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Abstract
In this paper, we use variant fountain theorems to study the existence of infinitely
many solutions for the fractional p-Laplacian equation

(–�)αp u + λV(x)|u|p–2u = f (x,u) –μg(x)|u|q–2u, x ∈ R
N ,

where λ,μ are two positive parameters, N,p ≥ 2, q ∈ (1,p), α ∈ (0, 1), (–�)αp is the
fractional p-Laplacian, and V ,g,u :RN → R, f :RN ×R →R.

Keywords: Fractional p-Laplacian equation; Infinitely many solutions; Variant
fountain theorems

1 Introduction
In this paper we investigate the existence of infinitely many solutions for the fractional
p-Laplacian equation

(–�)αp u + λV (x)|u|p–2u = f (x, u) – μg(x)|u|q–2u, x ∈R
N , (1)

where λ,μ are two positive parameters, N , p ≥ 2, α ∈ (0, 1), (–�)αp is the fractional p-
Laplacian, and the potential function V : RN →R satisfies the following conditions:

(V1) V ∈ C(RN ,R) and infx∈RN V (x) ≥ V0 > 0, where V0 is a positive constant.
(V2) There exists b > 0 such that meas{x ∈ R

N : V (x) ≤ b} is finite, where meas denotes
the Lebesgue measures.

The functions f : RN ×R →R, g : RN → R satisfy the conditions:
(f1) f ∈ C(RN ×R,R) and lim|u|→0

f (x,u)
|u|p–2u = 0 uniformly in x ∈R

N .
(f2) F(x, u) =

∫ u
0 f (x, s) ds ≥ 0 and F (x, u) = 1

p f (x, u)u – F(x, u) ≥ 0 for all
(x, u) ∈ R

N ×R.
(f3) lim|u|→∞ f (x,u)u

|u|p = +∞ uniformly in x ∈R
N .

(f4) There exist d1, r0 > 0 and τ > p∗
α

p∗
α–p with p∗

α =
{ Np

N–αp if αp < N ,
∞ if αp ≥ N ,

such that

∣
∣f (x, u)

∣
∣τ ≤ d1F (x, u)|u|(p–1)τ for all x ∈ R

N and |u| ≥ r0.
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(f5) f (x, –u) = –f (x, u) for all (x, u) ∈R
N ×R.

(g) g ∈ Lq′ (RN ) and g(x) ≥ 0 ( 	≡ 0) for a.e. x ∈R
N , where q′ ∈ ( p∗

α

p∗
α–q , p

p–q ], q ∈ (1, p).
Fractional systems arise for example in phase transitions, chaos, diffusion, finance, flame
propagation, and wave propagation. In [1], the authors introduced a fractional order mod-
ified Duffing system

⎧
⎨

⎩

dq1 x
dtq1 = y, dq2 y

dtq2 = –x – x3 – ay + bz,
dz
dt = w, dw

dt = –cz – dz3,

where dq1 x
dtq1 , dq2 y

dtq2 are fractional derivatives, and via phase portraits and bifurcation dia-
grams, they studied chaotic behaviors for this system; we also refer the reader to the books
[2–4] and the papers [5–23]. Variational methods and critical point theory were used to
study fractional Schrödinger equations in the literature [24–37]; for results on Schrödinger
equations, we refer the reader to [38–66]. In [24, 25], Ambrosio and Torres used the moun-
tain pass theorem and a variant of the fountain theorem to obtain the existence of non-
trivial solutions for (1) with λ = 1,μ = 0, where f is p-superlinear at infinity. In [27], Tang
et al. obtained infinitely many solutions for the following fractional p-Laplacian equations
of Schrödinger–Kirchhoff type:

(

a + b
∫∫

R2N

|u(x) – u(y)|p
|x – y|N+pα

dx dy
)p–1

(–�)αp u + V (x)|u|p–2u = f (x, u), (2)

where they used the condition:
(Tang) There exist c0 > 0, r0 > 0, and κ > {1, N

pα
} such that

∣
∣F(x, t)

∣
∣κ ≤ c0|t|pκ

[
1
p2 f (x, t)t – F(x, t)

]

, ∀(x, t) ∈R
N ×R, |t| ≥ r0,

to ensure that the energy functional satisfies the Palais–Smale condition, i.e., (PS) se-
quence has a convergent subsequence; this condition can also be found in [26, 28, 40–42].
There are only a few papers on (1) with a sublinear perturbation. For example, in [29] the
authors used the famous Ambrosetti–Rabinowitz condition:

(AR) There exists μ > p2 such that

0 < μF(x, t) ≤ f (x, t)t, ∀x ∈R
N , t ∈ R\{0},

to obtain nontrivial solutions for (2) with a perturbation g (g ∈ L
p

p–1 (RN )). In [30–32, 38,
39] similar methods were used to study various Schrödinger equations with perturbations.

