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Abstract
To achieve synchronization of uncertain fractional-order chaotic systems with
time-delays, an adaptive fuzzy controller with integer-order parameter adaptive laws,
is established. Unknown nonlinear functions and uncertain external disturbances are
approximated by fuzzy logic systems. Adaptive laws are designed to adjust
corresponding parameters in the controller. The proposed controller guarantees that
the synchronization error of the system converges to a small enough region of the
origin by making use of quadratic Lyapunov functions in the stability analysis, and the
boundedness of all signals in the closed-loop. Finally, simulation studies have been
provided to verify the effectiveness of the proposed methods.
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1 Introduction
Although fractional calculus has a history as long as the integer-order calculus, it has
received much attention only in recent several decades because it has been shown that
the fractional calculus can provide real-world systems some useful properties, such as
hereditary and memory [1–12]. With the supplement and perfection of fractional the-
ory, fractional calculus shows better application value and development prospects than
the integer-order one. Fractional-order calculus provides not only new methods of math-
ematics for actual systems, but also gives a more comprehensive mathematical model.
Fractional-order systems have shown an attractive property of obvious performance im-
provement in the area of image encryption, security communications [13] and biologi-
cal medicine [14]. Therefore, researching the synchronization problem of fractional-order
chaotic systems is very necessary. By using a lot of control approaches, such as active con-
trol, sliding mode control, adaptive fuzzy control, neural network control, H∞ control, a
large quantity of works as regards the synchronization issue of fractional-order chaotic
systems, have been reported in Refs. [15–21]. It should be mentioned that in the above
literature, the time-delays were not considered.

On the other hand, due to the mechanical, physical and economic impact, the delay phe-
nomenon often appears in actual systems [22–28]. The dynamic performance of systems
at the presence of time-delay characteristics, such as motion orbit of systems and fluctua-
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tion of stability, will generate noticeable changes. Consequently, it is very hard to synchro-
nize uncertain fractional-order chaotic systems with time-delays. Up to now, there exist
only a few approaches that consider the synchronization of fractional-order chaotic sys-
tems with time-delays. In Ref. [25], the synchronization of fractional-order systems with
time-delays was solved, but it cannot deal with the synchronization in fractional-order
systems with uncertain parameters. In Ref. [26], a feedback control method was used for
switched time-delay systems with nonlinear disturbances. However, the major disadvan-
tage of the feedback control is that the synchronization of systems with unknown parame-
ters is not considered. In Ref. [29], the synchronization of fractional-order chaotic systems
with time-delays was achieved by designing a sliding mode controller, where the external
disturbances were not considered and one needed to known the exact upper bounds of un-
known terms. Besides, their methods cannot be used to control fractional-order chaotic
systems with both different structures and time-delays. In Ref. [30], the pulse synchro-
nization of fractional-order chaotic systems with time-delays was finished. Nonetheless,
the designed controller is not able to achieve the synchronization of systems with uncer-
tain terms or systems with external disturbances. Thereby, the synchronization problem
for fractional-order chaotic systems with time-delays, uncertain terms and external dis-
turbances still needs to be further investigated.

Nevertheless, real-world systems usually suffer from system uncertainties, such as, sen-
sor errors, unknown external disturbances, system modeling errors, which will decrease
the control performance if they are not well handled [22, 31–36]. As is well known, fuzzy
logic systems can be utilized to control nonlinear systems with unknown structure due
to the fact that it does not need an accurate system model and it can take advantage of
human expert knowledge. The effectiveness of this control method has been indicated in
the integrator-order system control. To handle the fuzzy approximation error, some other
control methods, for example, sliding mode control, H∞ control should be used together
with adaptive fuzzy control. Recently, the adaptive fuzzy control has been extended to con-
trol fractional-order nonlinear systems, for example, in [2, 20, 21, 37–40]. However, to the
best of our knowledge, the adaptive fuzzy control for fractional-order nonlinear systems
with time-delays has rarely been investigated up to now.

Motivated by above discussion, to achieve the synchronization problem of unknown
fractional-order chaotic systems with time-delays, this paper designs a controller that can
be used to eliminate time-delay characteristics, nonlinear terms and external disturbances
in nonlinear systems. Considering systems with unknown parameters and external dis-
turbances, this paper studies the synchronization of unknown fractional-order chaotic
systems with different structures and time-delays based on adaptive fuzzy control [37,
41–43]. Our main contributions are given as follows: (1) a fuzzy system is applied to ap-
proximate plant uncertainty, which contains time-delay state variables, unknown non-
linear terms and uncertain external disturbances. It should be mentioned that proposed
controller works well even the system models are fully unknown; (2) the paper designs
integer-order parameter adaptive laws that achieve adaptive adjustment of the controller
based on Lyapunov stability theorem; (3) this paper strictly justifies the stability of the
system by constructing and making use of quadratic Lyapunov function. Synchronization
between fractional-order Liu system with time-delay and fractional-order Chen system
with time-delay is achieved in a numerical simulation.
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The framework of this paper is as follows. Section 2 introduces some basic knowledge
and many basic conclusions about fractional calculus and problem description. Controller
design methods and unique result in the paper are in Sect. 3 and Sect. 4, separately. Sec-
tion 5 is numerical simulation. Finally, summing up the work and making some predictions
are given in Sect. 6.

