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Abstract
Dengue disease is found in tropical and subtropical regions around the world.
Dengue virus is the cause of dengue fever, dengue hemorrhagic fever, and dengue
shock syndrome. It consists of 4 serotypes: DEN-1, DEN-2, DEN-3, and DEN-4. There
are two modes of transmission for dengue virus in mosquito: horizontal transmission
and vertical transmission. The mosquito can be infected when it bites an infectious
human by horizontal transmission, but there can also be vertical transmission
through sexual contact with an infected mosquito. This research presents a control
mechanism based on our previously developed dengue model with vertical
transmission. The two policies, namely vaccination and insecticide administration
(Policy 1) and isolation and insecticide administration (Policy 2) are considered. The
use of Pontryargin’s maximum principle allowed necessary and optimality conditions,
thus facilitating the optimal control to be developed. Numerical solutions of our
control systems and the conclusions of our two policies are presented.

Keywords: Dengue fever; Optimal control; Vertical transmission; Epidemiological
control

1 Introduction
The Dengue disease is the mosquito-borne viral infection. There are three forms of dengue
infection [1]: dengue fever (DF), dengue hemorrhagic fever (DHF), and dengue shock syn-
drome (DSS). The symptoms of simple DF are a high fever, aching muscles and joints, pain
behind the eyes, and a body rash that can disappear and then reappear. The above symp-
toms normally disappear after one week. Some dengue fever patients may develop more
severe forms of the disease. DHF can be accompanied by severe bleeding, where these pa-
tients can go into severe shock and die. This phase of the disease is labeled DSS [2]. There
are four serotypes (DEN-1, DEN-2, DEN-3, and DEN-4) of the dengue virus. Infection
with any one serotype will produce long term immunity to that serotype but short term
immunity to the other three serotypes [3]. More than 100 countries in the regions of the
Americas, Africa, the Eastern Mediterranean, South-East Asia, and the Western Pacific
are the endemic regions of this disease.

Dengue virus is transmitted among humans through the bite of infectious Aedes
mosquitoes. An infected mosquito carries the DF virus but cannot pass the virus until
it becomes infectious. The cycle of dengue transmission begins with a dengue infectious
person. Each infectious person has virus circulating in the blood or viremia. This stage
usually lasts for about 5–12 days. When a susceptible female Aedes mosquito bites an
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infectious person, the virus in the blood will be passed to the mosquito. Within the sus-
ceptible mosquito, the viruses will replicate during an extrinsic incubation period of 8–12
days, depending on the temperature. After this period, the female mosquito becomes in-
fectious, in other words, able to transmit the virus to a human. This is called horizontal
transmission [4].

Since the blood is needed for the development of the egg, biting of humans is done by the
female mosquitoes [5]. The male mosquitoes feed on the nectar of plants. Since the advent
of a very sensitive detection of the DNA of the dengue virus, the DNA testing has been
done on a collection of male mosquitoes [6, 7]. Because the male mosquitoes do not feed
on the blood of infectious human beings, it was suggested that the dengue virus DNA de-
tected in the male was from the virus obtained by sexual contact with the infectious female
mosquito. This opens up the possibility that a susceptible female can become infected by
the same type of contact with the infectious male mosquitoes. This type of transmission
is known as transovarial vertical transmission (VT). To quantify the VT rates, Clements
et al. measured the effective rates of VT in Aedes and Culex mosquitoes [8]. Their results
demonstrated that, the Aedes eggs displayed higher effective VT rates and are generally
more resistant to desiccation than the Culex eggs, which may confer a selective advantage
to vertically transmitted viruses [8]. While the recent work of Sanchez-Vargas [7] suggests
that VT is a potential mechanism of maintaining the dengue virus during inter-epidemic
periods.

With much fanfare, Sanofi Pasteur announced in 2016 the development of a live re-
combinant tetravalent dengue vaccine Dengvaxia. Dengvaxia underwent phase III clini-
cal trials and passed them [9]. Based on the findings, several countries, among them were
Brazil and the Philippines, began an extensive vaccination program. Initial results were
encouraging [10]. However, with the passage of time, trouble began to appear so that on
December 12, 2007, the Philippines Department of Health suspended the program [11] as
did most other countries. WHO [12] issued new guidelines about the usage of Dengvaxia
as part of any vaccination program for dengue fever. The trouble with the vaccine con-
cerns antibody-dependent enhancement (ADE) of antigens of the non-prevalent strains
in the community of the vaccine.

Before the non-success of the Dengvaxia vaccine, two classical policies have been pro-
posed to reduce the incidence of infections by the dengue virus: Policy 1 involves vacci-
nation and insecticide administration, while Policy 2 involves isolation or quarantine and
insecticide administration. Policy 2 is the least expensive option, but in some countries
involves the violation of the human right of being able to move around even if one does
not exhibit any symptoms of the illness. An example of this is furore in the Sierra Leone,
where “escapees” from the quarantine program have been publicly named and shamed by
the national authorities [13]. Another example of the furore is in the USA when a white
women nurse returned to the USA after working with patients who had been infected with
Ebola. The nurse who had not exhibited any symptoms was put into a tent at the airport
and kept in isolation for several weeks. In the USA, human rights override any steps taken
for the “greater” good, the protection of society as a whole.

