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Abstract
This paper studies the global existence of solutions in Sobolev space for anisotropic
fourth-order Schrödinger type equation: iut +�u + a

∑d
i=1 uxixixixi + b|u|αu = 0, x ∈ Rn,

t ∈ R, 1≤ d < n under the initial conditions: u(x, 0) = ϕ(x), x ∈ Rn. By using the Banach
fixed point theorem, we obtain the existence, the uniqueness, the continuous
dependence and the decay estimate of the solution on the initial value in anisotropic
Sobolev spaces Hs1,ρ

�y Hs2,r
�z .
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1 Introduction
In this paper we consider the initial value problem of the following anisotropic fourth-
order nonlinear Schrödinger equation:

⎧
⎨

⎩

iut + �u + a
∑d

i=1 uxixixixi + b|u|αu = 0, x ∈ Rn, t ∈ R, 1 ≤ d < n,

u(x, 0) = ϕ(x), x ∈ Rn,
(1.1)

where a < 0, α > 0, b are real numbers. u(x, t) is unknown complex function, ϕ(x) is the
given initial value data. The above equations can be used to describe some physical phe-
nomena. For example, [1] used (1.1) to describe the propagation of solitary waves in optical
fiber arrays. [2] used (1.1) to describe the propagation of ultrashort laser pulses in a plane
waveguide medium. The physical background of the equation is also given in [3–5].

For the isotropic fourth-order Schrödinger equation (d = n), there are many results. For
the Cauchy problem, in [6], they obtained the local well-posedness in C([0, T), Hγ (Rn))
for some γ , also see [7–11] and the references cited therein. And they also obtained the
global well-posedness in C(R, H2(Rn)). For the initial-boundary problem, in [12], Ozsari
obtained the local well-posedness in C([0, T), Hs(0, +∞)) and the global well-posedness
in C(R, H2(0, +∞)); In [13], for the low regularity s < 1

2 , they obtained the local well-
posedness in C([0, T), Hs(0, +∞)).

For the anisotropic fourth-order Schrödinger equation (d < n), there are some conclu-
sions about the mathematical study of such equations. We have obtained the existence of
the local solution of the problem in isotropic Sobolev space C([–T , T], Hs(Rn)) in [14]. The
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existence of global or almost global solutions for small initial value in isotropic Sobolev
space Ḣs

p(Rn) has been studied in [15]. The local existence of the solution in time and
space Lq(I, Lr(Rn)) and Lq(I, H1

a(Rn)) (H1
a(Rn) = {u ∈ L2(Rn), ux1 , ux2 , ux1x1 ∈ L2(Rn)}) is ob-

tained by Banach fixed point theorem for the case d = 1, furthermore, the global exis-
tence of the solution is obtained by conservation law in [16]. Some local existence re-
sults is obtained in isotropic Sobolev space C(I, Hs(R2)) on initial value problem of the
anisotropic nonlinear sixth order Schrödinger equation in [17]. The asymptotic behavior
in time of the solution has been obtained and it scatters to a solution of the linearized
equation as t → ∞ in [18]. It can be seen from the form of equation (1.1) that higher
derivatives are not derived in every direction, so it is natural to think of such problems
in anisotropic Sobolev spaces. In [19], the existence of local solutions of problem (1.1)
in anisotropic Sobolev space Hs1

�y (Rd)Hs2
�z (Rn–d) is given, but the global well-posedness is

not discussed. In [20], we also obtain the global existence in anisotropic Sobolev space
C(R, W 3,d

2 (Rn)) for the sixth order nonlinear Schrödinger equation by energy method,
where W 3,d

2 (Rn) = {u|u, uxj ∈ L2(Rn), j = 1, . . . , n, uxixi , uxixixi ∈ L2(Rn), i = 1, . . . , d (< n)}. But
W 3,d

2 (Rn) is only an integer order Soblev space, we will study the global solution of (1.1) in
anisotropic fractional order Sobolev space.

In this paper, we will give the existence, the uniqueness, the continuous dependence on
the initial value and the decay estimate of the global solution for the small initial value
problem (1.1) in anisotropic Sobolev spaces Hs1,ρ

�y Hs2,r
�z .

Before stating our main results, we will introduce some notations.
We take �y = (x1, x2, . . . , xd), �z = (xd+1, xd+2, . . . , xn), thus x = (�y,�z). We denote I1(s1) = [0, d

2 ),
I2(s1) = { d

2 }, I3(s1) = ( d
2 , [α]]; I1(s2) = [0, n–d

2 ), I2(s2) = { n–d
2 }, I3(s2) = ( n–d

2 , [α]], where [α]
represents the maximum integer which does not exceed α. The Riesz potential Iμϕ =
F–1(|ξ |μϕ̃(ξ )), ∼ is a Fourier transformation, and F–1 is the Fourier inverse transfor-
mation. We denote ∇s1

�y ϕ =
∫

Rd ei(x1ξ1+x2ξ2+···+xdξd)|ξ 2
1 + ξ 2

2 + · · · + ξ 2
d | s1

2 ϕ̂(ξ1, ξ2, . . . , ξd, xd+1,
. . . , xn) dξ1 dξ2 · · · dξd , ∇s2

�z ϕ =
∫

Rn–d ei(xd+1ξd+1+xd+2ξd+2+···+xnξn)|ξ 2
d+1 + ξ 2

d+2 + · · · + ξ 2
n | s2

2 ϕ̂(x1,
x2, . . . , xd, ξd+1, . . . , ξn) dξd+1 dξd+2 · · · dξn, where s1 ≥ 0, s2 ≥ 0. The operator S(t)g =
F–1(e–i[|ξ |2–a(|ξ1|4+|ξ2|4+···+|ξd |4)]t g̃).

Lr(Rn) is Banach space with the norm ‖f ‖Lr (Rn) = (
∫

Rn |f (x)|r dx) 1
r . Hs,r(Rn) is Ba-

nach space with the norm ‖f ‖Hs,r (Rn) = ‖f ‖Lr (Rn) + ‖Isf ‖Lr (Rn). For simplicity, we define
Lr′

�z ≡ Lr′
�z (Rn–d), Lr

�yLq
�z ≡ Lr

�y(Rd)Lq
�z (Rn–d) = {g(�y,�z)|‖‖g(�y, ·)‖Lq

�z(Rn–d )
‖Lr

�y(Rd )
< +∞}, Hs1,ρ

�y Hs2,γ
�z ≡

Hs1,ρ
�y (Rd)Hs2,γ

�z (Rn–d) = {g(�y,�z)|‖‖g(�y, ·)‖Hs2,γ
�z(Rn–d )

‖Hs1,ρ
�y(Rd )

< +∞}. Especially, Hs1
�y Hs2

�z ≡
Hs1,2

�y (Rd)Hs2,2
�z (Rn–d).

