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1 Introduction
In this paper we investigate the existence of infinitely many solutions for the fractional

p-Laplacian equation
(—A)ou+ AV ()l u = f(x,u) - pg®)ul”u, xeRY, (1)

where A, u are two positive parameters, N,p > 2, o € (0,1), (—A)Z is the fractional p-
Laplacian, and the potential function V : RN — R satisfies the following conditions:

(V1) V e C(RN,R) and inf, gy V(%) > Vj > 0, where V is a positive constant.

(V2) There exists b > 0 such that meas{x € RN : V(x) < b} is finite, where meas denotes

the Lebesgue measures.

The functions f : RN x R — R, g: R — R satisfy the conditions:

(f1) f € CRN x R,R) and lim,—o lf;l(;‘f;)u = 0 uniformly in x € RY.

(f2) F(x,u)= fouf(x,s) ds > 0and .% (x,u) = I%f(x, u)u — F(x,u) > 0 for all

(x,u) e RN x R.

(£3) lim‘u‘_,oof(l’z‘?“ = +00 uniformly in x € RN,

. Ne i <
(f4) There exist dq,7y >0and 7 > pf‘ip with p% = { N-e» Ti ”)1:[’ such that

oo ifap>

[f(x,u)|t <dyF(x%,u)|u|? V" forallx € RN and |u| > rp.
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(#5) f(x,—u) = —f (x, u) for all (x,u) € RN x R.
(8) gL (RN) and g(x) > 0 (£0) for a.e. x € RN, where ¢/ e(pp"q = q] qe1,p).
Fractional systems arise for example in phase transitions, chaos, diffusion, finance, flame

propagation, and wave propagation. In [1], the authors introduced a fractional order mod-

ified Duffing system
d1x _ d2y _ 3
aar =V @ = XX —ay+ bz,
dz _ w3
T=w 5 = —cz—dz,
91 92 . . . . . . . .
where %, % are fractional derivatives, and via phase portraits and bifurcation dia-

grams, they studied chaotic behaviors for this system; we also refer the reader to the books
[2—-4] and the papers [5-23]. Variational methods and critical point theory were used to
study fractional Schrédinger equations in the literature [24—37]; for results on Schrédinger
equations, we refer the reader to [38—66]. In [24, 25], Ambrosio and Torres used the moun-
tain pass theorem and a variant of the fountain theorem to obtain the existence of non-
trivial solutions for (1) with A = 1, u = 0, where f is p-superlinear at infinity. In [27], Tang
et al. obtained infinitely many solutions for the following fractional p-Laplacian equations
of Schrodinger—Kirchhoff type:

p-1
(a b / / u) =4O 4 4 ) (~A)gu+ V@)l u = fx, ), @
R2N

|x y|N+poz

where they used the condition:
(Tang) There exist ¢y > 0,79 >0, and « > {1, p%} such that

K 1
|F(x’ t)| =< C0|t|pK |:p_2f(x’ t)t_F(x) t):|; V(x’ t) € RN X Rr |t| =10,

to ensure that the energy functional satisfies the Palais—Smale condition, i.e., (PS) se-
quence has a convergent subsequence; this condition can also be found in [26, 28, 40—42].
There are only a few papers on (1) with a sublinear perturbation. For example, in [29] the
authors used the famous Ambrosetti—Rabinowitz condition:

(AR) There exists i > p? such that

0<uF(x,t) <flxt)t, Vxe RN, t € R\{0},

to obtain nontrivial solutions for (2) with a perturbation g (g € LT (RN)). In [30-32, 38,
39] similar methods were used to study various Schrédinger equations with perturbations.

Motivated by the above papers, in this paper we use variant fountain theorems to study
the existence of nontrivial solutions for the fractional p-Laplacian equation (1). The nov-
elty is two-fold: (i) the condition (Tang) is adopted to ensure that bounded sequences have
convergent subsequences, (ii) we consider the influence of parameters and perturbation
terms on the existence of solutions.

Now, we state our main result.