Motivated by the above papers, in this paper we use variant fountain theorems to study
the existence of nontrivial solutions for the fractional p-Laplacian equation (1). The nov-
elty is two-fold: (i) the condition (Tang) is adopted to ensure that bounded sequences have
convergent subsequences, (ii) we consider the influence of parameters and perturbation
terms on the existence of solutions.

Now, we state our main result.

Theorem 1.1 Suppose that (V1)–(V2), (f1)–(f5), and (g) hold. Then, for sufficiently small
μ > 0, there exists Λ > 0 such that system (1) possesses infinitely many solutions when λ ≥ Λ.
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Remark 1.2 Note that (f1), (f2), and (f4) imply that f has subcritical growth. From (f2),
(f4), for all x ∈R

N , |u| ≥ r0, we find

∣
∣f (x, u)

∣
∣τ ≤ d1F (x, u)|u|(p–1)τ = d1

(
1
p

f (x, u)u – F(x, u)
)

|u|(p–1)τ

≤ d1

p
∣
∣f (x, u)

∣
∣|u|(p–1)τ+1.

This shows that

∣
∣f (x, u)

∣
∣τ–1 ≤ d1

p
|u|(p–1)τ+1 and

∣
∣f (x, u)

∣
∣ ≤ τ–1

√
d1

p
|u| (p–1)τ+1

τ–1 .

Let (p–1)τ+1
τ–1 = s – 1. Then s = pτ

τ–1 ∈ (p, p∗
α). On the other hand, from (f1) for all ε > 0, we

have

∣
∣f (x, u)

∣
∣ ≤ ε|u|p–1 for x ∈R

N , |u| ≤ r0,

and hence, there exists cε = τ–1
√

d1
p > 0 such that

∣
∣f (x, u)

∣
∣ ≤ ε|u|p–1 + cε|u|s–1, ∀(x, u) ∈R

N ×R, (3)

and from F(x, u) =
∫ u

0 f (x, s) ds we have

∣
∣F(x, u)

∣
∣ ≤ ε

p
|u|p +

cε

s
|u|s, ∀(x, u) ∈R

N ×R. (4)

Remark 1.3 Consider the Ambrosetti–Rabinowitz condition (see [29–32, 38, 39]):
(AR) There exists θ > p such that

0 < θF(x, u) ≤ f (x, u)u for all x ∈ R
N , u ∈R\{0}.

Let F(x, u) = | sin x||u|p ln(1 + |u|),∀x ∈ R
N , u ∈ R. Then f (x, u) = | sin x|(p|u|p–2u ln(1 +

|u|) + |u|p–1u
1+|u| ). Consequently, for all x ∈R

N , we have

θF(x, u) – f (x, u)u = | sin x|(θ – p)|u|p ln
(
1 + |u|) – | sin x| |u|p+1

1 + |u| ≤ 0,

and this is impossible for large |u|. However, this function satisfies conditions (f1)–(f5).

2 Preliminaries
We first discuss the space W α,p(RN ) (for more details, we refer the reader to [67]). When
u : RN →R is a measurable function, we define the Gagliardo seminorm as follows:

[u]α,p :=
[∫

RN

∫

RN

|u(x) – u(y)|p
|x – y|N+αp dx dy

] 1
p

, p ≥ 2.
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Now, the fractional Sobolev space is given by

W α,p(
R

N)
:=

{
u ∈ Lp(

R
N)

: u is measurable and [u]α,p < ∞}
,

with the norm

‖u‖α,p =
(
[u]p

α,p + ‖u‖p
p
) 1

p ,

where ‖u‖p is the norm for the usual Lebesgue space Lp(RN ), denoted by

‖u‖p =
(∫

RN

∣
∣u(x)

∣
∣p dx

) 1
p

.