Condition 1.1 For the case 2n – d > 4, we have the following six subcases:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s1 ∈ I1(s1), s2 ∈ I1(s2), α ∈ ( –(2n–d–4s2–2s1–4)+
√

(2n–d–4s2–2s1–4)2+32(2n–d–4s2–2s1)
2(2n–d–4s2–2s1) ,

8
2n–d–4s2–2s1–4 ),

s1 ∈ I1(s1), s2 ∈ I2(s2), α ∈ ( –(2n–d–2s1–4)+
√

(2n–d–2s1–4)2+32(2n–d–2s1)
2(2n–d–2s1) , 8

2n–d–2s1–4 ),

s1 ∈ I1(s1), s2 ∈ I3(s2), α ∈ ( –(d–2s1–4)+
√

(d–2s1–4)2+32(d–2s1)
2(d–2s1) , 8

d–2s1–4 ),

s1 ∈ I2(s1), s2 ∈ I1(s2), α ∈ ( –(2n–d–4s2–4)+
√

(2n–d–4s2–4)2+32(2n–d–4s2)
2(2n–d–4s2) , 8

2n–d–4s2–4 ),

s1 ∈ I2(s1), s2 ∈ I2(s2), α ∈ ( –(2n–d–4)+
√

(2n–d–4)2+32(2n–d)
2(2n–d) , 8

2n–d–4 ),

s1 ∈ I2(s1), s2 ∈ I3(s2), α ∈ ( –(d–4)+
√

(d–4)2+32d
2d , 8

d–4 ).
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Condition 1.2 For the case n – d > 2, we need the following condition:

⎧
⎨

⎩

s1 ∈ I3(s1), s2 ∈ I2(s2), α ∈ ( –(n–d–2)+
√

(n–d–2)2+16(n–d)
2(n–d) , 4

n–d–2 ),

s1 ∈ I3(s1), s2 ∈ I3(s2), α ∈ ( –(n–d–2s2–2)+
√

(n–d–2s2–2)2+16(n–d–2s2)
2(n–d–2s2) , 4

n–d–2s2–2 ).

The main results are as follows.

Theorem 1.1 For the small initial value ϕ(x) satisfying the condition ‖[S(t)ϕ](x)‖X ≤ ε, the
initial value problem has a unique global solution in the some subspaces of the space X =
{u : (0, +∞) → Hs1,ρ

�y Hs2,r
�z |‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

< +∞} ([s1] < α, [s2] < α) under
Condition 1.1 or Condition 1.2, where ρ , r, θ will be determined in the proof of Theorem 1.1
later.

The continuous dependence of the solution on the initial value and the decay estimate
of the solution are as follows.

Theorem 1.2 Let ϕ(x) and ψ(x) satisfy the condition: ‖[S(t)ϕ](x)‖X ≤ ε and
‖[S(t)ψ](x)‖X ≤ ε, u and v are the two solutions of problem (1.1) corresponding to initial
value ϕ(x) and ψ(x), respectively, then

‖u – v‖X ≤ c
∥
∥S(t)(ϕ – ψ)

∥
∥

X .

In addition, if

sup
t>0

tθ (1 + t)η
∥
∥S(t)(ϕ – ψ)

∥
∥

X < +∞, θ (α + 1) + η < 1,

then

‖u – v‖X ≤ ct–θ (1 + t)–η.

The structure of this paper is as follows: In Sect. 2, we give an introduction to some
symbols and estimates of solutions of linear equations; In Sect. 3, we give the estimates of
nonlinear terms; In Sect. 4, we give the proofs of Theorem 1.1 and Theorem 1.2.

2 Preliminary lemmas
For the free equation

⎧
⎨

⎩

iut + �u + a
∑d

i=1 uxixixixi = 0, x ∈ Rn, t ∈ R, 1 ≤ d < n,

u(x, 0) = ϕ(x), x ∈ Rn,
(2.1)

by making the Fourier transformation, we obtain

⎧
⎨

⎩

iût – |ξ |2û + a(|ξ1|4 + |ξ2|4 + · · · + |ξd|4)û = 0,

û(ξ , 0) = ϕ̂(ξ ).



Su and Guo Advances in Difference Equations        (2019) 2019:173 Page 4 of 17

Hence,

dû
û

= –i
[|ξ |2 – a

(|ξ1|4 + |ξ2|4 + · · · + |ξd|4
)]

dt.

By substituting the initial value, we obtain

û(ξ , t) = ϕ̂(ξ )e–i[|ξ |2–a(|ξ1|4+|ξ2|4+···+|ξd |4)]t .

So the solution of the free equation is

u(x, t) = I(x, t) ∗ ϕ(x) = S(t)ϕ,

with

I(x, t) =
1

(2π )n

∫

Rn
eix·ξ–i[|ξ |2–a(|ξ1|4+|ξ2|4+···+|ξd |4)]t dξ

=
1

(2π )n

d∏

j=1

∫

R
eixjξj–i(|ξj|2–a|ξj|4)t dξj

n∏

j=d+1

∫

R
eixjξj–i|ξj|2t dξj.

The free equation enjoys the following time decay estimates.

Lemma 2.1 Assume that a < 0, s1 ≥ 0, s2 ≥ 0, 2 ≤ ρ < ∞, 2 ≤ r < ∞, then, for any |t| �= 0,
we have

∥
∥S(t)ϕ

∥
∥

Hs1,ρ
�y Hs2,r

�z
≤ c|t|– n–d

2 (1– 2
r )|t|– d

4 (1– 2
ρ )‖ϕ‖

Hs1,ρ′
�y Hs2,r′

�z
, (2.2)

for ϕ(x) ∈ Hs1,ρ
′

�y Hs2,r
′

�z , where r′ indicates the conjugate number of r, i.e. 1
r + 1

r′ = 1.

Proof See Lemma 2.1 of [14] and Theorem 1.1 of [21], and the proof is similar to the proof
of Lemma 2.2 of [19], so we omit its details. �

Lemma 2.2 Assume that f ∈ CN (C) and 0 < μ ≤ N , where N is a positive integer. Assume
next that 1 < p < ∞, f (k)(u) =

∑k
l=0

∂k f
∂uk–l∂ūl (u). Then the following assertion hold:

(1) If 0 < μ < 1 then

∥
∥Iμf (u)

∥
∥

p ≤ c
∥
∥f (1)(u)

∥
∥

q

∥
∥Iμu

∥
∥

r ,

where q, r ∈ (1,∞), 1
p = 1

q + 1
r .

