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Abstract
This paper aims to present an application of the Riemann–Hilbert approach to treat
higher-order nonlinear differential equation that is an eighth-order nonlinear
Schrödinger equation arising in an optical fiber. Starting from the spectral analysis of
the Lax pair, a matrix Riemann–Hilbert problem is formulated strictly. Then, by solving
the obtained Riemann–Hilbert problem under the reflectionless case, N-soliton
solution is generated for the eighth-order nonlinear Schrödinger equation. Finally, the
localized structures and dynamic behaviors of one- and two-soliton solutions are
illustrated by some figures.
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1 Introduction
The infinite integrable nonlinear Schrödinger (NLS) equation hierarchy [1] reads as

ipt + A2K2
[
p(x, t)

]
– iA3K3

[
p(x, t)

]
+ A4K4

[
p(x, t)

]
– iA5K5

[
p(x, t)

]
+ · · · = 0, (1)

which is used to investigate the higher-order dispersive effects and nonlinearity. Here
p(x, t) denotes a normalized complex amplitude of the optical pulse envelope. The co-
efficients Al are arbitrary real constants, and Kl[p(x, t)] are the lth-order operators in the
NLS hierarchy

K2
[
p(x, t)

]
= pxx + 2p|p|2,

K3
[
p(x, t)

]
= pxxx + 6|p|2px,

K4
[
p(x, t)

]
= pxxxx + 6p∗p2

x + 4p|px|2 + 8|p|2pxx + 2p2p∗
xx + 6|p|4p,

K5
[
p(x, t)

]
= pxxxxx + 10|p|2pxxx + 30|p|4px + 10ppxp∗

xx + 10pp∗
xpxx

+ 20p∗pxpxx + 10p2
xp∗

x ,

...
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Here the subscripts of p(x, t) mean the partial derivatives with respect to the scaled spatial
coordinate x and time coordinate t correspondingly. And the superscript ∗ represents
complex conjugate.

As a matter of fact, Equation (1) covers many nonlinear differential equations of impor-
tant significance, some of which are listed as follows:

(i) For the case of Al = 0, l ≥ 3, Equation (1) is reduced to the fundamental nonlinear
Schrödinger equation describing the propagation of the picosecond pulses in an
optical fiber.

(ii) For the case of A2 = 1
2 and Al = 0, l ≥ 4, Equation (1) is reduced to the Hirota

equation [2–5] describing the third-order dispersion and time-delay correction to
the cubic nonlinearity in ocean waves.

(iii) For the case of A2 = 1
2 and Al = 0, l ≥ 5, Equation (1) becomes a fourth-order

dispersive NLS equation [6, 7] describing the ultrashort optical-pulse propagation
in a long-distance, high-speed optical fiber transmission system.

(iv) For the case of A2 = 1
2 and Al = 0, l ≥ 6, Equation (1) becomes a fifth-order NLS

equation [8] describing the attosecond pulses in an optical fiber.
In recent years, researchers have devoted their attention to many higher-order NLS

equations truncating from Equation (1). For instance, an eighth-order NLS equation was
under study [9]. The interactions among multiple solitons were discussed, and oscillations
in the interaction zones were observed systematically. As a result, it was found that the os-
cillations in the solitonic interaction zones possess different forms with different spectral
parameters and so forth. In a follow-up study [10], the Lax pair and infinitely-many con-
servation laws were derived via symbolic computation, which verifies the integrability of
equation.

All the time, seeking exact solutions of nonlinear models is of an especially important
significance in the study of various nonlinear phenomena [11–15]. With this in mind, in
this paper, we investigate in detail an eighth-order NLS equation [16]