2 Preliminaries and problem description
2.1 Fractional calculus
Noting that the initial value of the Caputo fractional-order derivatives has the same form
as that of the integer-order system which has better engineering applications, this paper
will use this definition. The μth fractional-order integral can be defined as:

C
0 D–μ

t f (t) =
1

Γ (μ)

∫ t

0
(t – τ )μ–1f (τ ) dτ , (1)

where the Γ (·) function is

Γ (z) =
∫ ∞

0
tz–1e–t dt. (2)

The μth Caputo derivatives is defined as

C
0 Dμ

t f (t) =
1

Γ (n – μ)

∫ t

0
(t – τ )n–μ–1f (n)(τ ) dτ , (3)

where n is an integer satisfying n – 1 ≤ μ < n. For the sake of brevity, we will use signals
0Dμ

t and 0D–μ
t to, respectively, represent C

0 Dμ
t and C

0 D–μ
t .

The Laplace transform of Caputo fractional derivatives (3) is expressed by [1]

L
(

0Dμ
t f (t)

)
=

∫ ∞

0
e–st

0Dμ
t f (t) dt = sμF(s) –

n–1∑
k=0

sμ–k–1f (k)(0). (4)

Obviously, when 0 < μ < 1, L(0Dμ
t f (t)) = sμF(s) – sμ–1f (0).

For conveniently discussing, we assume μ ∈ (0, 1) in the rest of this paper. The following
conclusions will be used.

Definition 1 ([44]) The Mittag-Leffler function with two parameters can be written as

Eμ,ξ (z) =
∞∑
t=0

zt

Γ (μt + ξ )
, (5)

where μ, ξ > 0, and z ∈ C. Obviously, E1,1(z) = ez .
The Laplace transform of the Mittag-Leffler function is [44]

L
{

tξ–1Eμ,ξ
(
–btμ

)}
=

sμ–ξ

sμ + b
. (6)
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Definition 2 ([45]) The convolution of functions f and g is defined as

f ∗ g =
∫ t

0
f (τ )g(t – τ ) dτ , (7)

where t ∈ [0, +∞).

Lemma 1 ([46]) If v(t) ∈ C1[0, h] (h > 0), then the following equality holds:

0Dμ
t 0D–μ

t v(t) = v(t)
(
t ∈ [0, h]

)
. (8)

Lemma 2 ([46]) If v(t) ∈ C1[0, h] (h > 0), then we have

0Dμ
t 0Dβ

t v(t) = 0Dβ
t 0Dμ

t v(t) = 0Dμ+β
t v(t) = v̇(t)

(
t ∈ [0, h]

)
, (9)

where μ,β ∈R
+ and μ + β = 1.

2.2 Description of fuzzy systems
A fuzzy logic system includes four parts, i.e., the knowledge base, the fuzzifier, the fuzzy
inference engine basing on the fuzzy rules, and the defuzzifier. The jth fuzzy rule is ex-
pressed by R(j): if x1 is Ej

1, x2 is Ej
2, . . . , xn is Ej

n, then f̂ (xxx(t)) is Cj where (j = 1, 2, . . . , N ),
xxx(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R

n and f̂ (xxx(t)) ∈ R are, respectively, the input and the out-
put of fuzzy logic systems. Ej

i and Cj (i = 1, 2, . . . , n) are fuzzy sets belonging to R. The
output of fuzzy logic systems can be expressed by

f̂
(
xxx(t)

)
=

∑N
j=1 θj(t)[

∏n
i=1 μEj

i
(xi(t))]

∑N
j=1[

∏n
i=1 μEj

i
(xi(t))]

, (10)

where θj(t) is a value where fuzzy membership function μCj is maximum. Generally, we

can consider that μCj (θj(t)) = 1, and the fuzzy basic function is ϕj(xxx(t)) =
∏n

i=1 μ
Ej

i
(xi(t))

∑N
j=1[

∏n
i=1 μ

Ej
i
(xi(t))]

.