Since no clinical studies can be executed to see whether quarantine of people exposed
to Ebola or the dengue viruses help in stopping these epidemics, answering this question
thus relies on the computer simulations facilitated by mathematical modeling and con-
trol theories, which have been carried out by researchers around the world. A number of
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mathematical models describing the dynamics of the dengue virus transmission have been
proposed in the literature. These models include assumptions of constant total human and
vector populations [14, 15]; variable total human population [16]; dengue virus reinfection
of the same serotype [17]; dengue virus transmission with memory [18]; possibility of ver-
tical transmission of the dengue virus [19]. Yang and Lee [20] studied the effects of control-
ling vectors on the transmission of the disease between the mosquitoes and the humans.
The works of Al-Sulami and Hamdan et al. [21, 33] recently introduced a fractional order
dengue epidemic model, while Iboi and Gumel [22] evaluated mathematically the role of
the Dengvaxia vaccine. Similar mathematical models have also been proposed in the lit-
erature to describe the dynamics of the Ebola and Rubella fevers [23–25]. Rodrigues et al.
in 2010 [26] proposed that optimal control theory be used to determine the parameters
involved in the control of the mosquito which lead to optimal decrease in the number of
infectious mosquitoes over a short time and at less cost. Recently, Imran [27] proposed the
strategy of optimal control to reduce the Zika cases. They found that the optimal control
strategy is the most useful to eliminate the disease and the cost. Momoh and Fuegenschuh
[28] applied the optimal control theory on the Zika virus model and compared the eco-
nomic effectiveness of common measures such as bednets, condoms, and indoor residual
spray. Although these works have considered the use of optimal control to reduce viru-
lent infectious diseases, the underlying mathematical models used were just the basic SEIR
model where the effects of vertical transmission have not been taken into account; whereas
others concentrated only a single policy [27–29]. In this paper, we apply the optimal con-
trol on the model of Chanprasopchai et al. [19] which includes vertical transmission, that
is becoming increasingly important due to the works of Clements and Sanchez-Vargas [7,
8], and analyzes the outcomes of the control implementation on both policies.

2 Methodology
2.1 The mathematical model
The mathematical model governing the dynamics of the dengue disease is developed, in-
corporating the effects of vector-host dynamics. In this respect the model itself is devel-
oped for both the human and the mosquito vector. Here an SEIR model is considered
for the human population, where the total human population is divided into four classes,
namely S̃H , ẼH , ĨH , and R̃H . The mosquito vector population is subdivided into three com-
partments, namely S̃V , ẼV , ĨV . The associated transmission diagram between the relevant
compartments is taken from the previous work of Chanprasopchai et al. [19]. The trans-
mission diagram duly admits the following system of differential equations defined:

S̃′
H = λHNH –

bβH

NH
S̃H ĨV – μHS̃H , (1)

Ẽ′
H =

bβH

NH
S̃H ĨV – (εH + μH )ẼH , (2)

Ĩ ′
H = εHẼH – (rH + μH )ĨH , (3)

R̃′
H = rH ĨH – μHR̃H , (4)

S̃′
V = A –

bβV

NH
S̃V ĨH – μV S̃V , (5)

Ẽ′
V =

bβV

NH
S̃V – (εH + μH )ẼH , (6)
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Ĩ ′
V = M + εV ẼV – μV ĨV , (7)

where the assumptions are

NH = S̃H + ẼH + ĨH + R̃H , (8)

NV = S̃V + ẼV + ĨV . (9)

The variables of Equations (1)–(9) are defined as follows:

S̃H denotes the number of susceptible human individuals at time t;

ẼH denotes the number of exposed human individuals at time t;

ĨH denotes the number of infected human individuals at time t;

R̃H denotes the number of recovered human individuals at time t;

S̃V denotes the number of susceptible vector population at time t;

ẼV denotes the number of exposed vector population at time t;

ĨV denotes the number of infected vector population at time t;

A denotes the constant recruitment rate;

M denotes the number of mosquitoes transovarially infected;

NH denotes the total number of human population;

NV denotes the total number of vector population.