Theorem 1.1 Suppose that (V1)—(V2), (f1)—(f5), and (g) hold. Then, for sufficiently small
>0, thereexists A > 0 such that system (1) possesses infinitely many solutions when . > A.
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Remark 1.2 Note that (f1), (f2), and (f4) imply that f has subcritical growth. From (f2),
(f4), for all x € R, |u| > ro, we find

[f e u)|” <diZ(x, u)|u| V7 = 4, (I%f(x, u)u — F(x, M)) || P70
< %tf(x, 10)] | P,

This shows that

lf(x,u)|f_15%|ul(p"l)”l and [f(x,u)|S \/;M(p 1r+1'

Let % =s—1. Then s = £5 € (p,p}). On the other hand, from (f1) for all & > 0, we
have

V(x,u)‘ <elulft forxeRN,|u| <r,

and hence, there exists ¢, = 7Y % > 0 such that

[f(x, u)| <elulft+elult, Viru)eRY xR, (3)
and from F(x,u) = [, f(x,s) ds we have
e Ce\ s N
|Fv,u)| < =ulf’ + =|ul’, Vxu)eRY xR. (4)
P s

Remark 1.3 Consider the Ambrosetti—Rabinowitz condition (see [29-32, 38, 39]):
(AR) There exists 6 > p such that

0<OF(x,u) <f(x,u)u forallx e RY,u e R\{0}.

Let F(x,u) = |sinx||uf? In(1 + |u|),Vx € RN,u € R. Then f(x, u) = |sinx|(p|u/’2uln(1 +

lu|) + "‘l‘f;lu). Consequently, for all x € RN, we have

| |p+1

OF(x,u) — f(x, u)u = | sinx|(6 — p)|u|pln(1+|u|)—|smx| | |§
1+|u

)

and this is impossible for large |u|. However, this function satisfies conditions (f1)—(f5).
2 Preliminaries

We first discuss the space W*?(RY) (for more details, we refer the reader to [67]). When

u: RN — R is a measurable function, we define the Gagliardo seminorm as follows:

1
u(x) — u(y)l? g
@ dxdy| , 2.
[Uayp = [/RN/RN ey xy] p=
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Now, the fractional Sobolev space is given by
WP (RN) = {u € L(RN) : u is measurable and [u],,, < 00},

with the norm

S 1

letllap = ([, + leel2)

where ||u|, is the norm for the usual Lebesgue space L?(R"), denoted by

el = ([RNlu(x)de)”.

For the potential function V, we consider the following fractional Sobolev space:
E:= {u e W*?(RV) :/ V() |u@)]” dx < oo},
RN

with the norm

lulle = ([ulz,,, " /R R dx)".

Note that the parameter A can be chosen large enough, so this norm can be replaced by

12 12 ’
lull = ( (wls, + | AV)|u@)] dx ) .
RN
In summary, throughout our paper we use the space (E, || - ||).

Lemma 2.1 (see [67, Theorem 6.5] and [25, Lemma 2.1]) The embedding E — L*(RN) is
continuous if t € [p,pl] and compact ift € [p,p},).

Hence, there exists C; > 0 such that
lull, < Cellul, Vte|p.pl] (5)

Let X be a reflexive and separable Banach space and X* be its dual space. Then there
are (see [68, Sect. 17]) {¢,}nen C X and {¢;} ey C X* such that X = span{¢, : n € N}, X* =
span{¢? : n € N}, and (¢, $) = {(1) nom FOrk=1,2,...,let Yy = span{@y,..., ¢} and Z =
span{¢i, ¢i1- ..}

Lemma 2.2 (see [69]) Let X be a Banach space, and X = EB/ENXj with dim X; < oo for any
jeN. Set Yy = @1’;0 Xj, Zy = D51 Xj- Consider the following C* functional &, : X — R
defined by

D5 (u) = A(u) — AB(u), Xre]l,2].

Suppose that
(Z1) D, maps bounded sets to bounded sets uniformly for ) € [1,2]. Furthermore,
D, (—u) = ;. (u) for (7, u) € [1,2] x X;
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(Z2) B(u) = 0; B(u) — o0 as ||u|| — oo on any finite dimensional subspace of X;
(Z3) There exist py > r¢ > 0 such that
ar(X) =infyez juj=p, Pr() = 0> br(X) = max ey, juy=r, Pa(u) for A € [1,2],
dr(\) = infez juj<pp Pr(t8) — 0 as k — oo, uniformly for A € [1,2].
Then there exist Ay — 1, u(r,) € Y, such that @; |y, (u(r,)) =0, ®;,(u(r,) — c €
[dk(2), br(1)] as n — oo. In particular, if {u(r,)} has a convergent subsequence for every k,
then @1 has infinitely many nontrivial critical points {ur} C X\{0} satisfying ®1(ux) — 0~
as k — oo.