Let ϕϕϕ(xxx(t)) = [ϕ1(xxx(t)),ϕ2(xxx(t)), . . . ,ϕN (xxx(t))]T , θθθ (t) = [θ1(t), θ2(t), . . . , θN (t)]T , thus, the out-
put of fuzzy logic systems can be written as

f̂
(
xxx(t)

)
= θθθT (t)ϕϕϕ

(
xxx(t)

)
. (11)

Theorem 1 Suppose that h(xxx) is a continuous function defined on a compact set Ω , then,
for any constants ε > 0, there exists a fuzzy logic system approximating function f̂ (xxx) with
the form (11) as

sup
Ω

∣∣h(xxx) – θ̂θθ
T
ϕϕϕ(xxx)

∣∣ ≤ ε, (12)

where θ̂θθ is the estimator of optimal vector θθθ∗.
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2.3 Problem description
Consider the fractional-order drive and response chaotic systems with time-delays defined
by

0Dμ
t xxx(t) = fff

(
xxx(t),xxx(t – τ1)

)
+ �hhh1

(
xxx(t)

)
+ DDD1(t), (13)

0Dμ
t yyy(t) = ggg

(
yyy(t),yyy(t – τ2)

)
+ �hhh2

(
yyy(t)

)
+ DDD2(t) + UUU(t), (14)

where xxx(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ Rn and yyy(t) = [y1(t), y2(t), . . . , yn(t)]T ∈ Rn are, re-
spectively, the state variables of the drive system and response system, xxx(t – τ1) = [x1(t –
τ1), x2(t – τ1), . . . , xn(t – τ1)]T and yyy(t – τ2) = [y1(t – τ2), y2(t – τ2), . . . , yn(t – τ2)]T ∈ Rn are the
state variables with time-delays, fff ,ggg : Rn → Rn are uncertain nonlinear continuous func-
tions, �hhh1(xxx(t)) = [�h11,�h12, . . . ,�h1n]T and �hhh2(yyy(t)) = [�h21,�h22, . . . ,�h2n]T ∈ Rn

are unknown nonlinear terms, DDD1(t) = [d11(t), d12(t), . . . , d1n(t)]T and DDD2(t) = [d21(t), d22(t),
. . . , d2n(t)]T ∈ Rn are unknown external disturbances, and UUU(t) = [u1(t), u2(t), . . . , un(t)]T ∈
Rn is the control input.

3 Controller design methods
The synchronization error is defined as eee(t) = yyy(t)–xxx(t). In this paper, the control objective
is to design an adaptive controller such that the synchronization error will be arbitrarily
small eventually.

The dynamic equation of synchronization error can be expressed by

0Dμ
t eee(t) = 0Dμ

t
(
yyy(t) – xxx(t)

)

= 0Dμ
t yyy(t) – 0Dμ

t xxx(t)

= ggg
(
yyy(t),yyy(t – τ2)

)
– fff

(
xxx(t),xxx(t – τ1)

)
+ �hhh2

(
yyy(t)

)
– �hhh1

(
xxx(t)

)

+ DDD2(t) – DDD1(t) + UUU(t). (15)

Denote FFF(zzz(t)) = ggg(yyy(t),yyy(t –τ2))–fff (xxx(t),xxx(t –τ1))+�hhh2(yyy(t))–�hhh1(xxx(t))+DDD2(t)–DDD1(t) =
[F1, F2, . . . , Fn]T , where zzz(t) is a function about xxx(t) and yyy(t), then Eq. (15) can be written as

0Dμ
t eee(t) = FFF

(
zzz(t)

)
+ UUU(t). (16)

The unknown function FFF(zzz(t)) can be approximated by the fuzzy logic system as

F̂i
(
θi(t),zzz(t)

)
= θi(t)Tϕi

(
zzz(t)

)
, i = 1, 2, . . . , n, (17)

where ϕi(zzz(t)) is a fuzzy basic function, and θi(t) is an adjustable parameter of the fuzzy
logic system. Let an optimal estimated parameter of the fuzzy logic system be θ∗

i (where
θ∗

i = arg supt |Fi(zzz(t)) – F̂i(θi(t),zzz(t))|, and θ∗
i is generally a constant vector). Suppose that

the errors of optimal parameter and the optimal estimated errors are separately

θ̃i(t) = θi(t) – θ∗
i , (18)

εi
(
zzz(t)

)
= Fi

(
zzz(t)

)
– F̂i

(
θ∗

i ,zzz(t)
)
. (19)
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From Refs. [47, 48] and Theorem 1, the estimated error of the fuzzy logic system
is assumed to be bounded, i.e. |εi(zzz(t))| ≤ ε∗

i (ε∗
i > 0 is an uncertain constant). Let

εεε(zzz(t)) = [ε1(zzz(t)), ε2(zzz(t)), . . . , εn(zzz(t))]T , εεε∗ = [ε∗
1 , ε∗

2 , . . . , ε∗
n]T , θθθ∗ = [θ∗

1 , θ∗
2 , . . . , θ∗

n ]T and
θθθ (t) = [θ1(t), θ2(t), . . . , θn(t)]T , the estimated error of the unknown nonlinear function can
be expressed as

FFF
(
zzz(t)

)
– F̂FF

(
θθθ (t),zzz(t)