The parameters of Equations (1)–(7) are defined as given in Table 1. Note that the infec-
tion rate does not introduce exogenous deaths in the population, and also that since the
infection time is assumed to be minimal, the population is thus assumed to be constant
for all time t. Consequently, the rate of change of both the total population of human and
vectors is zero, symbolically:

dS̃H

dt
+

dẼH

dt
+

dĨH

dt
+

dR̃H

dt
= 0, (10)

dS̃V

dt
+

dẼV

dt
+

dĨV

dt
= 0. (11)

Table 1 Parameter definition of the differential system of Equations (1)–(7)

Parameter Definition

λH Per capita birth rate of the human population
b Biting rate of the human population
βH Transmission probability of dengue virus from the

vector population to the human population
βV Transmission probability of dengue virus from the

human population to the vector population
εH Intrinsic incubation rate
εV Extrinsic incubation rate
μH Death rate of the human population
μV Death rate of the vector population
rH Recovery rate of the vector population
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From the last boundary conditions, we have

NV =
A + M
μV

(12)

and

μH = βH . (13)

Defining normalized compartmental variables as follows:

SH =
S̃H

NH
, EH =

ẼH

NH
, IH =

ĨH

NH
, RH =

R̃H

NH
,

SV =
S̃V

NV
, EV =

ẼV

NV
, IV =

ĨV

NV
,

(14)

we have

SH + EH + IH + RH = 1, (15)

SV + EV + IV = 1. (16)

In terms of the normalized compartments, the differential equations become:

S′
H = μH (1 – SH ) –

bβH

NH
SHIV NV , (17)

E′
H =

bβH

NH
SHIV NV – (εH + μH )EH , (18)

I ′
H = εHEH – (μH + rH )IH , (19)

E′
V = bβV SV IH – (εV + μV )EV , (20)

I ′
V =

M
NV

+ εV EV – μV IV . (21)

2.2 Stability analysis
2.2.1 System under the presence of vertical transmission
When vertical transmission is possible, the system is governed by Equations (17)–(21).
Setting the right-hand sides of these equations to zeros, the equilibrium states can be ob-
tained. We find that the only equilibrium state that is possible is the endemic equilibrium
state E1 given by

E1 =
{

S1∗
H , E1∗

H , I1∗
H , E1∗

V , I1∗
V

}
, (22)

where the equilibrium states S1∗
H , E1∗

H , I1∗
H , E1∗

V , I1∗
V are given by Equations (24)–(28) in the

work of Chanprasopchai et al. [19].
Note that the value of the basic reproduction number R0 is given by

R0 =
(
α1 + NV Mα2

(
γHα3 + μH (α4 + α3)

))

+
[

N2
V (α5α2α6α

2
3(α4μH + α5α7μV )
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+
(α8α6α3 – α2(MγHα3 + μH (α4α9 + Mα3)))2)))

NV α8α6α3

]1/2

, (23)

where

α1 = b2N2
V βHβV εHεV μH , α2 = bβH , α3 = (εH + μH )(εV + μV ), (24)

α4 = bβV εH , α5 = 4nHμHM, α6 = γH + μH , α7 = εH + μH , (25)

α8 = NHμHμV , α9 = M + NV εV . (26)

Proposition 1 The equilibrium state E1 of Equation (22) is asymptotically stable when R0

is above unity.

Proof See the proof of Proposition 1 in [19]. �

2.2.2 System under the absence of vertical transmission
For the system under the absence of vertical transmission, the number of mosquitoes
transovarially infected M is set to zero. This system now admits two equilibrium points,
namely a disease free equilibrium point and an endemic equilibrium point. Specifically,
the equilibrium points will occur at:

1. Disease free equilibrium

E0 = (1, 0, 0, 0, 0)T , (27)

2. Endemic equilibrium

E2 =
{

S2∗
H , E2∗

H , I2∗
H , E2∗

V , I2∗
V

}
, (28)

where S2∗
H , E2∗

H , I2∗
H , E2∗

V , I2∗
V are given in Equations (38)–(42) of [19].

Proposition 2 The equilibrium state E0 of Equation (22) is asymptotically stable when R0

is below unity.

Proof See the proof of Proposition 2 in [19]. �

Proposition 3 The equilibrium state E2 of Equation (22) is asymptotically stable when
R0 > 1.

Proof See the proof of Proposition 3 in [19]. �

3 General setting of the optimal control problem
Equations (17)–(21) can be recasted as a control problem, the aim of which is to minimize
the number of infected human population. Since the system includes the dynamics for
both the human and the vector populations, two control inputs can be attributed, namely
u1 for the human population and u2 for the mosquito population. Under the action of
u1, two possible policies are considered: vaccination and isolation. The action of u2 is
the insecticide control effort. Note that both control inputs are assumed to be piecewise
continuous functions taking values in a positive bounded set U = [0, umax]. We apply the
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different control policies separately by adding a linear term in the control variable ui(t) to
the reduced system of Equations (17)–(21).

Policy 1 Vaccination and insecticide administration.