3 Main results
Now, we can define the energy functional / on E as follows:

1
](u)=—||u||p—/ F(x,u)dx+ﬁ/ g@)ul?dx forxe RV, ucE. ®)
V4 RN q JRN

From (4), (V1)=(V2), and (g) we have that J is well defined and of class C'. Moreover,

/() g) = /RN ‘/RN |u(x) = )P (%) - u() (@) - 9(»)) dxdy

=y

+/ AV ()| ulP2up dx

RN

—/ f(x,u)<pdx+,u/ 2w *updx  forx e RN,u,¢ € E. (7)
RN RN

From the definition of J, we see that the critical points of ] are weak solutions for (1). From
[30], we know that the space E can be decomposed as X in Lemma 2.2, so we can consider
the family of functionals J, : E — R defined by

Jo(u) = l||u||” + ﬁ/ gx)|ul?dx - v/ F(x,u)dx:= A(u) —vB(u) forv e [1,2].
p q JrRN RN

Then B(u) > 0 for u € E, and J,(—u) = J, () for (v, u) € [1,2] x E. Also, it is easy to see that
J, maps bounded sets to bounded sets uniformly on v € [1,2].

Lemma 3.1 Suppose that the assumptions of Theorem 1.1 hold. Then B(u) — oo as ||u|| —
00 on any finite dimensional subspace of E.

Proof For any finite dimensional subspace E C E, there exists &1 > 0 such that
meas{x eRN: |u(x)|p > e ||u||1’} >¢e1, Vue E\{O}. (8)
If (8) is not true, then for all n € N, there exists u, € E\{O} such that

1 1
meas{xe RN Ju, (0)]” = —||Mn||p} <.
n n

Define v, (x) = “%) ¢ g\{O}, then for all n € N, |lv,|| = 1, and we obtain

lletn |

1 1
meas{xe RN . |v,,(x)|p > —} < —. 9)
n n
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Since dim E < 00, passing to a subsequence if necessary, we may assume that v, — vy in E.
Moreover, ||vg|| = 1. From the equivalence of all norms on the finite dimensional space E,
we have
/ V., —=vlPdx — 0, asn— oo. (10)
RN
Thus, there exist &, &, > 0 such that
meas{x € RN : |vo(x)|” > &} > &. (11)

If not, for all n € N, we obtain

1
meas{xe RN : |v0(x)|p > —} =0.
n

This implies that
P »
2 1 C G
0 5/ |v0(x)| P dx < —||V0||§ < Ziwl? =L -0, asn— oo, for some C,>0.
RN n n n

Hence, v = 0, contradicting ||vo|| = 1, and then (11) holds.
Now let

20 = {x eRN: |vo(x)|p 251}, 2, = {x eRN: |vy,(x)|p < %} and
Q¢=RN\, = {x eRY: |v, ()| > %}
From (9) and (11), we have

1
meas(£2, N £2y) > meas(£2y) — meas(.Q; n .Qo) >&—-—, VmelN.
n

For n large enough (for example, taking 7 such that & — % > %52, %51 - % > %51), using

the inequality |v,|P = |v, = vo + vo|? < 227 |v,, — vo|? + 27~ Lwy|?, for p > 2, we have

[ m-vpasz [ -wps
RN £2,N820
1 » »
> — |vo(x)[” dx — [va(2)|” dx
2P71 Jo,n20 2N

1 1
> (F& - ;)meaS(Qn N £20)

1 1 1\  &¢
> (F&—;><§2—;> > sz > 0.

This contradicts (10). As a result, (8) holds. For ¢; in (8), let

2, =2 eRY: Ju)|’ = erllull’}, VueE\{0}.