(2) If μ = m, and m is a positive integer, then

∥
∥Imf (u)

∥
∥

p ≤ c
m∑

k=1

∥
∥f (k)(u)

∥
∥

qk

∥
∥Imu

∥
∥

rk
‖u‖k–1

sk
,

where qk , rk ∈ (1,∞), sk ∈ (k – 1,∞] and

1
p

=
1
qk

+
1
rk

+
k – 1

sk

for k = 1, 2, . . . , m.
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(3) If μ = m + ν , where m is a positive integer and 0 < ν < 1, then

∥
∥Iμf (u)

∥
∥

p ≤ c
m+1∑

k=1

∥
∥f (k)(u)

∥
∥

qk

∥
∥Iμu

∥
∥

rk
‖u‖k–1

sk
,

where qk , rk ∈ (1,∞), sk ∈ (k – 1,∞] and

1
p

=
1
qk

+
1
rk

+
k – 1

sk
,

for k = 1, 2, . . . , m + 1.

Proof See Lemma 3.2 of [22] and Theorem 3.1 of [23]. �

3 Estimation of nonlinear terms
According to the different values of s1, s2, the estimation of nonlinear terms can be divided
into the following situations.

Lemma 3.1 Take the case s1 = 0, s2 = 0. Taking 2 ≤ r = α + 2 < ∞, 2 ≤ ρ = α + 2 < ∞, we
have

∥
∥|u|αu

∥
∥

Lρ′
�y Lr′

�z
= ‖u‖α+1

Lρ

�y Lr
�z
, (3.1)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z
≤ c

(‖u‖α

Lρ

�y Lr
�z

+ ‖v‖α

Lρ

�y Lr
�z

)‖u – v‖Lρ

�y Lr
�z
. (3.2)

Proof Firstly, since (α + 1)ρ ′ = ρ , (α + 1)r′ = r we have

∥
∥|u|αu

∥
∥

Lρ′
�y Lr′

�z
= ‖u‖α+1

L(α+1)ρ′
�y L(α+1)r′

�z
= ‖u‖α+1

Lρ

�y Lr
�z
,

which completes the proof of the first inequality.
Secondly, since ||u|αu – |v|αv| ≤ c(|u|α + |v|α)|u – v|, by using the Hölder inequality we

have

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z

≤ c
∥
∥|u|α + |v|α∥

∥
Lρ1
�y Lr1

�z
‖u – v‖Lρ

�y Lr
�z

≤ c
(‖u‖α

Lρ1α

�y Lr1α

�z
+ ‖v‖α

Lρ1α

�y Lr1α

�z

)‖u – v‖Lρ

�y Lr
�z

≤ c
(‖u‖α

Lρ

�y Lr
�z

+ ‖v‖α

Lρ

�y Lr
�z

)‖u – v‖Lρ

�y Lr
�z
,

where 1/ρ ′ = 1/ρ1 + 1/ρ , 1/r′ = 1/r1 + 1/r, ρ1α = ρ , r1α = r. �

For the cases s1 �= 0, s2 �= 0 ([s1] < α, [s2] < α), using the fractional Sobolev embedding
([24]), we can obtain the following lemmas.
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Lemma 3.2 Take the case 0 < s1 < d
2 , s2 > n–d

2 . Taking ρ = d(α+2)
d+s1α

, r = 2, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.3)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z
≤ c

(‖u‖α

Hs1,ρ
�y Hs2,r

�z
+ ‖v‖α

Hs1,ρ
�y Hs2,r

�z

)‖u – v‖Lρ

�y Lr
�z
. (3.4)

Proof Using the Sobolev embedding Hs2,r
�z (Rn–d) ↪→ L∞

�z (Rn–d) we have

‖u‖L∞
�z (Rn–d) ≤ c‖u‖Hs2,r

�z (Rn–d).

By the Hölder inequality we obtain

∥
∥|u|α+1∥∥

Hs2,r′
�z

≤ ∥
∥|u|α+1∥∥

Lr′
�z

+
∥
∥∇s2

�z
(|u|α+1)∥∥

Lr′
�z

≤ c‖u‖α
L∞
�z

‖u‖Lr
�z + c‖u‖α

L∞
�z

∥
∥∇s2

�z u
∥
∥

Lr
�z

≤ c‖u‖α
L∞
�z

‖u‖Hs2,r
�z

≤ c‖u‖α+1
Hs2,r

�z
,

where 1
r′ = 1

∞ + 1
r since r = 2.

Therefore we obtain

∥
∥|u|α+1∥∥

Hs1,ρ′
�y Hs2,r′

�z
=

∥
∥
∥
∥|u|α+1∥∥

Hs2,r′
�z

∥
∥

Hs1,ρ′
�y

≤ c
∥
∥‖u‖α+1

Hs2,r
�z

∥
∥

Hs1,ρ′
�y

= c
∥
∥f

(‖u‖Hs2,r
�z

)∥
∥

Hs1,ρ′
�y

≤ c
∥
∥f

(‖u‖Hs2,r
�z

)∥
∥

Lρ′
�y

+ c
∥
∥∇s1

�y f
(‖u‖Hs2,r

�z

)∥
∥

Lρ′
�y

≤ c
∥
∥‖u‖α

Hs2,r
�z

∥
∥

L
q
α
�y

∥
∥‖u‖Hs2,r

�z

∥
∥

Lρ

�y
+ c

∥
∥‖u‖α

Hs2,r
�z

∥
∥

L
q
α
�y

∥
∥∇s1

�y
(‖u‖Hs2,r

�z

)∥
∥

Lρ

�y

≤ c
∥
∥‖u‖Hs2,r

�z

∥
∥α

Lq
�y

∥
∥‖u‖Hs2,r

�z

∥
∥

Lρ

�y
+ c

∥
∥‖u‖Hs2,r

�z

∥
∥α

Lq
�y

∥
∥∇s1

�y
(‖u‖Hs2,r

�z

)∥
∥

Lρ

�y

≤ c
∥
∥‖u‖Hs2,r

�z

∥
∥α

Lq
�y

∥
∥‖u‖Hs2,r

�z

∥
∥

Hs1,ρ
�y

≤ c‖u‖α+1
Hs1,ρ

�y Hs2,r
�z

,

where f (z) = zα+1, 1
ρ′ = 1

q
α

+ 1
ρ

. Meanwhile, we use the Sobolev embedding Hs1,ρ
�y (Rd) ↪→

Lq
�y(Rd), 1

q = 1
ρ

– s1
d and s1 < d

ρ
.