For the potential function V , we consider the following fractional Sobolev space:

E :=
{

u ∈ W α,p(
R

N)
:
∫

RN
V (x)

∣
∣u(x)

∣
∣p dx < ∞

}

,

with the norm

‖u‖E :=
(

[u]p
α,p +

∫

RN
V (x)

∣
∣u(x)

∣
∣p dx

) 1
p

.

Note that the parameter λ can be chosen large enough, so this norm can be replaced by

‖u‖ :=
(

[u]p
α,p +

∫

RN
λV (x)

∣
∣u(x)

∣
∣p dx

) 1
p

.

In summary, throughout our paper we use the space (E,‖ · ‖).

Lemma 2.1 (see [67, Theorem 6.5] and [25, Lemma 2.1]) The embedding E ↪→ Lt(RN ) is
continuous if t ∈ [p, p∗

α] and compact if t ∈ [p, p∗
α).

Hence, there exists Ct > 0 such that

‖u‖t ≤ Ct‖u‖, ∀t ∈ [
p, p∗

α

]
. (5)

Let X be a reflexive and separable Banach space and X∗ be its dual space. Then there
are (see [68, Sect. 17]) {φn}n∈N ⊂ X and {φ∗

n}n∈N ⊂ X∗ such that X = span{φn : n ∈N}, X∗ =
span{φ∗

n : n ∈N}, and 〈φn,φm〉 =
{ 1, n = m,

0, n 	= m. For k = 1, 2, . . . , let Yk = span{φ1, . . . ,φk} and Zk =
span{φk ,φk+1, . . .}.

Lemma 2.2 (see [69]) Let X be a Banach space, and X =
⊕

j∈N Xj with dim Xj < ∞ for any
j ∈ N. Set Yk =

⊕k
j=0 Xj, Zk =

⊕∞
j=k+1 Xj. Consider the following C1 functional Φλ : X → R

defined by

Φλ(u) = A(u) – λB(u), λ ∈ [1, 2].

Suppose that
(Z1) Φλ maps bounded sets to bounded sets uniformly for λ ∈ [1, 2]. Furthermore,

Φλ(–u) = Φλ(u) for (λ, u) ∈ [1, 2] × X ;
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(Z2) B(u) ≥ 0; B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of X ;
(Z3) There exist ρk > rk > 0 such that

ak(λ) = infu∈Zk ,‖u‖=ρk Φλ(u) ≥ 0 > bk(λ) = maxu∈Yk ,‖u‖=rk Φλ(u) for λ ∈ [1, 2],
dk(λ) = infu∈Zk ,‖u‖≤ρk Φλ(u) → 0 as k → ∞, uniformly for λ ∈ [1, 2].

Then there exist λn → 1, u(λn) ∈ Yn such that Φ ′
λn |Yn (u(λn)) = 0, Φλn (u(λn)) → ck ∈

[dk(2), bk(1)] as n → ∞. In particular, if {u(λn)} has a convergent subsequence for every k,
then Φ1 has infinitely many nontrivial critical points {uk} ⊂ X\{0} satisfying Φ1(uk) → 0–

as k → ∞.

3 Main results
Now, we can define the energy functional J on E as follows:

J(u) =
1
p
‖u‖p –

∫

RN
F(x, u) dx +

μ

q

∫

RN
g(x)|u|q dx for x ∈R

N , u ∈ E. (6)

From (4), (V1)–(V2), and (g) we have that J is well defined and of class C1. Moreover,

〈
J ′(u),ϕ

〉
=

∫

RN

∫

RN

|u(x) – u(y)|p–2(u(x) – u(y))(ϕ(x) – ϕ(y))
|x – y|N+αp dx dy

+
∫

RN
λV (x)|u|p–2uϕ dx

–
∫

RN
f (x, u)ϕ dx + μ

∫

RN
g(x)|u|q–2uϕ dx for x ∈R

N , u,ϕ ∈ E. (7)

From the definition of J ′, we see that the critical points of J are weak solutions for (1). From
[30], we know that the space E can be decomposed as X in Lemma 2.2, so we can consider
the family of functionals Jν : E →R defined by

Jν(u) =
1
p
‖u‖p +

μ

q

∫

RN
g(x)|u|q dx – ν

∫

RN
F(x, u) dx := A(u) – νB(u) for ν ∈ [1, 2].