)
= FFF

(
zzz(t)

)
– F̂FF

(
θθθ∗,zzz(t)

)
+ F̂FF

(
θθθ∗,zzz(t)

)
– F̂FF

(
θθθ (t),zzz(t)

)

= εεε
(
zzz(t)

)
+ F̂FF

(
θθθ∗,zzz(t)

)
– F̂FF

(
θθθ (t),zzz(t)

)

= εεε
(
zzz(t)

)
–

(
θθθ (t) – θθθ∗)T

ϕϕϕ
(
zzz(t)

)

= εεε
(
zzz(t)

)
– θ̃θθ (t)Tϕϕϕ

(
zzz(t)

)
. (20)

From the above discussion, the feedback controller UUU(t) can be designed as

UUU(t) = –θθθ (t)Tϕϕϕ
(
zzz(t)

)
– KKK sign

(
eee(t)

)
– LLL0Dμ–1

t eee(t), (21)

where KKK = diag[ε̂∗
1(t), ε̂∗

2(t), . . . , ε̂∗
n(t)], ε̂∗

i (t) is the estimator of unknown constant ε∗
i , and

LLL = diag[l1(t), l2(t), . . . , ln(t)], li(t) (i = 1, 2, . . . , n) is the estimator of feedback gain l∗i (> 0).
Then

ui(t) = –θi(t)Tϕi
(
zzz(t)

)
– ε̂∗

i (t) sign
(
ei(t)

)
– li(t)

(
0Dμ–1

t ei(t)
)
. (22)

For achieving the synchronized target, we design an integer-order parameter adaptation,
as follows:

θ̇i(t) = λi
(

0Dμ–1
t ei(t)

)
ϕi

(
zzz(t)

)
– λiλ̂iθi(t), (23)

˙̂ε∗
i (t) = ξi

(
0Dμ–1

t
∣∣ei(t)

∣∣) – ξiξ̂iε̂
∗
i (t), (24)

l̇i(t) = νi
(

0Dμ–1
t ei(t)

)2 – νiν̂ili(t). (25)

Here λi, λ̂i, ξi, ξ̂i, νi and ν̂i > 0 (i = 1, 2, . . . , n) are designed parameters.

Remark 1 Comparing with the integer-order parameter adaptation in Ref. [49] that has the
same aim as this study, the integer-order adaptive laws in the paper have been improved,
adding a term (for example, the adaptive law (24) adds a term –ξiξ̂iε̂

∗
i (t)). We can easily

learn from the integer-order adaptive laws in this paper: ¨̂ε∗
i (t) = –ξiξ̂i < 0, and ε̂∗

i (t) has
a maximal value on t ∈ [0, +∞). Then ε̂∗

i (t) is bounded. Similarly, θi(t) and li(t) are both
bounded.

4 Results and discussion
We display some results in advance to facilitate the stability analysis of our control ap-
proach.

Lemma 3 If e(t) ∈ R, then 0Dμ–1
t |e(t)| ≥ 0 and 0Dμ–1

t |e(t)| ≥ 0Dμ–1
t e(t).
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Proof According to the Caputo integro-differential definition, we have

0Dμ–1
t

∣∣e(t)
∣∣ =

1
Γ (1 – μ)

∫ t

0
(t – τ )–μ

∣∣e(τ )
∣∣dτ . (26)

Because of Γ (1 – μ) ≥ 0, τ ∈ [0, t–] and (t – τ )–μ|e(τ )| ≥ 0, 0Dμ–1
t |e(t)| ≥ 0.

Similarly, for

0Dμ–1
t

(∣∣e(t)
∣∣ – e(t)

)
=

1
Γ (1 – μ)

∫ t

0
(t – τ )–μ

(∣∣e(τ )
∣∣ – e(τ )

)
dτ , (27)

obviously, Γ (1 – μ) ≥ 0 and (t – τ )–μ(|e(τ )| – e(τ )) ≥ 0, then 0Dμ–1
t (|e(t)| – e(t)) ≥ 0.

From the linear property [44], we have 0Dμ–1
t (|e(t)| – e(t)) = 0Dμ–1

t |e(t)| – 0Dμ–1
t e(t) ≥ 0.

So 0Dμ–1
t |e(t)| ≥ 0Dμ–1

t e(t). �

Lemma 4 If e(t) ∈ C1[0, h] (h > 0), then the following equality holds:

d
dt

(
0Dμ–1

t e(t)
)

= 0Dμ
t e(t). (28)

Proof Let x(t) = 0Dμ–1
t e(t), from Lemma 1, we can get

0D1–μ
t x(t) = e(t). (29)

From Lemma 2, we know

dx(t)
dt

= ẋ(t) = 0Dμ
t 0D1–μ

t x(t) = 0Dμ
t e(t). (30)

This ends the proof of Lemma 4. �

Lemma 5 Suppose that y(t) = 0Dμ–1
t e(t) is asymptotically stable, i.e. limt→∞ y(t) = 0, then

limt→∞ e(t) = 0.