Using the Hölder inequality and the Sobolev embedding Hs1,ρ
�y (Rd) ↪→ Lρ1

�y (Rd), 1
ρ1

= 1
ρ

–
s1
d , we have

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z

≤ c
(‖u‖α

Lρ1
�y Lr1

�z
+ ‖v‖α

Lρ1
�y Lr1

�z

)‖u – v‖Lρ

�y Lr
�z
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≤ c
(‖u‖α

Lρ1
�y L∞

�z
+ ‖v‖α

Lρ1
�y L∞

�z

)‖u – v‖Lρ

�y Lr
�z

≤ c
(‖u‖α

Hs1,ρ
�y Hs2,r

�z
+ ‖v‖α

Hs1,ρ
�y Hs2,r

�z

)‖u – v‖Lρ

�y Lr
�z
,

where 1/ρ ′ = α/ρ1 + 1/ρ , 1/r′ = α/r1 + 1/r. �

Lemma 3.3 Take the case s1 > d
2 , 0 < s2 < n–d

2 . Taking ρ = 2, r = (α+2)(n–d)
n–d+αs2

, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.5)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z
≤ c

(‖u‖α

Hs1,ρ
�y Hs2,r

�z
+ ‖v‖α

Hs1,ρ
�y Hs2,r

�z

)‖u – v‖Lρ

�y Lr
�z
. (3.6)

Proof In a similar way as in Lemma 3.2: using the Sobolev embedding Hs2,r
�z (Rn–d) ↪→

Lq
�z (Rn–d), 1

q = 1
r – s2

n–d and Hs1,ρ
�y (Rd) ↪→ L∞

�y (Rd), one obtains the proof of the first in-
equality. Using the Hölder inequality and the Sobolev embedding Hs2,r

�z (Rn–d) ↪→ Lr1
�z (Rn–d),

1
r1

= 1
r – s2

n–d , one obtains the proof of the second inequality. �

Lemma 3.4 Take the case s1 = d
2 .

(1) When 0 < s2 < n–d
2 , taking ρ = α + 2, r = (α+2)(n–d)

n–d+αs2
, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.7)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Hs2,r′

�z
≤ c

(‖u‖α

Lρ

�y Hs2,r
�z

+ ‖v‖α

Lρ

�y Hs2,r
�z

)‖u – v‖Lρ

�y Hs2,r
�z

. (3.8)

(2) When s2 > n–d
2 , taking ρ = α + 2, r = 2, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.9)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Hs2,r′

�z
≤ c

(‖u‖α

Lρ

�y Hs2,r
�z

+ ‖v‖α

Lρ

�y Hs2,r
�z

)‖u – v‖Lρ

�y Hs2,r
�z

. (3.10)

Proof (1) Using the Sobolev embedding Hs2,r
�z (Rn–d) ↪→ Lq

�z (Rn–d), 1
q = 1

r – s2
n–d , we have

‖u‖Lq
�z (Rn–d) ≤ c‖u‖Hs2,r2

�z (Rn–d).

Using the Hölder inequality we have

∥
∥|u|αu

∥
∥

Hs2,r′
�z

=
∥
∥|u|αu

∥
∥

Lr′
�z

+
∥
∥∇s2

�z
(|u|αu

)∥
∥

Lr′
�z

≤ c
∥
∥|u|α∥

∥
L

q
α
�z

‖u‖Lr
�z + c

∥
∥|u|α∥

∥
L

q
α
�z

∥
∥∇s2

�z u
∥
∥

Lr
�z

≤ c‖u‖α

Lq
�z
‖u‖Hs2,r

�z

≤ c‖u‖α+1
Hs2,r

�z
,

where 1
r′ = 1

q
α

+ 1
r , which means r = (α+2)(n–d)

n–d+αs2
.
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We have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
=

∥
∥
∥
∥|u|αu

∥
∥

Hs2,r′
�z

∥
∥

Hs1,ρ′
�y

≤ c
∥
∥‖u‖α+1

Hs2,r
�z

∥
∥

Hs1,ρ′
�y

= c
∥
∥f

(‖u‖Hs2,r
�z

)∥
∥

Hs1,ρ′
�y

≤ c
m∑

k=1

∥
∥f (k)(‖u‖Hs2,r

�z

)∥
∥

L
qk
�y

∥
∥Is1‖u‖Hs2,r

�z

∥
∥

L
lk
�y

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

L
mk
�y

≤ c
m∑

k=1

∥
∥‖u‖α+1–k

Hs2,r
�z

∥
∥

Lqk
�y

∥
∥Is1‖u‖Hs2,r

�z

∥
∥

L
lk
�y

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

Lmk
�y

≤ c
m∑

k=1

∥
∥‖u‖Hs2,r

�z

∥
∥α+1–k

L
(α+1–k)qk
�y

∥
∥Is1‖u‖Hs2,r

�z

∥
∥

L
lk
�y

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

L
mk
�y

≤ c
m∑

k=1

∥
∥‖u‖Hs2,r

�z

∥
∥α+1–k

Lmk
�y

‖u‖
Hs1,lk

�y Hs2,r
�z

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

Lmk
�y

≤ c
m∑

k=1

∥
∥‖u‖Hs2,r

�z

∥
∥α

Lρ

�y
‖u‖Hs1,ρ

�y Hs2,r
�z

≤ c
∥
∥‖u‖Hs2,r

�z

∥
∥α

Lρ

�y
‖u‖Hs1,ρ

�y Hs2,r
�z

≤ c‖u‖α+1
Hs1,ρ

�y Hs2,r
�z

,

where f is the same as before. When 0 < d/2 < 1, let m = 1; when d/2 = [d/2], let m =
[d/2]; when d/2 = [d/2] + σ (0 < σ < 1), let m = [d/2] + 1. For the index 1

ρ′ = 1
qk

+ 1
lk

+ k–1
mk

,
(α + 1 – k)qk = mk = ρ , lk = ρ , which means ρ = α + 2.