Then B(u) ≥ 0 for u ∈ E, and Jν(–u) = Jν(u) for (ν, u) ∈ [1, 2] × E. Also, it is easy to see that
Jν maps bounded sets to bounded sets uniformly on ν ∈ [1, 2].

Lemma 3.1 Suppose that the assumptions of Theorem 1.1 hold. Then B(u) → ∞ as ‖u‖ →
∞ on any finite dimensional subspace of E.

Proof For any finite dimensional subspace Ẽ ⊂ E, there exists ε1 > 0 such that

meas
{

x ∈R
N :

∣
∣u(x)

∣
∣p ≥ ε1‖u‖p} ≥ ε1, ∀u ∈ Ẽ\{0}. (8)

If (8) is not true, then for all n ∈N, there exists un ∈ Ẽ\{0} such that

meas
{

x ∈R
N :

∣
∣un(x)

∣
∣p ≥ 1

n
‖un‖p

}

<
1
n

.

Define vn(x) = un(x)
‖un‖ ∈ Ẽ\{0}, then for all n ∈ N, ‖vn‖ = 1, and we obtain

meas
{

x ∈R
N :

∣
∣vn(x)

∣
∣p ≥ 1

n

}

<
1
n

. (9)
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Since dim Ẽ < ∞, passing to a subsequence if necessary, we may assume that vn → v0 in Ẽ.
Moreover, ‖v0‖ = 1. From the equivalence of all norms on the finite dimensional space Ẽ,
we have

∫

RN
|vn – v0|p dx → 0, as n → ∞. (10)

Thus, there exist ξ1, ξ2 > 0 such that

meas
{

x ∈R
N :

∣
∣v0(x)

∣
∣p ≥ ξ1

} ≥ ξ2. (11)

If not, for all n ∈ N, we obtain

meas
{

x ∈R
N :

∣
∣v0(x)

∣
∣p ≥ 1

n

}

= 0.

This implies that

0 ≤
∫

RN

∣
∣v0(x)

∣
∣2p dx <

1
n

‖v0‖p
p ≤ Cp

p

n
‖v0‖p =

Cp
p

n
→ 0, as n → ∞, for some Cp > 0.

Hence, v0 = 0, contradicting ‖v0‖ = 1, and then (11) holds.
Now let

Ω0 =
{

x ∈R
N :

∣
∣v0(x)

∣
∣p ≥ ξ1

}
, Ωn =

{

x ∈R
N :

∣
∣vn(x)

∣
∣p <

1
n

}

and

Ωc
n = R

N\Ωn =
{

x ∈R
N :

∣
∣vn(x)

∣
∣p ≥ 1

n

}

.

From (9) and (11), we have

meas(Ωn ∩ Ω0) ≥ meas(Ω0) – meas
(
Ωc

n ∩ Ω0
) ≥ ξ2 –

1
n

, ∀n ∈N.

For n large enough (for example, taking n such that ξ2 – 1
n ≥ 1

2ξ2, 1
2p–1 ξ1 – 1

n ≥ 1
2p ξ1), using

the inequality |vn|p = |vn – v0 + v0|p ≤ 2p–1|vn – v0|p + 2p–1|v0|p, for p ≥ 2, we have

∫

RN
|vn – v0|p dx ≥

∫

Ωn∩Ω0

|vn – v0|p dx

≥ 1
2p–1

∫

Ωn∩Ω0

∣
∣v0(x)

∣
∣p dx –

∫

Ωn∩Ω0

∣
∣vn(x)

∣
∣p dx

≥
(

1
2p–1 ξ1 –

1
n

)

meas(Ωn ∩ Ω0)

≥
(

1
2p–1 ξ1 –

1
n

)(

ξ2 –
1
n

)

≥ ξ1ξ2

2p+1 > 0.

This contradicts (10). As a result, (8) holds. For ε1 in (8), let

Ωu =
{

x ∈R
N :

∣
∣u(x)

∣
∣p ≥ ε1‖u‖p}, ∀u ∈ Ẽ\{0}.
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Then we have meas(Ωu) ≥ ε1. On the other hand, from L’Hospital rule and (f3) we have

lim|u|→∞
F(x, u)
|u|p = +∞ uniformly in x ∈R

N .