Proof From Lemma 1, we have e(t) = 0D1–μ
t y(t). Its Laplace transform is

E(s) = s1–μY (s) – s–μy(0), (31)

where Y (s) and E(s) are, respectively, the Laplace transforms of y(t) and e(t). According to
the final value theorem of the Laplace transform of a continuous system, we have

lim
t→∞ e(t) = lim

s→0
sE(s) = lim

s→0
s1–μ

(
sY (s)

)
– lim

s→0
s1–μy(0). (32)

Likewise, by the final value theorem: limt→∞ y(t) = lims→0 sY (s) = 0. So when s → 0, sY (s)
is an infinitesimal quantity. Since s1–μ is also an infinitesimal quantity when s → 0, we have
lims→0 s1–μ(sY (s)) = 0 and lims→0 s1–μy(0) = 0. Therefore limt→∞ e(t) = lims→0 sE(s) = 0. �

Lemma 6 Suppose that y(t) = 0Dμ–1
t e(t) is stable, then e(t) is stable.
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Proof y(t) is stable, i.e. for any ε (> 0), there exists T0 such that

–ε ≤ 0Dμ–1
t e(t) ≤ ε, (33)

for any t ≥ T0. Now, we use the right inequality of Eq. (33), whose left inequality can be
used in the same way. Suppose that 0 ≤ 0Dμ–1

t e(t) ≤ ε, there exists a nonnegative function
m(t) such that

0Dμ–1
t e(t) + m(t) = ε. (34)

Taking the μth integral of Eq. (34), we get
∫ t

0 e(τ ) dτ = εtμ
μΓ (μ) – 0D–μ

t m(t). Owing to m(t)
being nonnegative, we have

∫ t

0
e(τ ) dτ ≤ εtμ

μΓ (μ)
. (35)

Setting the 1th derivative into inequality (35), we obtain

e(t) ≤ εtμ–1

μΓ (μ)
. (36)

In the same way as above, by the left inequality of Eq. (33), we obtain – εtμ–1

μΓ (μ) ≤ e(t), then
we have

∣∣e(t)
∣∣ ≤ εtμ–1

μΓ (μ)
. (37)

So, we see that e(t) is stable. �

Now, the main results of this paper can be concluded as the following theorem.

Theorem 2 The synchronization error between the drive system (13) and the response sys-
tem (14) can converge to a small enough region of the origin by the action of adaptive fuzzy
controller (21) together with integer-order adaptive laws (23), (24) and (25), and all the
signals of the closed-loop system are bounded.

Proof Substituting controller (21) into the dynamic equation of error (16), we have

0Dμ
t eee(t) = FFF

(
zzz(t)

)
– θθθ (t)Tϕϕϕ

(
zzz(t)

)
– KKK sign

(
eee(t)

)
– LLL0Dμ–1

t eee(t). (38)

It is simplified to

0Dμ
t eee(t) = –θ̃θθ (t)Tϕϕϕ

(
zzz(t)

)
+ εεε

(
zzz(t)

)
– KKK sign

(
eee(t)

)
– LLL0Dμ–1

t eee(t), (39)

where

0Dμ
t ei(t) = –θ̃i(t)Tϕi

(
zzz(t)

)
+ εi

(
zzz(t)

)
– ε̂∗

i (t) sign
(
ei(t)

)
– li(t)0Dμ–1

t ei(t). (40)
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Let ε̃∗
i (t) = ε̂∗

i (t) – ε∗
i , i = 1, 2, . . . , n. Consider the Lyapunov function as follows:

V (t) =
1
2

n∑
i=1

(
0Dμ–1

t ei(t)
)2 +

1
2

n∑
i=1

1
λi

θ̃i(t)T θ̃i(t)

+
1
2

n∑
i=1

1
ξi

(
ε̃∗

i (t)
)2 +

1
2

n∑
i=1

1
νi

(
li(t) – l∗i

)2. (41)

On the basis of Lemma 3 and Lemma 4, the derivative of Eq. (41) is

V̇ (t) =
n∑

i=1

(
0Dμ–1

t ei(t)
)

0Dμ
t ei(t) +

n∑
i=1

1
λi

θ̃i(t)T ˙̃
θi(t) +

n∑
i=1

1
ξi

ε̃∗
i (t) ˙̃ε∗

i (t)

+
n∑

i=1

1
νi

(
li(t) – l∗i

)
l̇i(t)

= –
n∑

i=1

(
0Dμ–1

t ei(t)
)
θ̃i(t)Tϕi

(
zzz(t)

)
+

n∑
i=1

(
0Dμ–1

t ei(t)
)
εi

(
zzz(t)

)