And

∥
∥|u|αu – |v|αv

∥
∥

Hs2,r′
�z

≤ c
∥
∥
(|u|α + |v|α)|u – v|∥∥

Hs2,r′
�z

≤ c
(∥
∥|u|α + |v|α∥

∥
Hs2,p1

�z
‖u – v‖Lp2

�z
+

∥
∥|u|α + |v|α∥

∥
L

p3
�z ‖u – v‖Hs2,p4

�z

)

≤ c
[(‖u‖α–1

La1(α–1)
�z

‖u‖
Hs2,b1

�z
+ ‖v‖α–1

La1(α–1)
�z

‖v‖
Hs2,b1

�z

)‖u – v‖Hs2,r
�z

+
(‖u‖α

Lαp3
�z

+ ‖v‖α

Lαp3
�z

)‖u – v‖Hs2,p4
�z

]

≤ c
[(‖u‖α

Hs2,r
�z

+ ‖v‖α

Hs2,r
�z

)‖u – v‖Hs2,r
�z

+
(‖u‖α

Hs2,r
�z

+ ‖v‖α

Hs2,r
�z

)‖u – v‖Hs2,p4
�z

]

≤ c
(‖u‖α

Hs2,r
�z

+ ‖v‖α

Hs2,r
�z

)‖u – v‖Hs2,r
�z

,

where 1
r′ = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, 1/p1 = 1/a1 + 1/b1, 1/a1(α – 1) = 1/r – s2/(n – d), b1 = r, 1/p2 =

1/r – s2/(n – d), 1/(αp3) = 1/r – s2/(n – d), p4 = r. Therefore,

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Hs2,r′

�z

≤ c
∥
∥
∥
∥|u|αu – |v|αv

∥
∥

Hs2,r′
�z

∥
∥

Lρ′
�y
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≤ c
∥
∥
(‖u‖α

Hs2,r
�z

+ ‖v‖α

Hs2,r
�z

)‖u – v‖Hs2,r
�z

∥
∥

Lρ′
�y

≤ c
∥
∥‖u‖α

Hs2,r
�z

+ ‖v‖α

Hs2,r
�z

∥
∥

L
p1
α

�y

∥
∥‖u – v‖Hs2,r

�z

∥
∥

Lρ

�y

≤ c
(‖u‖α

Lp1
�y Hs2,r

�z
+ ‖v‖α

Lp1
�y Hs2,r

�z

)‖u – v‖Lρ

�y Hs2,r
�z

≤ c
(‖u‖α

Lρ

�y Hs2,r
�z

+ ‖v‖α

Lρ

�y Hs2,r
�z

)‖u – v‖Lρ

�y Hs2,r
�z

,

where 1
ρ′ = α

p1
+ 1

ρ
, p1 = ρ .

(2) Similarly, using the Sobolev embedding Hs2,r2
�z (Rn–d) ↪→ L∞

�z (Rn–d), we get the conclu-
sion. �

Lemma 3.5 Take the case s2 = n–d
2 .

(1) When 0 < s1 < d
2 , taking ρ = d(α+2)

d+s1α
, r = α + 2, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.11)

∥
∥|u|αu – |v|αv

∥
∥

Hs1,ρ′
�y Lr′

�z
≤ c

(‖u‖α

Hs1,ρ
�y Lr

�z
+ ‖v‖α

Hs1,ρ
�y Lr

�z

)‖u – v‖Hs1,ρ
�y Lr

�z
. (3.12)

(2) When s1 > d
2 , taking ρ = 2, r = α + 2, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.13)

∥
∥|u|αu – |v|αv

∥
∥

Hs1,ρ′
�y Lr′

�z
≤ c

(‖u‖α

Hs1,ρ
�y Lr

�z
+ ‖v‖α

Hs1,ρ
�y Lr

�z

)‖u – v‖Hs1,ρ
�y Lr

�z
. (3.14)

Proof In a similar way to Lemma 3.4, using the Sobolev embedding Hs1,ρ
�y (Rd) ↪→ Lq

�y(Rd),
1
q = 1

ρ
– s1

d and Hs1,ρ
�y (Rd) ↪→ L∞

�y (Rd), we have the above lemma. �

Lemma 3.6 Take the case s1 = d
2 , s2 = n–d

2 . Taking ρ = α + 2, r = α + 2, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.15)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z
≤ c

(‖u‖α

Lρ

�y Lr
�z

+ ‖v‖α

Lρ

�y Lr
�z

)‖u – v‖Lρ

�y Lr
�z
. (3.16)

Proof By Lemma 2.2 we have

∥
∥|u|αu

∥
∥

Hs2,r′
�z

≤ c
m∑

k=1

∥
∥g(k)(u)

∥
∥

Lqk
�z

∥
∥Is2 u

∥
∥

Llk
�z
‖u‖k–1

L
mk
�z

≤ c
m∑

k=1

∥
∥uα+1–k∥∥

L
qk
�z

∥
∥Is2 u

∥
∥

L
lk
�z
‖u‖k–1

L
mk
�z

≤ c
m∑

k=1

‖u‖α+1–k
L

(α+1–k)qk
�z

‖u‖
H

s2,lk
�z

‖u‖k–1
L

mk
�z

≤ c‖u‖α

L
mk
�z

‖u‖
H

s2,lk
�z

≤ c‖u‖α
Lr
�z
‖u‖

H
s2,lk
�z
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≤ c‖u‖α

Hs2,r
�z

‖u‖Hs2,r
�z

≤ c‖u‖α+1
Hs2,r

�z
,

where g(u) = |u|αu. When 0 < (n – d)/2 < 1, let m = 1; when (n – d)/2 = [(n – d)/2], let
m = [(n – d)/2]; when (n – d)/2 = [(n – d)/2] + σ (0 < σ < 1), let m = [(n – d)/2] + 1. For the
index 1

r′ = 1
qk

+ 1
lk

+ k–1
mk

, (α + 1 – k)qk = mk = r, lk = r, then r = α + 2 and

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
=

∥
∥
∥
∥|u|αu

∥
∥

Hs2,r′
�z

∥
∥

Hs1,ρ′
�y

≤ c
∥
∥‖u‖α+1

Hs2,r
�z

∥
∥

Hs1,ρ′
�y

≤ c
m∑

k=1

∥
∥f (k)(‖u‖Hs2,r

�z

)∥
∥

Lqk
�y

∥
∥Is1‖u‖Hs2,r

�z

∥
∥

Llk
�y

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

Lmk
�y

≤ c
m∑

k=1

∥
∥‖u‖α+1–k

Hs2,r
�z

∥
∥

L
qk
�y

∥
∥Is1‖u‖Hs2,r

�z

∥
∥

Llk
�y

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

L
mk
�y

≤ c
m∑

k=1

∥
∥‖u‖Hs2,r

�z

∥
∥α+1–k

L
(α+1–k)qk
�y

∥
∥Is1‖u‖Hs2,r

�z

∥
∥

L
lk
�y

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

L
mk
�y

≤ c
m∑

k=1

∥
∥‖u‖Hs2,r

�z

∥
∥α+1–k

L
mk
�y

‖u‖
H

s1,lk
�y Hs2,r

�z

∥
∥‖u‖Hs2,r

�z

∥
∥k–1

L
mk
�y

≤ c
m∑

k=1

∥
∥‖u‖Hs2,r

�z

∥
∥α

Lmk
�y

‖u‖
H

s1,lk
�y Hs2,r

�z

≤ c
∥
∥‖u‖Hs2,r

�z

∥
∥α

Lρ

�y
‖u‖Hs1,ρ

�y Hs2,r
�z

≤ c‖u‖α+1
Hs1,ρ

�y Hs2,r
�z

,

where f is the same as before. When 0 < d/2 < 1, let m = 1; when d/2 = [d/2], let m =
[d/2]; when d/2 = [d/2] + σ (0 < σ < 1) let m = [d/2] + 1. For the index 1

ρ′ = 1
qk

+ 1
lk

+ k–1
mk

,
(α + 1 – k)qk = mk = ρ , lk = ρ , then ρ = α + 2 and we have 1

ρ′ = α
ρ

+ 1
ρ

, 1
r′ = α

r + 1
r .