Hence, there exists sufficiently large d2 > 0 such that

F(x, u) ≥ d2|u|p for x ∈R
N , |u| > r1, for some r1 > 0.

From (4) with s ∈ (p, p∗
α), we have

F(x, u) ≤ |u|p
(

c1

p
+

c2

s
|u|s–p

)

≤
(

c1

p
+

c2

s
rs–p

1

)

|u|p for x ∈ R
N , |u| ≤ r1.

As a result, there exists d3 ∈ (0, d2) such that

F(x, u) ≥ (d2 – d3)|u|p for x ∈R
N . (12)

This, together with (8), implies that

B(u) =
∫

RN
F(x, u) dx ≥ (d2 – d3)

∫

RN

∣
∣u(x)

∣
∣p dx ≥ (d2 – d3)

∫

Ωu

∣
∣u(x)

∣
∣p dx

≥ ε1(d2 – d3)‖u‖pmeas(Ωu) ≥ ε2
1(d2 – d3)‖u‖p. (13)

Thus B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace of E. This completes the
proof. �

Lemma 3.2 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a se-
quence ρk → 0+ as k → ∞ such that

ak(ν) = inf
u∈Zk ,‖u‖=ρk

Jν(u) ≥ 0, (14)

and

dk(ν) = inf
u∈Zk ,‖u‖≤ρk

Jν(u) → 0, as k → ∞, uniformly for ν ∈ [1, 2], (15)

where Zk =
⊕∞

j=k Xj for all k ∈N.

Proof Let βs(k) = supu∈Zk ,‖u‖=1 ‖u‖s with s ∈ (p, p∗
α). Then from Lemma 3.8 of [70] and

Lemma 2.1, we have βs(k) → 0, k → ∞. Now, for u ∈ Zk , from (4), (5), we obtain

Jν(u) =
1
p
‖u‖p – ν

∫

RN
F(x, u) dx +

μ

q

∫

RN
g(x)|u|q dx

≥ 1
p
‖u‖p – 2

∫

RN
F(x, u) dx

≥ 1
p
‖u‖p –

2ε

p
‖u‖p

p –
2cε

s
‖u‖s

s
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≥ 1
p
‖u‖p –

2ε

p
Cp

p‖u‖p –
2cε

s
βs

s (k)‖u‖s.

Let ‖u‖ = ρk = βs(k), u ∈ Zk , note that βs(k) can be chosen arbitrarily small when k is large,
and if ε = p

2Cp
p

[ 1
p – 3cε

s βs
s (k)], we have

Jν(u) ≥
[

1
p

–
2ε

p
Cp

p –
2cε

s
βs

s (k)
]

‖u‖s =
cε

s
βs+1

s (k) ≥ 0 for large k.

On the other hand, for any u ∈ Zk with ‖u‖ ≤ ρk , we have

Jν(u) ≥ –
2cε

s
βs

s (k)‖u‖s.

Hence,

0 ≥ inf
u∈Zk ,‖u‖≤ρk

Jν(u) ≥ –
2cε

s
βs

s (k)‖u‖s.

Since, ρk → 0 as k → ∞, we have

dk(ν) = inf
u∈Zk ,‖u‖≤ρk

Jν(u) → 0, as k → ∞ uniformly for ν ∈ [1, 2].

This completes the proof. �

Lemma 3.3 Suppose that all the assumptions of Theorem 1.1 hold (and μ is sufficiently
small). For the sequence {ρk}k∈N in Lemma 3.2, there exists rk ∈ (0,ρk) for k ∈N such that

bk(ν) = max
u∈Yk ,‖u‖=rk

Jν(u) < 0 for ν ∈ [1, 2], (16)

where Yk =
⊕k

j=1 Xj for k ∈ N.

Proof For u ∈ Yk , from (13) and (5) we have

Jν(u) =
1
p
‖u‖p – ν

∫

RN
F(x, u) dx +

μ

q

∫

RN
g(x)|u|q dx

≤ 1
p
‖u‖p –

∫

RN
F(x, u) dx +

μ

q

∫

RN
g(x)|u|q dx

≤ 1
p
‖u‖p –

∫

Ωu

F(x, u) dx +
μ

q
‖g‖q′Cq

qq′
q′–1

‖u‖q

≤ 1
p
‖u‖p – ε2

1(d2 – d3)‖u‖p +
μ

q
‖g‖q′Cq

qq′
q′–1

‖u‖q.