–
n∑

i=1

(
0Dμ–1

t ei(t)
)
ε̂∗

i (t) sign
(
ei(t)

)
–

n∑
i=1

li(t)
(

0Dα–1
t ei(t)

)2 +
n∑

i=1

1
λi

θ̃i(t)T ˙̃
θi(t)

+
n∑

i=1

1
ξi

ε̃∗
i (t) ˙̃ε∗

i (t) +
n∑

i=1

1
νi

(
li(t) – l∗i

)
l̇i(t)

≤ –
n∑

i=1

(
0Dμ–1

t ei(t)
)
θ̃i(t)Tϕi

(
zzz(t)

)
–

n∑
i=1

(
0Dμ–1

t
∣∣ei(t)

∣∣)ε̃∗
i (t) –

n∑
i=1

1
ξi

ε̃∗
i (t) ˙̃ε∗

i (t)

+
n∑

i=1

1
λi

θ̃i(t)T ˙̃
θi(t) +

n∑
i=1

li(t)
(

0Dμ–1
t ei(t)

)2 +
n∑

i=1

1
νi

(
li(t) – l∗i

)
l̇i(t)

=
n∑

i=1

1
λi

θ̃i(t)T[ ˙̃
θi(t) – λi

(
0Dμ–1

t ei(t)
)
ϕi

(
zzz(t)

)]

+
n∑

i=1

1
ξi

ε̃∗
i (t)

[ ˙̃ε∗
i (t) – ξi

(
0Dμ–1

t
∣∣ei(t)

∣∣)]

+
n∑

i=1

1
νi

(
li(t) – l∗i

)[
l̇i(t) – νi

(
0Dμ–1

t ei(t)
)2] –

n∑
i=1

l∗i
(

0Dμ–1
t ei(t)

)2. (42)

Substituting Eqs. (23)–(25) into Eq. (42), we get

V̇ (t) ≤ –
n∑

i=1

λ̂iθ̃i(t)Tθi(t) –
n∑

i=1

ξ̂iε̃
∗
i (t)ε̂∗

i (t) –
n∑

i=1

ν̂i
(
li(t) – l∗i

)
li(t)

–
n∑

i=1

l∗i
(

0Dμ–1
t ei(t)

)2

≤ –
n∑

i=1

lmin
(

0Dμ–1
t ei(t)

)2 –
n∑

i=1

λ̂iθ̃i(t)Tθi(t) –
n∑

i=1

ξ̂iε̃
∗
i (t)ε̂∗

i (t)
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–
n∑

i=1

ν̂i
(
li(t) – l∗i

)
li(t)

= –
n∑

i=1

lmin
(

0Dμ–1
t ei(t)

)2 –
n∑

i=1

λ̂iθ̃i(t)T θ̃i(t) –
n∑

i=1

ξ̂i
(
ε̃∗

i (t)
)2

–
n∑

i=1

ν̂i
(
li(t) – l∗i

)2 –
n∑

i=1

λ̂iθ̃i(t)Tθ∗
i –

n∑
i=1

ξ̂iε̃
∗
i (t)ε∗

i –
n∑

i=1

ν̂il∗i
(
li(t) – l∗i

)

≤ –
n∑

i=1

lmin
(

0Dμ–1
t ei(t)

)2 –
n∑

i=1

λ̂iθ̃i(t)T θ̃i(t) –
n∑

i=1

ξ̂i
(
ε̃∗

i (t)
)2

–
n∑

i=1

ν̂i
(
li(t) – l∗i

)2 +
n∑

i=1

λ̂i

2
(
θ∗

i
)T

θ∗
i +

n∑
i=1

ξ̂i

2
(
ε∗

i
)2 +

n∑
i=1

ν̂i

2
(
l∗i

)2

≤ –a1V (t) + a2, (43)

where a1 = min{2lmin, 2λiλ̂i, 2ξiξ̂i, 2νiν̂i} and a2 =
∑n

i=1
λ̂i
2 (θ∗

i )Tθ∗
i +

∑n
i=1

ξ̂i
2 (ε∗

i )2 +∑n
i=1

ν̂i
2 (l∗i )2 are two positive constants.

It is known from Eq. (43) that there exists a nonnegative function g(t) such that

V̇ (t) + g(t) = –a1V (t) + a2. (44)

Taking the Laplace transform of Eq. (44), we obtain

W (s) =
V (0)
s + a1

+
s–1a2

s + a1
–

G(s)
s + a1

, (45)

where W (s) and G(s) are the Laplace transforms of V (t) and g(t). According to Eq. (6), the
solution of Eq. (45) is

V (t) =
V (0)
ea1t +

a2

a1

(
1 –

1
ea1t

)
– g(t) ∗ e–a1t . (46)

It is clear that g(t) and e–a1t are nonnegative functions such that g(t) ∗ e–a1t ≥ 0. Thereby,
we get