It is expected that under the action of u1, the human susceptibles will be removed from
the system. However, vaccination only plays a weak role on the exposed and infected pop-
ulations, and it is thus assumed that u1 will have no effect on EH and IH . The insecticide
administration will remove the mosquito population; and consequently, it is assumed that
u2 will act on both EV and IV . The control model under Policy 1 is expressed by the set of
equations:

S′
H = μH (1 – SH ) –

bβH

NH
SHIV NV – u1(t)SH , (29)

E′
H =

bβH

NH
SHIV NV – (εH + μH )EH , (30)

I ′
H = εHEH – (μH + rH )IH , (31)

E′
V = bβV SV IH –

(
εV + μV + u2(t)

)
EV , (32)

I ′
V =

M
NV

+
(
εV – u2(t)

)
EV –

(
μV + u2(t)

)
IV . (33)

Policy 2 Isolation and insecticide administration.

Here, the action of the isolation control u1 is to anticipate the removal of the infected
human individuals from the system. However, isolation only plays a minor role on the
susceptible and exposed populations, and it is thus assumed that u1 will have no effect on
SH and EH . The insecticide administration achieves similar effects to those of Policy 1, and
consequently it is again assumed that u2 will act on both EV and IV . The control model
under Policy 2 is as follows:

S′
H = μH (1 – SH ) –

bβH

NH
SHIV NV , (34)

E′
H =

bβH

NH
SHIV NV – (εH + μH )EH , (35)

I ′
H = εHEH –

(
μH + rH + u1(t)

)
IH , (36)

E′
V = bβV SV IH –

(
εV + μV + u2(t)

)
EV , (37)

I ′
V =

M
NV

+
(
εV – u2(t)

)
EV –

(
μV + u2(t)

)
IV . (38)

The optimal control problems of Equations (29)–(33) and (34)–(38), require a definition
of the objective function as follows:

J(u1, u2) =
∫ T

0

(
B0IH (t) +

1
2

B1u2
1 +

1
2

B2u2
2

)
dt (39)

subjected to the systems of Equations (29)–(33) for the first policy and Equations (34)–(38)
for the second policy. The weight B0 is associated with the human infective population.
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Note that we are only interested in minimizing the infected human individuals IH and
not the mosquito compartments. The weights B1 and B2 are associated with the control
variables u1 and u2 respectively.

3.1 The existence of optimal control
The existence of the optimal control for both policies can be proven using the results given
in the works of Fleming and Rishel and the references therein [30]. According to the results
in these works, the Lagrangian for the optimal control problems of Equations (29)–(33)
and (34)–(38) is

L(IH , u1, u2) = B0IH (t) +
1
2

B1u2
1 +

1
2

B2u2
2. (40)

Theorem 4 There exists an optimal control pair u∗
1(t) and u∗

2(t) so that

J
(
u∗

1, u∗
2
)

= min
u1,u2∈U

J(u1, u2). (41)

Proof In order to prove Theorem 4, it suffices to check the following properties:
1. The corresponding set of controls and the state variables is nonempty.
2. The control set U is convex and closed.
3. The right-hand side of the state system is bounded by the linear function in the state

and control variables.
4. The integrand of the objective function is convex on U .
5. There exist nonnegative constants c1 and c2 and ρ > 1 satisfying the following

expression:

L(x, u1, u2) ≥ c2 + c1
(
uρ

1 + uρ
2
)
. (42)

We proceed to checking the following conditions:
1. The existence of the systems in Equations (29)–(33) and (34)–(38) is given with

bounded coefficients, which satisfies Condition 1, according to Theorem 9.2.1 from
Lukes [31].

2. From Condition 1, the control set is convex and closed, hence giving Condition 2.
3. Note that the state system is linear in u1 and u2, therefore the right-hand side of

Equations (29)–(33) and (34)–(38) will satisfy Condition 3.
4. Since the solution to the systems of Equations (29)–(33) and (34)–(38) is bounded,

the control functional is convex in U , giving Condition 4.
5. To prove Condition 5, let c̄2 = min(IH (t)) and c1 = min(B1, B2) and ρ = 2, then the

Lagrangian L can be rewritten as

L(x, u1, u2) = B0IH (t) +
1
2

B1u2
1 +

1
2

B2u2
2

≥ B0c̄2 + c1
(|u1|2 + |u2|2

)

= c2 + c1
(|u1|2 + |u2|2

)
. (43)

All conditions are thus satisfied; as a consequence, there exists an optimal control for the
systems of Equations (29)–(33) and (34)–(38). �
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3.2 Characterization of the optimal control
The optimal control for both policies can be derived through the use of Pontryagin’s max-
imum principle [32].