Page 6 of 15
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Then we have meas(§2,) > &1. On the other hand, from L’'Hospital rule and (f3) we have

F(x,u)

im =+0o uniformly inx € RV,
|u|— o0 |1,¢|P

Hence, there exists sufficiently large d, > 0 such that
F(x,u) > do|ulP  forx e RN, |u| > ry, for some r; > 0.
From (4) with s € (p, p};), we have
F(x,u) < |u|1’(c—1 " C—2|u|”’> < (C—l + C—er‘f”)mv’ for x € RN, |u| < ry.
p s p s
As a result, there exists ds € (0,d,) such that
F(x,u) > (dy — ds)|ulf  forx e RN, (12)
This, together with (8), implies that
B0 = [ Fndr=@a-do) [ [u)] dv= (=) [ futa)f ax
RN RN 2u
> &1(dy — ds)||u||Pmeas(£2,) > &7 (dy — ds)||ul/. (13)

Thus B(u) — o0 as ||| — oo on any finite dimensional subspace of E. This completes the

proof. g

Lemma 3.2 Suppose that the assumptions of Theorem 1.1 hold. Then there exists a se-

quence pi — 0" as k — oo such that

ar(v)= i Jo(u) > 0, (14)
ueZp llull=px
and
di(v) = ; iﬁlfH J,(u) = 0, ask— oo, uniformly forv € [1,2], (15)
Uuelp||ul| =pg

where Z = @5, X; for all k € N.

Proof Let Bs(k) = SUPez, juj-1 l1#lls with s € (»,ps). Then from Lemma 3.8 of [70] and
Lemma 2.1, we have S;(k) — 0,k — 00. Now, for u € Z, from (4), (5), we obtain

]v(u):l||u||p—v/ F(x,u)dmﬁ/ g ul dx
p RN q JrN

> ||u||1’—2/ F(x,u)dx
RN

1
p
1 2e 2c
> = lull” = = el = = llul)}
p S
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1 2e 2c
> —[lull” = —Chllull” - =Bl
V4 p s

Let ||u|l = px = Bs(k), u € Zi, note that B(k) can be chosen arbitrarily small when k is large,
and if e = 21%5[1% — 2% 5(k)], we have

1 2 2¢, o
Jolw) > [— -z iﬂﬁ(k)] Il = g5 (k) = 0 for large k.
p b s s

On the other hand, for any u € Z; with ||u|| < px, we have
2¢, . s
Jo(u) > —Tﬁs(k)llull .

Hence,

2
0> inf  J,(w) = -2 B ull.
ueZ,|lull<pk s

Since, pr — 0 as k — o0, we have

di(v) = inf  J,(u) > 0, ask — oo uniformly for v € [1,2].
u€Zp,llull <pk
This completes the proof. g

Lemma 3.3 Suppose that all the assumptions of Theorem 1.1 hold (and w is sufficiently
small). For the sequence {pi}ken in Lemma 3.2, there exists ry € (0, px) for k € N such that

br(v)= max J,(u)<0 forvell,?2], (16)

ueYy, |lull=rg

where Yy = @llle)(/for keN.

Proof For u € Yy, from (13) and (5) we have
1 1z
1 =t v [ Pt [ g
p RN q JrRN

1
< —||u||P—/ F(x,u)dx + ﬁ/ g()|u|?dx
p RN q JRN

“w
<l - [ Fls ) ds+ £ gl 1y
2y

q-1

q-1

Note that we can take sufficiently large d, (and p sufficiently small) such that

max [, (#) <0, VkeN, if |lu|| = rx < px small enough.
u€Ypllull=rr

This completes the proof. d
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From Lemmas 3.1-3.3, we see (Z1)—(Z3) of Lemma 2.2 hold. Therefore, there exist v,, —
1, u(v,) € Y, such that

T v () =0, T, (u(vi)) = ek € [di(2), bx(1)], as n— oo. (17)
For convenience, we denote u, = u(v,) for all n € N.

Lemma 3.4 Suppose that all the assumptions of Theorem 1.1 hold. Then the sequence {u,,}
is bounded in E.

Proof Note that J,, (#(v,)) is bounded, and we have

1
c+1 Z]u,,(un) - Z(];n(un)v un)

1
:—vn/ f(x,u,,)undx—u,,/ F(x,u,)dx
p RN RN
o N I
q JrRN P JRN

> AN F(x,u,) dx. (18)

We will argue by contradiction. If |4, || is unbounded in E, we assume that ||, || — oo. Put
Vy = “Z—Z”, and then ||v,| = 1. Passing to a subsequence, there exists v € E such that v, — v
weakly in E, v, — v strongly in L"(RN) with r € [p, p?), v,(x) — v(x) for a.e. x € RN, For
0<a<b,let 2,(a,b) ={xecRN:a < |u,(x)| < b}). Next we consider two cases.