In the same way, using the Hölder inequality we have

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z
≤ c

(‖u‖α

Lρ

�y Lr
�z

+ ‖v‖α

Lρ

�y Lr
�z

)‖u – v‖Lρ

�y Lr
�z
. �

Lemma 3.7 For the case 0 ≤ s1 < d
2 , 0 ≤ s2 < n–d

2 , taking ρ = d(α+2)
d+s1α

, r = (α+2)(n–d)
n–d+αs2

, we have

∥
∥|u|αu

∥
∥

Hs1,ρ′
�y Hs2,r′

�z
≤ c‖u‖α+1

Hs1,ρ
�y Hs2,r

�z
, (3.17)

∥
∥|u|αu – |v|αv

∥
∥

Lρ′
�y Lr′

�z
≤ c

(‖u‖α

Hs1,ρ
�y Hs2,r

�z
+ ‖v‖α

Hs1,ρ
�y Hs2,r

�z

)‖u – v‖Lρ

�y Lr
�z
. (3.18)

Proof Using the Sobolev embedding Hs2,r
�z (Rn–d) ↪→ Lq

�z (Rn–d), 1
q = 1

r – s2
n–d (note that s2 <

n–d
2 and one can deduce s2 < n–d

r ) and Hs1,ρ
�y (Rd) ↪→ L∞

�y (Rd), 1
q = 1

ρ
– s1

d (note that s1 <
d
2 and one can deduce s1 < d

ρ
). Similar to the proof of Lemma 3.2, the inequality can be

established. �
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4 Proof of theorems
Proof of Theorem 1.1 The solution of the initial value problem (1.1) is equivalent to the
integral equation

u(t) = S(t)ϕ – i
∫ t

0
S(t – τ )|u|αu(τ ) dτ .

In order to use the Banach fixed point theorem, we can define the mapping T as follows:

Tu = S(t)ϕ – i
∫ t

0
S(t – τ )|u|αu(τ ) dτ .

(1) Take the case s1 = 0, s2 = 0. When 2n – d > 4 and –(2n–d–4)+
√

(2n–d–4)2+32(2n–d)
2(2n–d) < α <

8
2n–d–4 , taking ρ = r = α + 2, θ = 8–(2n–d–4)α

4α(α+2) . Let X = {u : (0, +∞) → Lρ

�y Lr
�z}, we take the

norm in X to be ‖u‖X = supt>0 tθ‖u(t)‖Lρ

�y Lr
�z
. We define the metric space (X1

1 , d) as follows:

X1
1 =

{
u(t) ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
, ∀u, v ∈ X1

1 .

Obviously, we can prove that (X1
1 , d) is a complete metric space.

We first prove that T maps X1
1 into itself. Indeed, from Lemma 2.1 and Lemma 3.1 we

have

tθ‖Tu‖Lρ

�y Lr
�z
≤ tθ

∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ tθ

∫ t

0

∥
∥S(t – τ )|u|αu(τ )

∥
∥

Lρ

�y Lr
�z

dτ

≤ tθ
∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ tθ

∫ t

0
c|t – τ |– n–d

2 (1– 2
r )|t – τ |– d

4 (1– 2
ρ )∥∥|u|αu

∥
∥

Lρ′
�y Lr′

�z
dτ

≤ tθ
∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ ctθ

∫ t

0
|t – τ |∗‖u‖α+1

Lρ

�y Lr
�z

dτ

= tθ
∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ ctθ

∫ t

0
τ–θ (α+1)|t – τ |∗(τ θ‖u‖Lρ

�y Lr
�z
)α+1 dτ

≤ tθ
∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ ctθ‖u‖α+1
X

∫ t

0
τ–θ (α+1)|t – τ |∗ dτ

= tθ
∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ c‖u‖α+1
X tθ–θ (α+1)+∗+1

∫ 1

0

(
τ

t

)–θ (α+1)∣∣
∣
∣1 –

τ

t

∣
∣
∣
∣

∗
d
(

τ

t

)

= tθ
∥
∥S(t)ϕ

∥
∥

Lρ

�y Lr
�z

+ c‖u‖α+1
X tθ–θ (α+1)+∗+1B

(
1 – θ (α + 1), 1 + ∗)

,

where ∗ = – n–d
2 (1 – 2

r ) – d
4 (1 – 2

ρ
), B(·, ·) is a Beta function.

Notice that θ – θ (α + 1) + ∗ + 1 = 0, which is

θα = 1 –
n – d

2

(

1 –
2
r

)

–
d
4

(

1 –
2
ρ

)

,

and

θ (α + 1) < 1,
n – d

2

(

1 –
2
r

)

+
d
4

(

1 –
2
ρ

)

< 1.
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It follows that

tθ‖Tu‖Lρ

�y Lr
�z
≤ ∥

∥S(t)ϕ
∥
∥

X + c‖u‖α+1
X .

Hence

‖Tu‖X ≤ ε + c‖u‖α+1
X .

Now let ε < ( 1
c2α+1 ) 1

α , we obtain ‖Tu‖X ≤ 2ε. That is to say, T maps X1
1 into itself. Further-

more

tθ‖Tu – Tv‖Lρ

�y Lr
�z

= tθ

∥
∥
∥
∥–i

∫ t

0
S(t – τ )|u|αu(τ ) dτ + i

∫ t

0
S(t – τ )|v|αv(τ ) dτ

∥
∥
∥
∥

Lρ

�y Lr
�z

≤ tθ

∫ t

0
|t – τ |∗∥∥|u|αu(τ ) – |v|αv(τ )

∥
∥

Lρ′
�y Lr′

�z
dτ

≤ ctθ

∫ t

0
|t – τ |∗(‖u‖α

Lρ

�y Lr
�z

+ ‖v‖α

Lρ

�y Lr
�z

)∥
∥u(τ ) – v(τ )

∥
∥

Lρ

�y Lr
�z

dτ

= ctθ

∫ t

0
|t – τ |∗τ–θ (α+1)(τ θα‖u‖α

Lρ

�y Lr
�z

+ τ θα‖v‖α

Lρ

�y Lr
�z

)
τ θ

∥
∥u(τ ) – v(τ )

∥
∥

Lρ

�y Lr
�z

dτ

≤ ctθ

∫ t

0
|t – τ |∗τ–θ (α+1)(‖u‖α

X + ‖v‖α
X
)‖u – v‖X dτ

= ctθ–θ (α+1)+∗+1
∫ 1

0

(
τ

t

)–θ (α+1)∣∣
∣
∣1 –

τ

t

∣
∣
∣
∣

∗(‖u‖α
X + ‖v‖α

X
)‖u – v‖Xd

(
τ

t

)

.

