
nπx

l

)

dx.

Proof Suppose w(x, t) is given as

w(x, t) = W (x, t) + ν(x, t). (18)

Clearly, conditions (2) satisfy ν(x, t) where

ν(x, t) = h1(t) +
x
l
[

h2(t) – h1(t)
]

. (19)

From relations (18) and (19), we get

W (x, t)|x=0 = 0, W (x, t)|x=l = 0.

By (3), we get

W (x, t)|t=0+ = Θ(x) – ν(x, t)|t=0+ = Θ̃(x),



Özarslan and Kürt Advances in Difference Equations        (2019) 2019:199 Page 8 of 14

∂W (x, t)
∂t

∣
∣
∣
∣
t=0+

= Φ(x) –
∂ν(x, t)

∂x

∣
∣
∣
∣
t=0+

= Φ̃(x).

By representing

W (x, t) = W1(x, t) + W2(x, t)

and by using (1) and (18), we get

Cγ
∗
[

W1(x, t) + W2(x, t)
]

=
∂2

∂x2

[

W1(x, t) + W2(x, t)
]

– bCα
∗
[

W1(x, t) + W2(x, t)
]

+ g̃(x, t),

where

g̃(x, t) = g(x, t) +
∂2ν(x, t)

∂x2 – Cγ
∗ ν(x, t) – bCα

∗ w(x, t). (20)

The problem now can be reduced as follows:

Cγ
∗ W1(x, t) =

∂2W1(x, t)
∂x2 – bW1(x, t),

W1(x, t)|x=0 = 0, W1(x, t)|x=l = 0,

W1(x, t)|t=0+ = Θ̃(x),
∂W1(x, t)

∂t

∣
∣
∣
∣
t=0+

= Φ̃(x),

and

Cγ
∗ W2(x, t) =

∂2W2(x, t)
∂x2 – bCα

∗ W2(x, t) + g̃(x, t), (21)

W2(x, t)|x=0 = 0, W2(x, t)|x=l = 0, (22)

W2(x, t)|t=0+ = 0,
∂W2(x, t)

∂t

∣
∣
∣
∣
t=0+

= 0. (23)

Letting W1(x, t) = X(x)T(t), the differential equations take the following forms:

Cγ
∗ T(t) + bCα

∗ T(t) + λT(t) = 0, (24)

d2X(x)
dx2 + λX(x) = 0, (25)

where λ is called a separation constant. So, the solution of the Sturm–Liouville problem
(25) deals with the function X(x) with boundary conditions:

X(x)|x=0 = 0, X(x)|x=l = 0. (26)

The eigenfunctions of the problem are given in the form Xn(x) = sin(
√

λnx) where λn =
n2π2

l2 , (0 < λ1 < λ2 < · · · < λn · · · ). The relation for the eigenfunctions is satisfied by

∫ l

0
X2

n(x) dx = ‖Xn‖2δnm,

where ‖Xn‖2 = 1
2 is the norm of the eigenfunctions and δnm is the Kronecker delta.
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By using the Laplace transform, (24) is solved in the space L(0,∞). So, we get

sγ
L

[

Tn(t)
]

(s) – sγ –1T (0)
n (0+) – sγ –2T (1)

n (0+)

+ b
{

sα
L

[

Tn(t)
]

(s) – sα–1T (0)
n (0+)

}

+ λnL
[

Tn(t)
]

(s) = 0. (27)

From (27), we get

L
[

Tn(t)
]

(s) = T (0)
n (0+)

[ sγ –1 + bsα–1 + T (1)
n (0+)

T (0)
n (0+)

sγ –2

sγ + bsα + λn

]

. (28)

By using (14) and Lemma 3.1, the inverse Laplace transform of relation (28) yields

Tn(t)

= T (0)
n (0+)

[ ∞
∑

p=0

(–b)pt(γ –α)pE(p+1)
γ ,(γ –α)p+1

(

–λntγ
)

+ b
∞

∑

p=0

(–b)pt(γ –α)(p+1)E(p+1)
γ ,(γ –α)(p+1)+1

(

–λntγ
)

+
T (1)

n (0+)
T (0)

n (0+)

∞
∑

p=0

(–b)pt(γ –α)p+1E(p+1)
γ ,(γ –α)p+2

(

–λntγ
)

]

,

so we obtain the solution of W1(x, t) such that

W1(x, t) =
∞

∑

n=1

Tn(t) sin

(
nπx

l

)

. (29)

By using the Fourier expansions, we find the solution of (21):

W2(x, t) =
∞

∑

n=1

wn(t) sin

(
nπx

l

)

, (30)

g̃(x, t) =
∞

∑

n=1

g̃n(t) sin

(
nπx

l

)

, (31)

where g̃n(t) is represented in (17). From (30), (31), and (21), we get

∞
∑

n=1

[

Cγ
∗ wn(t) + bCα

∗ wn(t) + λnwn(t) – g̃n(t)
]

sin

(
nπx

l

)

= 0

if

Cγ
∗ wn(t) + bCα

∗ wn(t) + λnwn(t) – g̃n(t) = 0, (32)

where n ∈N.
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Using the Laplace transform method (11) to (32), we get

sγ
L

[

wn(t)
]

(s) – sγ –1w(0)
n (0+) – sα–2w(1)

n (0+)]

+ b
{

sα
L

[

wn(t)
]

(s) – sα–1wn(0+)
}

+ λnL
[

wn(t)
]

(s) – L
[

g̃n(t)
]

(s) = 0. (33)

From conditions (23), it follows that ∂pwn(x,t)
∂tp |t=0+ = 0 for p = 0, 1. From (33), we get

L
[

wn(t)
]

(s) =
1

sγ + bsα + λn
L

[

g̃n(t)
]

(s). (34)

Finally, we get the inverse Laplace transform of (34) and use Lemma 3.2 to obtain the
following result:

wn(t) =
∞

∑

p=0

(–b)p(E–λn ;p+1,1
0+;γ ,(γ –α)p+γ g̃n

)

(t). (35)

Thus, the proof is completed. �

4 Some applications of the main problem
In this section, we give some applications for time fractional wave equation (1)–(3) by
considering special cases of the external force, conditions given in (2) and (3).