Theorem 5 There exist the adjoint variables λi, i = 1, . . . , 5, under the control of Policy 1
that satisfy the following:

dλ1

dt
= –λ1(t)

(
–μH –

bβHNV

NH
IV – u∗

1

)
–

bβHNV

NH
IV λ2(t),

dλ2

dt
= –λ2(t)(–εH – μH ) – λ3(t)εH ,

dλ3

dt
= –λ3(t)(–μH – rH ) – bβV SV λ4(t) – B0, (44)

dλ4

dt
= –λ4(t)

(
–εV – μV – u∗

2
)

– λ5(t)
(
εV – u∗

2
)
,

dλ5

dt
=

bβHSHNV

NH

(
λ1(t) – λ2(t)

)
– λ5(t)

(
–μV – u∗

2
)

with the boundary conditions

λi(T) = 0 for all i = 1, . . . , 5. (45)

In addition, the optimal control variables are given by

u∗
1(t) = max

(
min

(
λ1S∗

H
B1

, umax
1

)
, 0

)
, (46)

u∗
2(t) = max

(
min

(
E∗

V λ4 + λ5(I∗
V + EV )

B2
, umax

2

)
, 0

)
. (47)

Proof The Hamiltonian for the optimal control of Policy 1 is defined as follows:

H = L(x, u1, u2) + λ1
dSH

dt
+ λ2

dEH

dt
+ λ3

dIH

dt
+ λ4

dEV

dt
+ λ5

dIV

dt
(48)

= B0IH (t) +
1
2

B1u2
1 +

1
2

B2u2
2 + λ1

{
μH (1 – SH)

–
bβH

NH
SHIV NV – u1(t)SH

}
+ λ2

{
bβH

NH
SHIV NV – (εH + μH )EH

}

+ λ3
{
εHEH – (μH + rH )IH

}
+ λ4

{
bβV SV IH –

(
εV + μV + u2(t)

)
EV

}

+ λ5

{
M
NV

+
(
εV – u2(t)

)
EV –

(
μV + u2(t)

)
IV

}
. (49)

The adjoint system is obtained as follows:

dλ1

dt
= –

∂H
∂SH

= –λ1(t)
(

–μH –
bβHNV

NH
IV – u∗

1

)
–

bβHNV

NH
IV λ2(t),

dλ2

dt
= –

∂H
∂EH

= –λ2(t)(–εH – μH ) – λ3(t)εH ,
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dλ3

dt
= –

∂H
∂IH

= –λ3(t)(–μH – rH ) – bβV SV λ4(t) – B0, (50)

dλ4

dt
= –

∂H
∂EV

= –λ4(t)
(
–εV – μV – u∗

2
)

– λ5(t)
(
εV – u∗

2
)
,

dλ5

dt
= –

∂H
∂IV

=
bβHSHNV

NH

(
λ1(t) – λ2(t)

)
– λ5(t)

(
–μV – u∗

2
)
.

Using the optimality conditions, we find that

∂H
∂uj

= 0, for all j = 1, 2 at uj = u∗
j . (51)

Hence,

∂H
∂u1

= B1u1 – λ1SH = 0 �⇒ u∗
1 =

λ1SH

B1
, (52)

∂H
∂u2

= B2u2 – EV λ4 – λ5(–EV – IV ) = 0 �⇒ u∗
2 =

EV λ4 + IV λ5 + EV λ5

B2
. (53)

Using the property of the control set, we can say that

u∗
1 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if λ1SH
B1

≤ 0,
λ1SH

B1
if λ1SH

B1
< umax

1 ,

umax
1 if λ1SH

B1
≥ umax

1 ,

(54)

u∗
2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if EV λ4+IV λ5+EV λ5
B2

≤ 0,
EV λ4+IV λ5+EV λ5

B2
if EV λ4+IV λ5+EV λ5

B2
< umax

2 ,

umax
2 if EV λ4+IV λ5+EV λ5

B2
≥ umax

2 .

(55)
�

Theorem 6 There exist adjoint variables λi, i = 1, . . . , 5, under the control of Policy 2 that
satisfy the following:

dλ1

dt
= –λ1(t)

(
–μH –

bβHNV IV

NH

)
–

bβHNV

NH
IV λ2(t),

dλ2

dt
= –λ2(t)(–εH – μH ) – λ3(t)εH ,

dλ3

dt
= –λ3(t)

(
–μH – rH – u∗

1
)

– bβV SV λ4(t) – B0, (56)

dλ4

dt
= –λ4(t)

(
–εV – μV – u∗

2
)

– λ5(t)
(
εV – u∗

2
)
,

dλ5

dt
=

bβHSHNV

NH

(
λ1(t) – λ2(t)

)
– λ5(t)

(
–μV – u∗

2
)

with the boundary conditions

λi(T) = 0 for all i = 1, . . . , 5. (57)
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In addition, the optimal control variables are given by

u∗
1(t) = max

(
min

(
λ1S∗

H
B1

, umax
1

)
, 0

)
, (58)

u∗
2(t) = max

(
min

(
λ4EV + λ5(IV + EV )

B2
, umax

2

)
, 0

)
. (59)

Proof The proof proceeds in a similar fashion as was done for the optimal control under
Policy 1. The Hamiltonian is defined as follows:

H = B0IH (t) +
1
2

B1u2
1 +

1
2

B2u2
2 + λ1

{
μH (1 – SH) –

bβH

NH
SHIV NV

}

+ λ2

{
bβH

NH
SHIV NV – (εH + μH )EH

}
+ λ3

(
εHEH –

(
μH + rH + u1(t)

)
IH

)