Note that we can take sufficiently large d2 (and μ sufficiently small) such that

max
u∈Yk ,‖u‖=rk

Jν(u) < 0, ∀k ∈N, if ‖u‖ = rk < ρk small enough.

This completes the proof. �
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From Lemmas 3.1–3.3, we see (Z1)–(Z3) of Lemma 2.2 hold. Therefore, there exist νn →
1, u(νn) ∈ Yn such that

J ′
νn |Yn

(
u(νn)

)
= 0, Jνn

(
u(νn)

) → ck ∈ [
dk(2), bk(1)

]
, as n → ∞. (17)

For convenience, we denote un = u(νn) for all n ∈N.

Lemma 3.4 Suppose that all the assumptions of Theorem 1.1 hold. Then the sequence {un}
is bounded in E.

Proof Note that Jνn (u(νn)) is bounded, and we have

c + 1 ≥ Jνn (un) –
1
p
〈
J ′
νn (un), un

〉

=
1
p
νn

∫

RN
f (x, un)un dx – νn

∫

RN
F(x, un) dx

+
μ

q

∫

RN
g(x)|un|q dx –

μ

p

∫

RN
g(x)|un|q dx

≥
∫

RN
F (x, un) dx. (18)

We will argue by contradiction. If ‖un‖ is unbounded in E, we assume that ‖un‖ → ∞. Put
vn = un

‖un‖ , and then ‖vn‖ = 1. Passing to a subsequence, there exists v ∈ E such that vn ⇀ v
weakly in E, vn → v strongly in Lr(RN ) with r ∈ [p, p∗

α), vn(x) → v(x) for a.e. x ∈ R
N . For

0 ≤ a < b, let Ωn(a, b) = {x ∈R
N : a ≤ |un(x)| < b}. Next we consider two cases.

Case 1: Suppose v = 0.
Then vn → 0 in Lr(RN ) with r ∈ [p, p∗

α), and vn(x) → 0 for a.e. x ∈ R
N . Let r0 be as in

(f4), and from (3) we have
∫

Ωn(0,r0)

f (x, un)un

‖un‖p dx =
∫

Ωn(0,r0)

f (x, un)un

|un|p |vn|p dx

≤ (
ε + cεrs–p

0
)
∫

Ωn(0,r0)
|vn|p dx

≤ (
ε + cεrs–p

0
)
∫

RN
|vn|p dx → 0. (19)

From (f4), we know τ > p∗
α

p∗
α–p . Thus, if we set τ ′ = τ /(τ – 1), then pτ ′ ∈ (p, p∗

α). From the
Hölder inequality and (18), we obtain

∫

Ωn(r0,∞)

f (x, un)un

‖un‖p dx =
∫

Ωn(r0,∞)

f (x, un)un

|un|p |vn|p dx

≤
(∫

Ωn(r0,∞)

(
f (x, un)un

|un|p
)τ

dx
) 1

τ
(∫

Ωn(r0,∞)
|vn|pτ ′

dx
) 1

τ ′

≤
(∫

Ωn(r0,∞)

|f (x, un)|τ
|un|(p–1)τ dx

) 1
τ
(∫

Ωn(r0,∞)
|vn|pτ ′

dx
) 1

τ ′

≤
(∫

Ωn(r0,∞)
d1F (x, u) dx

) 1
τ
(∫

Ωn(r0,∞)
|vn|pτ ′ dx

) 1
τ ′
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≤ [
d1(c + 1)

] 1
τ

(∫

R3
|vn|pτ ′

dx
) 1

τ ′
→ 0. (20)

Combining (19) and (20), we have

∫

RN

f (x, un)un

‖un‖p dx =
∫

Ωn(0,r0)

f (x, un)un

‖un‖p dx +
∫

Ωn(r0,∞)

f (x, un)un

‖un‖p dx → 0. (21)

On the other hand, note that νn → 1, from (5) and (g) we have

1 =
‖un‖p

‖un‖p =
〈J ′

νn (un), un〉
‖un‖p +

νn

‖un‖p

∫

RN
f (x, un)un dx –

μ

‖un‖p

∫

RN
g(x)|un|q dx

≤ 〈J ′
νn (un), un〉
‖un‖p +

νn

‖un‖p

∫

RN
f (x, un)un dx +

μCq
qq′

q′–1

‖un‖p ‖g‖q′ ‖un‖q

≤ lim sup
n→∞

[ 〈J ′
νn (un), un〉
‖un‖p +

νn

‖un‖p

∫

RN
f (x, un)un dx +

‖un‖q

‖un‖p μ‖g‖q′Cq
qq′

q′–1

]