V (t) ≤ V (0)
ea1t +

a2

a1

(
1 –

1
ea1t

)
. (47)

Thus, we know that there exists T0 such that

V (0)
ea1t +

a2

a1

(
1 –

1
ea1t

)
≤ ε

2
+

a2

a1
, (48)

for any t ≥ T0. If it makes the controller design parameter obey a2
a1

≤ ε
2 , then we can get

V (t) ≤ ε. (49)

From Eqs. (49) and (41), we have (0Dμ–1
t ei(t))2 ≤ 2ε for all t ≥ T0. Then 0Dμ–1

t ei(t) is
stable. According to Lemma 6, we see that ei(t) is stable. Therefore, we see that eee(t) is also
stable.
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In addition, we see that V̇ (t) ≤ 0 and V (t) is monotone decreasing, i.e. 0 ≤ V (t) ≤ V (0).
V (t) is bounded. By Eq. (41), we know 1

2
∑n

i=1 θ̃i(t)T θ̃i(t) ≤ V (t) ≤ V (0), i.e. θ̃i(t) is bounded.
Simultaneously, ε̃i(t) is also bounded. By Eq. (40), we have

∥∥0Dμ
t ei(t)

∥∥ ≤ ∥∥θ̃i(t)T∥∥ · ∥∥ϕi
(
zzz(t)

)∥∥ +
∣∣ε̃∗

i (t)
∣∣ +

∣∣li(t)
∣∣ · ∣∣0Dμ–1

t ei(t)
∣∣. (50)

So 0Dμ
t ei(t) is bounded. Since system (13) is a chaotic system, xxx(t) is bounded. In ad-

dition, eee(t) is also bounded and yyy(t) is bounded. From the structure of the controller
(21), we realize that UUU(t) is also bounded. Therefore, all the signs of the closed-loop are
bounded. �

Remark 2 In order to guarantee the synchronization error to converge to a small enough
region of the origin, from the proof process of Theorem 2, we should make a2/a1 as small as
possible via designing appropriate parameters of the fuzzy system, such as, we can choose
larger λi, ξi and νi and smaller λ̂i, ξ̂i and ν̂i.

Remark 3 Noting that besides the form of controller (22) being different from controller’s
in Ref. [49], it adds a feedback gain variable li(t) that is automatically adjustable with the
change of 0Dμ–1

t ei(t). And it strengthens the connection between UUU(t) and eee(t) and makes
the flexibility of UUU(t) be more obvious.

Remark 4 According to Eq. (41) and inequalities (49), we see that ‖θ̃θθ (t)‖2 ≤ 2V (t) ≤ 2ε.
Then we see that θ̃i(t) can be arbitrarily small eventually. In the same way, ε̃∗

i (t) is also
arbitrarily small eventually. Besides, considering that 0Dμ–1

t ei(t) is stable and inequal-
ity (50), we can draw the extra conclusion that 0Dμ

t ei(t) is also arbitrarily small even-
tually. Therefore, we see that θ̃i(t), ε̃∗

i (t) and 0Dμ
t ei(t) are all arbitrarily small eventu-

ally.

5 Numerical simulation
In this part, the effectiveness of the controller, which addresses the synchronization be-
tween an uncertain fractional-order Liu chaotic system with time-delay and an unknown
fractional-order Chen chaotic system with time-delay, is tested by way of applying an im-
proved prediction–correction [50].

The fractional-order Liu chaotic system with time-delay [51] is as follows:

0Dα
t xxx(t) = fff

(
xxx(t),xxx(t – τ1)

)
=

⎛
⎜⎝

10(x2(t) – x1(t – τ1))
40x1(t – τ1) – x1(t)x3(t)
–2.5x3(t – τ1) + 4x2

1(t)

⎞
⎟⎠ . (51)

By Ref. [51], when α = 0.97, τ1 = 0.005 and initial value is xxx(0) = [2.2, 2.4, 3.8]T , system (51)
shows chaotic phenomena. It is shown in Fig. 1.

The fractional-order Chen chaotic system with time-delay [52] is expressed as:

0Dα
t yyy(t) = ggg

(
yyy(t),yyy(t – τ2)

)
=

⎛
⎜⎝

35(y2(t) – y1(t – τ2))
–8y1(t – τ2) – y1(t)y3(t) + 27y2(t)

–3y3(t – τ2) + y1(t)y2(t)

⎞
⎟⎠ . (52)
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Figure 1 Fractional-order Liu system

Via Ref. [52], when α = 0.97, τ2 = 0.009 and initial condition is yyy(0) = [0.2, 0, 0.5]T , system
(52) is in the chaotic state. It is displayed as Fig. 2.