Case 1: Suppose v = 0.

Then v, — 0 in L"(RN) with r € [p,p), and v,(x) — 0 for a.e. x € RV. Let ro be as in

(f4), and from (3) we have

X, U, U X, Uy, U
/ S n)ndx:/ f( n)n|Vn|de
2n0r0)  Nunll? 2nore)  Unl?

<(e+ery?) f Val? dx

£2,(0,rg)
<(e+cry?) / [V, l? dx — 0. (19)
RN
From (f4), we know 1 > pg‘ép. Thus, if we set v/ = t/(t — 1), then pt’ € (p,p}). From the

Holder inequality and (18), we obtain

X, Uy)U X, Uy)U
[ o . Sl o
£2;,(ro,00) ” Uy ”p 2,(ro,00) |un |p
1
T =7
< </ (f(x, Mn)un> dx) (/ |Vn|Pr, dx) T
Qulroco) \ [ nl? Qn(r0,00)
1
T T , =
< ( / 71’(("’;‘”1))' dx) ( / V" dx)
§2,1(r0,00) |Mn| T 24(rg,00)

1
< < f AT (x, u) dx) ( / v, dx) !
2y(rg,00) £2y(rg,00)

Al

=

=

Page 9 of 15
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U=

< [di(c +1)] 1(/ v, [P dx> o (20)

Combining (19) and (20), we have

de/ MW/ feotnlitn g o, (21)
2,(0,70) 21(r,00)

RN [|lu]l? [l 117 (o117

On the other hand, note that v, — 1, from (5) and (g) we have

||Mn||p (]/ (Mn):un
== > f(x, i e — = | (@) up| dx
Nl l Nl | Iun|| l n”
q
nC
! (u ) u ) ) 99
Yy ni»*n n q -1
+ S un)uy dx + ——|lgll [l |7
ll26 117 lunll? Jrn Nl 17
. I, (tn),u uy||?
< limsup| —* ) hn) / S, uy,)u, dx + Iz /L||g||q/Cq )
=00 llnllP IIMnII" Nl 117 75

< limsup
n—>00 ||un||p

/ fx, u,)u, dx,

which contradicts (21).

Case 2: Suppose v # 0.
Set A = {x € RN : y(x) # 0} and meas(4) > 0. For x € A, we have lim,,_, » |1,(x)| = oo

Hence A C £2,(ry, 00) for large n. From (3) and (f3), note the nonnegativity of f(x, u)u,

Fatou’s lemma enables us to obtain

0= lim o _ lim M

n=0o [[ullP neo uy|lP
. u,||P v

= hm|:” al + i / 2() |7 dox — —= f(x,u,,)u,,dx]
n>oo| [luyllP |unll? Jru lunll? JrN

f(x: un)un dx

lwal?
<1+ lim | = ullgly €Y,

oo |l n”p 75 Jewon)  lluall?
X, Up)U
_/ o) nwpdx}
24(rg,00) |un|p
X, Uy ) U .. X, U U
< 1+1imsup/ de—hmmf/ Mh/nlpdx
n—soo Jauor Nunll? =0 Jo (ro00)  |Unl?
. erf +c.rd
<1+limsup —2—=20. meas(Qn(O, ro))
n—00 l|2e 117
. S u,)u
—hmlnf/ #[X.Q,,(m,oo)(x)]wnw dx
=00 J 2,(ro,00) |M,, |p
L. X, Uy ) U
<1 —/ lim 1nfw [xgn(,o,oo)(x)]wn |” dx — —o0.
ulroo0) "0 |unl?

This is also a contradiction.

Thus {u,},cn is bounded in E. This completes the proof. O

Page 10 of 15
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Lemma 3.5 Suppose that all the assumptions of Theorem 1.1 hold. For some A > 0, the
sequence {u,} possesses a strong convergent subsequence in E.