+ λ4
(
bβV SV IH –

(
εV + μV + u2(t)

)
EV

)
+ λ5

{
M
NV

+
(
εV – u2(t)

)
EV

–
(
μV + u2(t)

)
IV

}
. (60)

The adjoint system is

dλ1

dt
= –λ1(t)

(
–μH –

bβHNV IV

NH

)
–

bβHNV

NH
IV λ2(t),

dλ2

dt
= –λ2(t)(–εH – μH ) – λ3(t)εH ,

dλ3

dt
= –λ3(t)

(
–μH – rH – u∗

1
)

– bβV SV λ4(t) – B0, (61)

dλ4

dt
= –λ4(t)

(
–εV – μV – u∗

2
)

– λ5(t)
(
εV – u∗

2
)
,

dλ5

dt
=

bβHSHNV

NH

(
λ1(t) – λ2(t)

)
– λ5(t)

(
–μV – u∗

2
)
.

Hence

∂H
∂u1

= B1u1 – λ3IH = 0 �⇒ u∗
1 =

λ3IH

B1
, (62)

∂H
∂u2

= B2u2 – λ4EV + λ5(–EV – IV ) = 0 �⇒ u∗
2 =

λ4EV + λ5(IV + EV )
B2

. (63)

Application of the property of the control set yields

u∗
1 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if λ3IH
B1

≤ 0,
λ3IH

B1
if λ3IH

B1
< umax

1 ,

umax
1 if λ3IH

B1
≥ umax

1 ,

(64)

u∗
2 =

⎧
⎪⎪⎨

⎪⎪⎩

0 if λ4EV +λ5(IV +EV )
B2

≤ 0,
λ4EV +λ5(IV +EV )

B2
if λ4EV +λ5(IV +EV )

B2
< umax

2 ,

umax
2 if λ4EV +λ5(IV +EV )

B2
≥ umax

2 .

(65)

�
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Table 2 Parameters used in the numerical simulations

Parameter Case 1 Case 2

μH 1/(70*365) 1/(70*365)
NH 92,000 92,000
b 0.2 0.2
A 5000 5000
μV 1/24 1/24
M 400 0
βH 0.95 0.95
βV 0.75 0.75
εH 0.1667 0.1667
εV 0.1428 0.1428
rH 0.3 0.3

Figure 1 The responses comparisons of case 1
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4 Results and discussion
In this section we give the numerical analyses of the two control policies in containing the
dengue outbreak. For each policy, the optimality system is numerically solved using the
fourth order Runge–Kutta forward-backward sweep method [32]. Specifically, the differ-
ential equation systems of Equations (29)–(33) and (34)–(38) are solved by the forward
Runge–Kutta method with the predefined initial conditions, while the adjoint system is
solved by the backward sweep method with the transversality conditions. The parameters
used are taken from Chanprasopchai et al. [19] and are given in Table 2.

The initial conditions used for all simulations are given as follows:

SH (0) = 0.1, EH (0) = 0.3, IH (0) = 1 – SH (0) – EH (0) = 0.6, (66)

EV (0) = 0.2, IV (0) = 1 – EV (0) = 0.8. (67)

The time T used for all simulations is fixed to 60 days or two months which is around
the average infection season duration. The values of the control weights B0, B1 and B2

are set initially at B0 = 100, B1 = 50, B2 = 200. Note that the cost of operating the pesticide
control B2 is set higher than the costs of vaccination and isolation, since insecticide control
is generally more labor intensive and time consuming to implement than both vaccination
and isolation.

Figure 1 shows the scenario of controlling the dengue transmission subjected to the ver-
tical transmission, where the controls of Policies 1 and 2 are applied to the system (case 1).
Note that in practice both controlling mechanisms u1 and u2 cannot be implemented over
the entire population, and therefore the maximum level of control umax is kept at 0.8 for

Figure 2 The control comparisons for case 1



Pongsumpun et al. Advances in Difference Equations        (2019) 2019:176 Page 14 of 25

both u1 and u2 in both policies. It is seen from Figs. 1(a) and 1(b) that the number of in-
dividuals with susceptibility to the disease SH and the number of exposed individuals EV

significantly deviate from the uncontrolled system upon the action of Policy 1; whereas
Policy 2 yields similar responses for SH and EH . However, the number of infected indi-
viduals IH , shown in Fig. 1(c), is lowest upon the action of Policy 2; whereas the action
of Policy 1 yields only a marginally improved response to the uncontrolled system. Fig-
ures 1(d) and 1(e) show the responses of the numbers of the exposed and infected vector
populations. It is evident that the number of infected vector populations under the action
of Policy 1 is significantly less than that of Policy 2.