Example 4.1 Let g(x, t) = 0, Θ(x) = x(1 – x), Φ(x) = 0, h1(t) = h2(t) = 0, x ∈ [0, 1] in the
above theorem. The time fractional wave equation takes the form as follows:

Cγ
∗ w(x, t) =

∂2w(x, t)
∂x2 – bCα

∗ w(x, t),

where 1 < γ < 2 and 0 < α < 1, with the conditions

w(x, t)|x=0 = 0, w(x, t)|x=1 = 0

and

w(x, t)|t=0+ = 0,
∂w(x, t)

∂t

∣
∣
∣
∣
t=0+

= 0

has the following solution

w(x, t) =
∞

∑

n=1

Tn(t) sin(nπx), (36)
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where

Tn(t) = 4
1 – (–1)n

n3π3

[ ∞
∑

p=0

(–b)pt(γ –α)pE(p+1)
γ ,(γ –α)p+1

(

–n2π2tγ
)

+ b
∞

∑

p=0

(–b)pt(γ –α)(p+1)E(p+1)
γ ,(γ –α)(p+1)+1

(

–n2π2tγ
)

+ u
∞

∑

p=0

(–b)pt(γ –α)p+1E(p+1)
γ ,(γ –α)p+2

(

–n2π2tγ
)

]

. (37)

When n = 2r (r = 1, 2, . . .), we have T2r(t) = 0. Therefore, we have just the odd terms
T2r–1(t). Hence, the solution of (36) is w(x, t) =

∑∞
r=1 T2r–1(t) sin[(2r – 1)πx].

Example 4.2 Let g(x, t) = ctκ–1Eζ
α,κ (–tα), b = 1, τ = 1, Θ(x) = x(1 – x), Φ(x) = 0, h1(t) =

h2(t) = 0, x ∈ [0, 1] in the above theorem. The time fractional wave equation takes the
following form:

Cγ
∗ w(x, t) =

∂2w(x, t)
∂x2 – bCα

∗ w(x, t) + ctκ–1Eζ
α,κ

(

–tα
)

,

where 1 < γ < 2, 1 < α < 2, c is any constant, with the conditions

w(x, t)|x=0 = 0, w(x, t)|x=1 = 0

and

w(x, t)|t=0+ = 0,
∂w(x, t)

∂t

∣
∣
∣
∣
t=0+

= 0

has the following solution

w(x, t) =
∞

∑

n=1

Tn(t) sin(nπx) +
∞

∑

n=1

wn(t) sin(nπx),

where Tn(t) is given by (37), and

wn(t) = 2c
{1 – (–1)n}

nπ

∞
∑

p=0

(–b)ptμ+κ–1Eγ +ζ
ρ,μ+κ

(

–tρ
)

.

Note that only odd terms T2r–1(t) and U2r–1(t) are not equal to zero for r = 1, 2, . . .

5 Concluding remark
For γ → 2, (1) becomes

∂2w(x, t)
∂t2 =

∂2w(x, t)
∂x2 – bCα

∗ w(x, t) + g(x, t), (38)

with conditions

w(x, t)|x=0 = h1(t), w(x, t)|x=l = h2(t), (39)
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and

w(x, t)|t=0+ = Θ(x),
∂w(x, t)

∂t

∣
∣
∣
∣
t=0+

= Φ(x) (40)

which is considered in [43].
The above problem has the solution (see p. 1558, [43], (27)–(29)) w(x, t) = W1(x, t) +

W2(x, t) + ν(x, t), with

W1(x, t) =
∞

∑

n=1

{ ∞
∑

p=0

(–b)pt(2–α)pE(p+1)
2,(2–α)p+1

(

–λnt2)

+ b
∞

∑

p=0

(–b)pt(2–α)(p+1)E(p+1)
2,(2–α)(p+1)+1

(

–λnt2)

+ u
∞

∑

p=0

(–b)pt(2–α)p+1E(p+1)
2,(2–α)p+2

(

–λnt2)
}

T (0)
n (0+) sin

(
nπx

l

)

, (41)

W2(x, t) =
∞

∑

n=1

∞
∑

p=0

(–b)p(E–λn ;p+1,1
0+;2,(2–α)p+2g̃n

)

(t) sin

(
nπx

l

)

, (42)

ν(x, t) = h1(t) +
x
l
[

h2(t) – h1(t)
]

. (43)

g̃n(t) =
2
l

∫ l

0
g̃(x, t) sin

(
nπx

l

)

dx, (44)

g̃(x, t) = g(x, t) +
∂2ν(x, t)

∂x2 –
∂2ν(x, t)

∂t2 – bCα
∗ w(x, t), (45)

where λn = n2π2

l2 are eigenvalues of the problem, u = T (1)
n (0+)/T (0)

n (0+), T (0)
n (0+) =

2
l
∫ l

0 Θ̃(x) sin( nπx
l ) dx, T (1)

n (0+) = 2
l
∫ l

0 Φ̃(x) sin( nπx
l ) dx are Fourier coefficients, Θ̃(x) =

Θ(x) – ν(x, t)|t=0+ , and Φ̃(x) = Φ(x) – ∂ν(x,t)
∂t |t=0+ .

It is easily observed that for γ → 2, the solution which is given in Theorem 3.3 coincides
with (41)–(43).
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