≤ lim sup
n→∞

νn

‖un‖p

∫

RN
f (x, un)un dx,

which contradicts (21).
Case 2: Suppose v 	= 0.
Set A = {x ∈ R

N : v(x) 	= 0} and meas(A) > 0. For x ∈ A, we have limn→∞ |un(x)| = ∞.
Hence A ⊂ Ωn(r0,∞) for large n. From (3) and (f3), note the nonnegativity of f (x, u)u,
Fatou’s lemma enables us to obtain

0 = lim
n→∞

o(1)
‖un‖p = lim

n→∞
〈J ′

νn (un), un〉
‖un‖p

= lim
n→∞

[‖un‖p

‖un‖p +
μ

‖un‖p

∫

RN
g(x)|un|q dx –

νn

‖un‖p

∫

RN
f (x, un)un dx

]

≤ 1 + lim
n→∞

[‖un‖q

‖un‖p μ‖g‖q′Cq
qq′

q′–1

–
∫

Ωn(0,r0)

f (x, un)un

‖un‖p dx

–
∫

Ωn(r0,∞)

f (x, un)un

|un|p |vn|p dx
]

≤ 1 + lim sup
n→∞

∫

Ωn(0,r0)

f (x, un)un

‖un‖p dx – lim inf
n→∞

∫

Ωn(r0,∞)

f (x, un)un

|un|p |vn|p dx

≤ 1 + lim sup
n→∞

εrp
0 + cεrs

0
‖un‖p · meas

(
Ωn(0, r0)

)

– lim inf
n→∞

∫

Ωn(r0,∞)

f (x, un)un

|un|p
[
χΩn(r0,∞)(x)

]|vn|p dx

≤ 1 –
∫

Ωn(r0,∞)
lim inf

n→∞
f (x, un)un

|un|p
[
χΩn(r0,∞)(x)

]|vn|p dx → –∞.

This is also a contradiction.
Thus {un}n∈N is bounded in E. This completes the proof. �
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Lemma 3.5 Suppose that all the assumptions of Theorem 1.1 hold. For some Λ > 0, the
sequence {un} possesses a strong convergent subsequence in E.

Proof From Lemma 3.4, the sequence {un}n∈N is bounded in E. Then there exists u ∈ E
such that un ⇀ u weakly in E, un → u strongly in Lr(RN ) for r ∈ [p, p∗

α) and un(x) → u(x)
for a.e. x ∈R

N after passing to a subsequence if necessary. Next, we prove two claims.
Claim 1. 〈J ′

νn (un – u), un – u〉 = o(1) as n → ∞.
Let wn = un – u. Then wn ⇀ 0 weakly in E, wn → 0 strongly in Lr(RN ) for r ∈ [p, p∗

α), and
wn(x) → 0 for a.e. x ∈ R

N after passing to a subsequence. Recall that un ⇀ u weakly in E,
we have ‖wn‖ = ‖un‖ – ‖u‖ + o(1), and from (7) we only need to show

∫

RN
f (x, wn)wn dx = o(1) and

∫

RN
g(x)|wn|q dx = o(1), as n → ∞.

In fact, from (3) we have
∣
∣
∣
∣

∫

RN
f (x, wn)wn dx

∣
∣
∣
∣ ≤

∫

RN

∣
∣f (x, wn)

∣
∣|wn|dx ≤ ε

∫

RN
|wn|p dx + cε

∫

RN
|wn|s dx → 0,

as n → ∞ with s ∈ [
p, p∗

α

)
,

and
∫

RN
g(x)|wn|q dx ≤ ‖g‖q′ ‖wn‖q

qq′
q′–1

→ 0, as n → ∞ with
qq′

q′ – 1
∈ [

p, p∗
α

)
.

Claim 2. There is M > 0 such that
∫

RN
F (x, wn) dx ≤ M.