Figure 2 shows the expended control actions of u1 and u2 to control the dengue trans-
mission when vertical transmission is possible. It is seen that for u1 both policies require

Figure 3 The responses comparisons of case 2
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a control that starts at some starting point, which then quickly decays to zero. For u2, Pol-
icy 1 expends a small control action that quickly decays to zero, while Policy 2 requires
zero control initially, which then quickly increases initially before decaying to zero. Note
that this increase happens around Day 8, which coincides with the sharp drop of the in-
fected human individuals. Although Policy 2 leads to a quicker drop of the infected human
population, this comes with a far greater initial isolation effort, whereas the required vac-
cination effort is significantly less while yielding an improved all-round epidemic control.

Figure 3 shows the effects of applying the control measures to the dengue transmission
when there is no vertical transmission (case 2). Note that in this case all the parameters
of case 1 were kept the same, except that now M = 0. It is evident from Figs. 3(a) and 3(b)
that once again the number of susceptible human individuals and the number of exposed
individuals decay quicker to a level close to zero under the action of Policy 1, while the
number of the infected human populations drops quicker to a level close to zero when the
controls of Policy 2 are applied. The implementation of Policy 1 initially yields a lower IV

response than that of Policy 2 in the first 30 days. The two responses converge to the same
number thereafter. This is in contrast to case 1, where this convergence is not seen until
Day 57. This result suggests that the control is more enhanced for case 2 in favor of case 1,
to facilitate a quicker drop in the IV individuals.

Figure 4 shows the inputs u1 and u2 needed to control the spread of the dengue disease.
It is seen that similar levels of u1 in comparison to case 1 were needed in both policies
to control the disease; whereas the level of the insecticide administration u2 is slightly
higher in the presence of vertical transmission. This greater u2 is to be anticipated because
the presence of vertical transmission introduces transovarially infected mosquitoes into

Figure 4 The control comparisons for case 1
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the system, thereby requiring higher insecticide administration to facilitate the control
so that the epidemic achieves the same state quicker than the case without the vertical
transmission.

4.1 Change in B0

To investigate the controlled system responses upon respective weight changes in the ob-
jective functional, the parameter B0 is firstly chosen to be investigated. To this end, the
parameter B0, which is associated with the human infectious population, is firstly defined
as follows:

B0 = [200, 400, . . . , 1000]. (68)

Figure 5 The endemic level trends as a function of
the weight B0
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The other epidemiological parameters are chosen from case 2 of Table 2. The weight B1

is kept fixed at 200, while the weight B2 is fixed at 400 for all simulations.
Figure 5 plots the changes of the endemic level trends as a function of the weight B0. It

is evident from Fig. 5(a) that for both policies, the S∗
H trends result in an increasing func-

tion with decreasing gradient as the weight B0 increases. Figures 5(b) and 5(c) illustrate
that for both policies, the E∗

H and I∗
H trends yield a decreasing function with negative dE∗

dB0

and dI∗
dB0

. Specifically, these graphs show that a higher B0 weighting gives rise to a lower
endemic exposed human individuals, as well as a lower endemic infectious human indi-
viduals.

Figure 6 now plots the control efforts of both controlling actions u1 and u2, which are
used to implement Policies 1 and 2, along the change in B0 of Equation (68). It is seen from
Figs. 6(a) and 6(c) that for u1 and u2 used to implement Policy 1, a higher B0 weighting
requires higher initial values of u1(t) and u2(t) in order to better control the disease. Fig-
ure 6(b) shows that as B0 increases, the u1 action stays at the maximum u1,max for a longer
period of time before decaying to zero. Figure 6(d) shows the higher value of B0, the higher
initial value of u2(t), as well as a the higher value of the saddle which exists around Day
15–30, to better control the dengue transmission effectively. It is thus our recommenda-
tion that a higher B0 weighting should be set to ensure a better dengue disease control
when implementing either Policy 1 or Policy 2.

Figure 6 The comparison of the control actions along the change in B0
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4.2 Change in B1

We now turn our attention to investigating controlled system responses to the change in
the weight B1. To this end, the B1 vector is defined as follows:

B1 = [200, 400, . . . , 1000]. (69)

The other epidemiological parameters are again chosen from case 2 of Table 2. The weight
B0 is fixed at 1000, while B2 is fixed at 400.

Figure 7 now plots the endemic level changes as a function of B1. Figures 7(a)–7(c) show
that the endemic levels of S∗

H , E∗
H , and I∗

H give an increasing function with increasing gra-
dient as B1 increases for both Policies 1 and 2. Specifically, these graphs suggest that a
lower B1 weighing is favorable to yield the lowest numbers of susceptible, infectious, and
exposed human individuals.

Figure 7 The endemic level trends as a function of
the weight B1
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Figure 8 The comparison of the control actions along the change in B1

Figure 8 plots the control efforts for both controlling actions used to implement Policies
1 and 2 against the change of the weighting function B1. It is seen from Fig. 8(a) that the
lower the B1 weighting, the higher initial u1(t) is needed to implement Policy 1. Figure 8(b)
illustrates that the lower the B1 weighting, the longer u1 action remains at the maximum
u1,max before decaying. Figures 8(c) and 8(d) suggest that a higher B1 weighting results in
more control effort u2(t) for both policies. Hence it is advisable to set a lower B1 weighting
to minimize the endemic response levels as well as minimizing the required control efforts
to effective control the dengue.