Similar to the above proof, we obtain

tθ‖Tu – Tv‖Lρ

�y Lr
�z
≤ c

(‖u‖α
X + ‖v‖α

X
)‖u – v‖X ≤ 2c(2ε)α‖u – v‖X .

Since ε < ( 1
c2α+1 ) 1

α , ‖Tu – Tv‖X < ‖u – v‖X . We can also see that T is a contraction mapping
from X1

1 into X1
1 .

Thus by the Banach fixed point theorem, we see that T has a unique fixed point u ∈
X1

1 ⊂ X which is the global solution of initial value problem (1.1).
(2) Take the case 0 ≤ s1 < d

2 , 0 < s2. We divide it into three cases:
(2.1): The subcase 0 < s2 < (n – d)/2, when

–(2n – d – 4s2 – 2s1 – 4) +
√

(2n – d – 4s2 – 2s1 – 4)2 + 32(2n – d – 4s2 – 2s1)
2(2n – d – 4s2 – 2s1)

< α <
8

2n – d – 4s2 – 2s1 – 4
,

taking θ = 8–(2n–d–4s2–2s1–4)α
4α(α+2) , ρ = d(α+2)

d+s1α
, r = (α+2)(n–d)

n–d+αs2
. Let X = {u : (0, +∞) → Hs1,ρ

�y Hs2,r
�z },

we take the norm in X to be ‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ
�y Hs2,r

�z
. We define the metric space

(X1
2 , d) as follows:

X1
2 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,
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d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
, ∀u, v ∈ X1

2 .

Obviously, we can prove that (X1
2 , d) is a complete metric space.

(2.2): The subcase s2 = (n – d)/2, when –(2n–d–2s1–4)+
√

(2n–d–2s1–4)2+32(2n–d–2s1)
2(2n–d–2s1) < α <

8
2n–d–2s1–4 , taking θ = 8–(2n–d–2s1–4)α

4α(α+2) , ρ = d(α+2)
d+s1α

, r = α +2. Let X = {u : (0, +∞) → Hs1,ρ
�y Hs2,r

�z },
we take the norm in X to be ‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the metric space
(X2

2 , d) as follows:

X2
2 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Hs1,ρ
�y Lr

�z
, ∀u, v ∈ X2

2 .

Obviously, we can prove that (X2
2 , d) is a complete metric space.

(2.3): The subcase s2 > (n – d)/2, when –(d–2s1–4)+
√

(d–2s1–4)2+32(d–2s1)
2(d–2s1) < α < 8

d–2s1–4 , taking
θ = 8–(d–2s1–4)α

4α(α+2) , ρ = d(α+2)
d+s1α

, r = 2. Let X = {u : (0, +∞) → Hs1,ρ
�y Hs2,r

�z }, we take the norm in X
to be ‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the metric space (X3
2 , d) as follows:

X3
2 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
, ∀u, v ∈ X3

2 .

Obviously, we can prove that (X3
2 , d) is a complete metric space.

Using the Banach fixed point theorem, by Lemma 3.7, Lemma 3.5 and Lemma 3.2 we
see that Tu has a unique fixed point in X1

2 , X2
2 and X3

2 which is the global solution of initial
value problem (1.1).

(3) Take the case s1 = d
2 , 0 < s2. We divide it into three cases:

(3.1): The subcase 0 < s2 < (n – d)/2, when –(2n–d–4s2–4)+
√

(2n–d–4s2–4)2+32(2n–d–4s2)
2(2n–d–4s2) < α <

8
2n–d–4s2–4 , taking θ = 8–(2n–d–4s2–4)α

4α(α+2) , ρ = α + 2, r = (α+2)(n–d)
n–d+αs2

. Let X = {u : (0, +∞) →
Hs1,ρ

�y Hs2,r
�z }, we take the norm in X to be ‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the met-

ric space (X1
3 , d) as follows:

X1
3 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Hs2,r
�z

, ∀u, v ∈ X1
3 .

Obviously, we can prove that (X1
3 , d) is a complete metric space.

(3.2): The subcase s2 = (n – d)/2, when –(2n–d–4)+
√

(2n–d–4)2+32(2n–d)
2(2n–d) < α < 8

2n–d–4 , taking
θ = 8–(2n–d–4)α

4α(α+2) , ρ = α + 2, r = α + 2. Let X = {u : (0, +∞) → Hs1,ρ
�y Hs2,r

�z }, we take the norm in
X to be ‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the metric space (X2
3 , d) as follows:

X2
3 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
, ∀u, v ∈ X2

3 .

Obviously, we can prove that (X2
3 , d) is a complete metric space.
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(3.3): The subcase s2 > (n – d)/2, when –(d–4)+
√

(d–4)2+32d
2d < α < 8

d–4 , taking θ = 8–(d–4)α
4α(α+2) ,

ρ = α + 2, r = 2. Let X = {u : (0, +∞) → Hs1,ρ
�y Hs2,r

�z }, we take the norm in X to be ‖u‖X =
supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the metric space (X3
3 , d) as follows:

X3
3 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Hs2,r
�z

, ∀u, v ∈ X3
3 .

Obviously, we can prove that (X3
3 , d) is a complete metric space.

Using Lemma 3.4, Lemma 3.6 and the Banach fixed point theorem again, we obtain the
global solution of the problem (1.1).

(4) Take the case s1 > d
2 , 0 ≤ s2. We divide it into two cases:

(4.1): The subcase 0 ≤ s2 < (n – d)/2, when –(n–d–2s2–2)+
√

(n–d–2s2–2)2+16(n–d–2s2)
2(n–d–2s2) < α <

4
n–d–2s2–2 , taking θ = 4–(n–d–2s2–2)α

2α(α+2) , ρ = 2, r = (α+2)(n–d)
n–d+αs2

, let X = {u : (0, +∞) → Hs1,ρ
�y Hs2,r

�z },
we take the norm in X to be ‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the metric space

(X1
4 , d) as follows:

X1
4 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
, ∀u, v ∈ X1

4 .