Proof From Lemma 3.4, the sequence {u,},cn is bounded in E. Then there exists u € E
such that u, — u weakly in E, u, — u strongly in L"(RN) for r € [p,p}) and u,(x) — u(x)
for a.e. x € RN after passing to a subsequence if necessary. Next, we prove two claims.
Claim 1. {J, (u, —u),u, —u) = o(1) as n — o00.
Let w, = u,, — u. Then w,, — 0 weakly in E, w,, — 0 strongly in L'(RN) forr € [p,pL), and
wy(x) — 0 for a.e. x € RN after passing to a subsequence. Recall that u, — u weakly in E,
we have ||wy|| = |lu,|| — |lu]l + o(1), and from (7) we only need to show

flx, w)w,dx=0(1) and / gx)|w,7dx =0(1), asn— oo.
RN RN

In fact, from (3) we have

|/ flx, w)w, dx
RN

f/ lf(x,wn)“wnldxfef |Wn|pdx+cs/ |wy|* dx — 0,
RN RN RN

as n — oo with s € [p, p}),

and

. q9 *
/Ng(xnwnwdx < lglly wal®,, — 0, asn— oo with 7-1° [p:p2)-
; -

q 7-1

Claim 2. There is M > 0 such that
/ F(x,w,)dx < M.
RN
From Lemma A.1 of [70], there exists o (x) € L"(RN) with r € [p, p}) such that
|un(%)| < o), lu(x)| <o(x) forxeRN,neN. (22)

Note that w, = u, — u, by (3), (4), and (22) we have

/ F(x,w,)dx = ( 1f(x, wp)w, — F(x, w,,))
RN V4

2e Ce P
(_| wal? + (p | nl)dx
RN\ P

<2P+1s o) + 208(p+S) s(x)>dx
ps

where M >0, 07 € L?(RN), 05 € L(RN) with s € (p, p.).
Now, we prove that the sequence {u,},cn has a convergent subsequence. Note V(x) < b
on a set of finite measure and w,, — 0 strongly in L"(RN), r € [p, p}), and we have

1 1
wall}, = /N lwal” dx < v )»V(x)lwnlpdx+/ lwpl” dx < EIIW;«II”+0(1)-
R

V>b V<b
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Combining this and the Holder inequality, for s = £5 € [p,p}), fixed v € (s,p}), and we
have

Il :/ Iwal*
]RN

pv=s) _plv=s)
:/ 1l 55 (w55 e
RN

. S*p
plo=s) v-p (=7 (s 2=3)y v=p p
< [wy| 7 = dx [w,|™ v7 752 dx
RN RN
vs sp
v-p v-p
:</ |wn|1’dx) (/ |wn|“dx)
RN RN
V=§
1\vr w2 plv=s) e
< E G, lwill V=2 [[wyll -

1 ET_; vis:p)
:<A_b) G wall® for C, >0.

From (f1), for any ¢ > 0, there exists § = §(¢) > 0 such that |f(x, u)| < e|u|P~! for x € RN and

|u| < 8. Moreover, (f4) is also satisfied for some suitable 8. Therefore, we have

€
S, wy)w,dx < 8/ [wulP dx < v Wy ll? + o(1),
[wp| <8 [wp| <8
and
X, Wy )W,
/ f(x) Wn)wn dx = M|Wn |p dx
IAES =5 Wal?

1/t (z-1)/7
X, W,) |t T
5(/ V& w,)I" (p”l))| dx) (/ lw,| 1 dx)
walzs [Wnl D7 THED

1/t
5(/ dlﬂ(x,u)dx) Iwal?
|wn|=>8

2V p)

(1
1\ s0-p)
=< (dlM)l/r(E) T wall? + o(1).

Consequently, we have

o01) =, o) wn) = w11 [ b=, [ fswpw,

> Ilwnll”—Z/ S wn)w, dx
RN

%2 1 f((%;; pv(s—p)
> [1 -5 Udr M)V* (E) c ]nwnn" +0o(1).

Thus there exists A > 0 such that w, — 0 in E when A > A. This implies that #,, — u in E.
This completes the proof. d
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Proof of Theorem 1.1 From the last assertion of Lemma 2.2, we know that J = J; has
infinitely many nontrivial critical points. Therefore, (1) possesses infinitely many small
negative-energy solutions. This completes the proof. O
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