4.3 Change in B2

To investigate the controlled system responses to changes in the weight B2, let us now
define the B2 vector by

B2 = [200, 400, . . . , 1000]. (70)

The other epidemiological constants are kept identical to those used to investigate the
changes in B0 and B1. The weights B0 and B1 were fixed at 1000 and 400 respec-
tively.

The result of Fig. 9(a) suggests that for both policies, the endemic levels of S∗
H decrease as

the weighting function B2 increases. Figures 9(b) and 9(c) suggest that the endemic levels
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Figure 9 The endemic level trends as a function of
the weight B2

E∗
H and I∗

H will be decreasing when the action of Policy 1 is carried out but will increase
if the actions of Policy 2 are performed. These results suggest that for the administration
of Policy 1, a higher B2 would yield a more favorable outcome in terms of minimizing
the number of infectious and exposed humans, while for the administration of Policy 2, a
lower B2 would better minimize the number of infectious and exposed individuals.

Figure 10(a) suggests that the lower the B2 weighting, the higher the initial u1(t) required
to implement Policy 1; changing B2 however does not significantly alter the u1 needed to
implement Policy 2, unlike in the case of Policy 1. Figures 10(c) and 10(d) suggest that a
lower B2 will result in more control efforts u2 being expended to implement both policies.
Overall it is advisable to set a low B2 weighting to give an effective control of the dengue
disease.
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Figure 10 The comparison of the control actions along the change in B2

4.4 Changes in βH

To investigate the control effort needed to withstand the changes in the transmission prob-
ability of the dengue virus from vector to human, let us define the βH vector by

βH = [0.65, 0.75, 0.85, 0.95]. (71)

The other epidemiological parameters are kept identical to the earlier investigations. The
weights B0, B1, and B2 are fixed at 1000, 400, and 800 respectively.

Figures 11(a) and 11(b) suggest that as the transmission probability from vector to hu-
man increases, the u1 control for Policy 1 begins at an initial value, then gradually decays
to zero effort. The required u1 control for Policy 2 stays at the maximum value u1,max for
around three days, then gradually decays to zero. Nevertheless, there is little deviation
between the u1 control efforts as βH increases. Figures 11(c) and 11(d) suggest that for
Policy 1, a lower βH required a lower control effort, whereas for Policy 2, a higher βH

required a little higher control efforts around Day 20. However, these differences in the
required control efforts are mainly within 2% of one another, thereby suggesting that the
both control schemes are robust to changes in βH .
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Figure 11 The comparison of the control actions along the change in βH

4.5 Changes in βV

To investigate the control effort needed to withstand the changes in the transmission prob-
ability of the dengue virus from human to vector, let us now define the βV vector by

βV = [0.65, 0.75, 0.85, 0.95]. (72)

The other epidemiological parameters are kept identical to the earlier investigations. The
weights B0, B1, and B2 are fixed at 1000, 200, and 400 respectively.

Figure 12 shows that, overall, there are only subtle differences between the required u1(t)
and u2(t) needed to implement both policies, as the values of βV increase from 0.65 to 0.95.
These results suggest that both controlling schemes are also robust to the changes in the
transmission rate between vector to human βV .

5 Conclusion
This work has presented a control mechanism based on a previously developed mathe-
matical model of the dengue disease by Chanprasopchai et al. that takes into account the
effect of vertical transmission [19]. The optimal control framework was proposed in view
of two policies, namely vaccination and insecticide administration (Policy 1) and isola-
tion and insecticide administration (Policy 2). The use of Pontrargin’s maximum principle
allowed necessary and optimality conditions, thus facilitating the optimal control to be
developed.
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Figure 12 The comparison of the control actions along the change in βV

Numerical solutions of the control systems were presented. It was found that, although
the administration of Policy 2 yielded a quicker diminishment of the infected human pop-
ulation, this comes with a greater expense in the initial effort; whereas the required vacci-
nation effort of Policy 1 is significantly less, while yielding an improved all-round epidemic
control. Investigations were also conducted to investigate the control systems response
under the changes of the weight functions B0, B1, and B2. Numerical results suggest that
the endemic levels E∗

H and I∗
H generally yielded a decreasing trend for both administered

policies with higher B0; whereas an increasing trend is seen for both administered policies
with higher B1. For B2, an increasing function is obtained for the implementation of Pol-
icy 1, while a decreasing function is attained for Policy 2. These results also suggest that
a high B0 weighting, along with low B1 and B2 values, ensured the minimization of the
endemic response levels, as well as minimizing the control efforts to control the dengue.

Lastly, the two control schemes are shown numerically to be robust to changes in the
transmission probabilities, both βH and βV . Hence, besides using insecticides, vaccina-
tions and isolation also help to effectively and optimally control the dengue disease.
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