The drive system, a fractional-order Liu system with time-delay, is

0Dα
t xxx(t) = fff

(
xxx(t),xxx(t – τ1)

)
+ �hhh1

(
xxx(t)

)
+ DDD1(t)

=

⎛
⎜⎝

10(x2(t) – x1(t – τ1))
40x1(t – τ1) – x1(t)x3(t)
–2.5x3(t – τ1) + 4x2

1(t)

⎞
⎟⎠

+

⎛
⎜⎝

0.03 sin(π t)x2

0.03 sin(π t)x1x3

0.03 sin(π t)x2
2

⎞
⎟⎠ +

⎛
⎜⎝

0.1 sin(t) rand(t)
0.1 sin(t) rand(t)
0.1 sin(t) rand(t)

⎞
⎟⎠ . (53)

The response system, a fractional-order Chen system with time-delay, is

0Dα
t yyy(t) = ggg

(
yyy(t),yyy(t – τ2)

)
+ �hhh2

(
yyy(t)

)
+ DDD2(t) + UUU(t)

=

⎛
⎜⎝

35(y2(t) – y1(t – τ2))
–8y1(t – τ2) – y1(t)y3(t) + 27y2(t)

–3y3(t – τ2) + y1(t)y2(t)

⎞
⎟⎠ +

⎛
⎜⎝

0.02 sin(2π t)y2

0.02 sin(2π t)y1y3

0.02 sin(2π t)y1y2

⎞
⎟⎠

+

⎛
⎜⎝

0.3 sin(2t) rand(t)
0.3 sin(2t) rand(t)
0.3 sin(2t) rand(t)

⎞
⎟⎠ +

⎛
⎜⎝

u1(t)
u2(t)
u3(t)

⎞
⎟⎠ . (54)

In the simulation, the input variables of the fuzzy system are xxx(t), yyy(t) and UUU(t). For
reducing the calculation of the fuzzy logic system, we will let xxx(t), yyy(t) be replaced by
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Figure 2 Fractional-order Chen system

eee(t). For e1(t), e2(t) and e3(t), we select five Gaussian membership functions, whose
mathematical expectations are, respectively, –5, –2.5, 0, 2.5 and 5 and the parameters
are ([1.2], [–5, –2.5, 0, 2.5, 5]), uniformly distributed on the interval [–5, 5] for each ei(t).
Thereby, the number of the rules of fuzzy logic system approximating function is 53 = 125.
For the sake of better testing the effectiveness of the controller, we will define adjustable
parameters, which are expressed by θ1(0), θ2(0) and θ3(0), as random vectors in 125 di-
mensions.

Other parameters of the controller are defined as λi = 30000, ξi = 6, νi = 10, λ̂i = 0.3, ξ̂i =
0.03 and ν̂i = 0.05, and the estimated values of fuzzy logic system approximating error are
ε̂∗

1(0) = ε̂∗
2(0) = ε̂∗

3(0) = 0.01. The estimators of the feedback gain are l1(0) = l2(0) = l3(0) = 5
and the time interval is h = 0.005. The simulation results are as in Fig. 4 and Fig. 3.

From the simulation results, we know that the synchronization errors in Fig. 3 are
smaller and smaller after a short time and eventually converge to a small enough region.
Moreover, we know the speed of error convergence is very fast, and it explains that the de-
signed fuzzy logic system in this paper has good approximation performance. The changed
situation displayed by Fig. 4, is that the tracking of state variables is basically consistent.
The outcome of the simulation results conforms our expectation.

6 Conclusions
It can be seen that the designed adaptive feedback controller has strong anti-interference
ability on the condition of not requiring an exact model and including time-delay state
variables, unknown nonlinear terms and uncertain external disturbances. The stability of
fractional-order chaotic systems with time-delays is successfully demonstrated via using
integer-order derivatives of a quadratic Lyapunov function. We research fractional-order
chaotic systems with different structures and time-delays with the help of the method of
control and synchronization in an integer-order chaotic system. In the paper, the proposed
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Figure 3 The synchronization error. e1(t) (Dotted line), e2(t) (chain line) and e3(t) (solid line)

Figure 4 State variables and parameters of the fuzzy logic system. (a) x1(t) (Solid line) and y1(t) (dotted line),
(b) x2(t) (solid line) and y2(t) (dotted line), (c) x3(t) (solid line) and y3(t) (dotted line) and (d) ‖θ1(t)‖ (dotted
line), ‖θ2(t)‖ (chain line) and ‖θ3(t)‖ (solid line)

method that considers the combination of integer-order and fractional-order derivatives
solves the synchronization of fractional-order systems with time-delays. As a result, we
can also consider that utilizing the proposed method solves the synchronization between
integer-order and fractional-order systems with time-delays. Besides, it is still worth to



Qin et al. Advances in Difference Equations        (2019) 2019:174 Page 15 of 16

researching whether we can consider the synchronization of uncertain fractional-order
chaotic systems with different structures and time-delays by making use of fractional-
order parameter adaptive laws in the proposed method or by utilizing composite learning
control [53].
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