From Lemma A.1 of [70], there exists σ (x) ∈ Lr(RN ) with r ∈ [p, p∗
α) such that

∣
∣un(x)

∣
∣ ≤ σ (x),

∣
∣u(x)

∣
∣ ≤ σ (x) for x ∈R

N , n ∈ N. (22)

Note that wn = un – u, by (3), (4), and (22) we have

∫

RN
F (x, wn) dx =

∫

RN

(
1
p

f (x, wn)wn – F(x, wn)
)

dx

≤
∫

RN

(
2ε

p
|wn|p +

cε(p + s)
ps

|wn|s
)

dx

≤
∫

RN

(
2p+1ε

p
σ

p
1 (x) +

2scε(p + s)
ps

σ s
2(x)

)

dx

≤ M,

where M > 0, σ1 ∈ Lp(RN ),σ2 ∈ Ls(RN ) with s ∈ (p, p∗
α).

Now, we prove that the sequence {un}n∈N has a convergent subsequence. Note V (x) < b
on a set of finite measure and wn → 0 strongly in Lr(RN ), r ∈ [p, p∗

α), and we have

‖wn‖p
p =

∫

RN
|wn|p dx ≤ 1

λb

∫

V≥b
λV (x)|wn|p dx +

∫

V <b
|wn|p dx ≤ 1

λb
‖wn‖p + o(1).
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Combining this and the Hölder inequality, for s = pτ

τ–1 ∈ [p, p∗
α), fixed ν ∈ (s, p∗

α), and we
have

‖wn‖s
s =

∫

RN
|wn|s dx

=
∫

RN
|wn|

p(ν–s)
ν–p |wn|s– p(ν–s)

ν–p dx

≤
(∫

RN
|wn|

p(ν–s)
ν–p

ν–p
ν–s dx

) ν–s
ν–p

(∫

RN
|wn|(s– p(ν–s)

ν–p ) ν–p
s–p dx

) s–p
ν–p

=
(∫

RN
|wn|p dx

) ν–s
ν–p

(∫

RN
|wn|ν dx

) s–p
ν–p

≤
(

1
λb

) ν–s
ν–p

C
ν(s–p)
ν–p

ν ‖wn‖
p(ν–s)
ν–p ‖wn‖

ν(s–p)
ν–p

=
(

1
λb

) ν–s
ν–p

C
ν(s–p)
ν–p

ν ‖wn‖s for Cν > 0.

From (f1), for any ε > 0, there exists δ = δ(ε) > 0 such that |f (x, u)| ≤ ε|u|p–1 for x ∈ R
N and

|u| ≤ δ. Moreover, (f4) is also satisfied for some suitable δ. Therefore, we have

∫

|wn|≤δ

f (x, wn)wn dx ≤ ε

∫

|wn|≤δ

|wn|p dx ≤ ε

λb
‖wn‖p + o(1),

and

∫

|wn|≥δ

f (x, wn)wn dx =
∫

|wn|≥δ

f (x, wn)wn

|wn|p |wn|p dx

≤
(∫

|wn|≥δ

|f (x, wn)|τ
|wn|(p–1)τ dx

)1/τ(∫

|wn|≥δ

|wn| pτ
τ–1 dx

)(τ–1)/τ

≤
(∫

|wn|≥δ

d1F (x, u) dx
)1/τ

‖wn‖p
s

≤ (d1M)1/τ
(

1
λb

) p(ν–s)
s(ν–p)

C
pν(s–p)
s(ν–p)

ν ‖wn‖p + o(1).

Consequently, we have

o(1) =
〈
J ′
νn (wn), wn

〉
= ‖wn‖p + μ

∫

RN
g(x)|wn|q dx – νn

∫

RN
f (x, wn)wn dx

≥ ‖wn‖p – 2
∫

RN
f (x, wn)wn dx

≥
[

1 –
2ε

λb
– 2(d1M)1/τ

(
1
λb

) p(ν–s)
s(ν–p)

C
pν(s–p)
s(ν–p)

ν

]

‖wn‖p + o(1).

Thus there exists Λ > 0 such that wn → 0 in E when λ > Λ. This implies that un → u in E.
This completes the proof. �
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Proof of Theorem 1.1 From the last assertion of Lemma 2.2, we know that J = J1 has
infinitely many nontrivial critical points. Therefore, (1) possesses infinitely many small
negative-energy solutions. This completes the proof. �
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