Obviously, we can prove that (X1
4 , d) is a complete metric space.

(4.2): The subcase s2 = (n – d)/2, when –(n–d–2)+
√

(n–d–2)2+16(n–d)
2(n–d) < α < 4

n–d–2 , taking θ =
4–(n–d–2)α

2α(α+2) , ρ = 2, r = α + 2, let X = {u : (0, +∞) → Hs1,ρ
�y Hs2,r

�z }, we take the norm in X to be
‖u‖X = supt>0 tθ‖u(t)‖Hs1,ρ

�y Hs2,r
�z

. We define the metric space (X2
4 , d) as follows:

X2
4 =

{
u ∈ X|‖u‖X ≤ 2ε

}
,

d(u, v) = sup
t>0

tθ
∥
∥u(t) – v(t)

∥
∥

Hs1,ρ
�y Lr

�z
, ∀u, v ∈ X2

4 .

Obviously, we can prove that (X2
4 , d) is a complete metric space.

Similar to the proof of (1), by Lemma 3.3 and Lemma 3.5, it is known from the Banach
fixed point theorem that we have the existence of a unique fixed point of u ∈ X which is
the global solution of the initial value problem of (1.1). �

Proof of Theorem 1.2 Here we only prove the decay estimate of solution in the case s1 = 0,
s2 = 0 and the rest is similar.

We first prove the continuous dependence of the solution on the initial value. ϕ(x) and
ψ(x) satisfy the initial condition, and u, v are the two solutions of problem (1.1) corre-
sponding to initial value ϕ, ψ , respectively. We know Tu = u, Tv = v by Theorem 1.1 and
from the proof of Theorem 1.1 we can obtain

tθ
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z

= tθ‖Tu – Tv‖Lρ

�y Lr
�z
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≤ tθ
∥
∥S(t)(ϕ – ψ)

∥
∥

Lρ

�y Lr
�z

+ tθ

∫ t

0

∥
∥S(t – τ )

(|u|αu(τ ) – |v|αv(τ )
)∥
∥

Lρ

�y Lr
�z

dτ

≤ tθ
∥
∥S(t)(ϕ – ψ)

∥
∥

Lρ

�y Lr
�z

+ 2c(2ε)α‖u – v‖X .

Since 2c(2ε)α < 1,

‖u – v‖X ≤ ∥
∥S(t)(ϕ – ψ)

∥
∥

X .

In the following we prove the decay estimate of the solution

tθ (1 + t)η
∫ t

0

∥
∥S(t – τ )

(|u|αu(τ ) – |v|αv(τ )
)∥
∥

Lρ

�y Lr
�z

dτ

≤ tθ (1 + t)η
∫ t

0
|t – τ |∗∥∥|u|αu(τ ) – |v|αv(τ )

∥
∥

Lρ′
�y Lr′

�z
dτ

≤ ctθ (1 + t)η
∫ t

0
|t – τ |∗(‖u‖α

Lρ

�y Lr
�z

+ ‖v‖α

Lρ

�y Lr
�z

)∥
∥u(τ ) – v(τ )

∥
∥

Lρ

�y Lr
�z

dτ

≤ ctθ (1 + t)η
∫ t

0
τ–θ (α+1)(1 + τ )–η|t – τ |∗(τ θα‖u‖α

Lρ

�y Lr
�z

+ τ θα‖v‖α

Lρ

�y Lr
�z

)

· τ θ (1 + τ )η
∥
∥u(τ ) – v(τ )

∥
∥

Lρ

�y Lr
�z

dτ

≤ ctθ (1 + t)η
∫ t

0
τ–θ (α+1)(1 + τ )–η|t – τ |∗

(
sup

0<τ<t
τ θα‖u‖α

Lρ

�y Lr
�z

+ sup
0<τ<t

τ θα‖v‖α

Lρ

�y Lr
�z

)

· sup
0<τ<t

τ θ (1 + τ )η
∥
∥u(τ ) – v(τ )

∥
∥

Lρ

�y Lr
�z

dτ

≤ 2c(2ε)αtθ sup
0<τ<t

τ θ (1 + τ )η
∥
∥u(τ ) – v(τ )

∥
∥

Lρ

�y Lr
�z

∫ t

0

(
1 + t
1 + τ

)η

|t – τ |∗|τ |–θ (α+1) dτ

≤ 2c(2ε)αtθ sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z

∫ t

0

(
t
τ

)η

|t – τ |∗|τ |–θ (α+1) dτ

= 2c(2ε)αtθ+η sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z

∫ t

0
|t – τ |∗|τ |–θ (α+1)–η dτ

≤ 2(2ε)α sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
tθ+η+∗–θ (α+1)–η+1

∫ 1

0

∣
∣
∣
∣1 –

τ

t

∣
∣
∣
∣

∗∣∣
∣
∣
τ

t

∣
∣
∣
∣

–θ (α+1)–η

d
τ

t

= 2c(2ε)α sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
tθ+∗–θ (α+1)+1B

(
1 – θ (α + 1) – η, 1 + ∗)

,

where ∗ = – n–d
2 (1 – 2

r ) – d
4 (1 – 2

ρ
), B(·, ·) is a Beta function.

Notice that θ – θ (α + 1) + ∗ + 1 = 0, and θ (α + 1) + η < 1, n–d
2 (1 – 2

r ) + d
4 (1 – 2

ρ
) < 1, thus

we have

tθ (1 + t)η
∫ t

0

∥
∥S(t – τ )

(|u|αu(τ ) – |v|αv(τ )
)∥
∥

Lρ

�y Lr
�z

dτ

≤ 2c(2ε)α sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
,
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so that

sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z

≤ sup
t>0

tθ (1 + t)η
∥
∥S(t)(ϕ – ψ)

∥
∥

Lρ

�y Lr
�z

+ sup
t>0

tθ (1 + t)η
∫ t

0

∥
∥S(t – τ )

(|u|αu(τ ) – |v|αv(τ )
)∥
∥

Lρ

�y Lr
�z

dτ

≤ sup
t>0

tθ (1 + t)η
∥
∥S(t)(ϕ – ψ)

∥
∥

Lρ

�y Lr
�z

+ 2c(2ε)α sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
.

Since 2c(2ε)α < 1 and supt>0 tθ (1 + t)η‖S(t)(ϕ – ψ)‖Lρ

�y Lr
�z

< +∞ we have

sup
t>0

tθ (1 + t)η
∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
≤ c.

Hence

∥
∥u(t) – v(t)

∥
∥

Lρ

�y Lr
�z
≤ ct–θ (1 + t)–η. �
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