ipt + pxxxxxxxx + 16|p|2pxxxxxx + 2p2p∗
xxxxxx + 56p∗pxpxxxxx + 40pp∗

xpxxxxx

+ 12ppxp∗
xxxxx + 98|p|4pxxxx + 168|px|2pxxxx + 112p∗pxxpxxxx + 72pp∗

xxpxxxx

+ 28p2|p|2p∗
xxxx + 42p2

xp∗
xxxx + 44ppxxp∗

xxxx + 68ppxxxp∗
xxx + 476|p|2p∗pxpxxx

+ 252pxp∗
xxpxxx + 308p|p|2p∗

xpxxx + 308p∗
xpxxpxxx + 70p∗p2

xxx + 196pxpxxp∗
xxx

+ 168p|p|2pxp∗
xxx + 56p3p∗

xp∗
xxx + 280|p|6pxx + 1456|p|2|px|2pxx + 490

(
p∗)2p2

xpxx

+ 238p2(p∗
x
)2pxx + 588|p|2p2

xp∗
xx + 336p2|px|2p∗

xx + 140|p|4p2p∗
xx + 42p3(p∗

xx
)2

+ 392|p|2p|pxx|2 + 322|p|2p∗p2
xx + 182p2

xxp∗
xx + 560|p|4p∗p2

x + 560|p|4p|px|2

+ 420p∗p2
x|px|2 + 140p3|p|2(p∗

x
)2 + 378|px|4p + 70|p|8p = 0, (2)

which works as a model for describing the propagation of ultrashort nonlinear pulses. The
same scalar equation can be found from Equation (1) where Kl(x, t) have the same meaning
as Hl+1(p, –p∗). Here p(x, t) denotes a normalized complex amplitude of the optical pulse
envelope.

The principal aim of this paper is to determine multi-soliton solutions for the eighth-
order NLS equation (2) with the aid of the Riemann–Hilbert approach [17–29]. This paper
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is divided into five sections. In the second section, we recall the Lax pair associated with
Equation (2) and convert it into a more convenient form. In the third section, we carry
out the spectral analysis, from which a matrix Riemann–Hilbert problem is set up on the
real axis. In the fourth section, the construction of multi-soliton solutions for Equation
(2) is detailedly discussed in the framework of the Riemann–Hilbert problem without re-
flection. A brief conclusion is given in the final section.

2 Lax pair
Upon the Ablowitz–Kaup–Newell–Segur formalism, Equation (2) is associated with the
following Lax pair [16]:

Ψx = UΨ , U = iςσ + iQ, (3a)

Ψt̃ = VΨ , V = 128iς8σ + 128iς7Q +
7∑

k=1

(2ς )7–kV 0
k , (3b)

where Ψ = (Ψ1,Ψ2)T is a vector eigenfunction, Ψ1 and Ψ2 are the complex functions of x
and t, the symbol T signifies transpose of the vector, and ς is an isospectral parameter.
Furthermore,

σ =

(
–1 0
0 1

)

, Q =

(
0 p

–q 0

)

, V 0
k =

(
–ikFk(p, q) ik–1Hk(p, q)
ik–1Gk(p, q) ikFk(p, q)

)

,

and

H1(p, q) = –px, G1(p, q) = –qx,
(
Fk(p, q)

)
x = –pGk(p, q) – qHk(p, q),

Hk+1(p, q) = 2pFk(p, q) +
(
Hk(p, q)

)
x, Gk+1(p, q) = –2qFk(p, q) –

(
Gk(p, q)

)
x.

Particularly,

F1(p, q) = pq, H2(p, q) = 2p2q – pxx,

G2(p, q) = –2q2p + qxx, F2(p, q) = pxq – pqx,

H3(p, q) = 6pqpx – pxxx, G3(p, q) = 6pqqx – qxxx,

F3(p, q) = pqxx + qpxx – pxqx – 3p2q2,

H4(p, q) = –6p3q2 + 6qp2
x + 4ppxqx + 8pqpxx + 2p2qxx – pxxxx,

G4(p, q) = 6p2q3 – 6pq2
x – 4qpxqx – 8pqqxx – 2q2pxx + qxxxx,

F4(p, q) = –6pq2px + 6p2qqx – pxxqx + pxqxx + qpxxx – pqxxx,

H5(p, q) = –30p2q2px + 10p2
xqx + 20qpxpxx + 10pqxpxx + 10ppxqxx + 10pqpxxx – pxxxxx,

G5(p, q) = –30p2q2qx + 10q2
xpx + 10qqxpxx + 10qpxqxx + 10pqqxxx + 20pqxqxx – qxxxxx,

F5(p, q) = 10p3q3 – 5q2p2
x – 5p2q2

x – 10pq2pxx – 10p2qqxx + pxxqxx – qxpxxx – pxqxxx

+ qpxxxx + pqxxxx,
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H6(p, q) = 20p4q3 – 70pq2p2
x – 60p2qpxqx – 10p3q2

x – 50p2q2pxx + 50pxqxpxx + 20qp2
xx

– 20p3qqxx + 20p2
xqxx + 22ppxxqxx + 30qpxpxxx + 18pqxpxxx + 8ppxqxxx

+ 12pqpxxxx + 2p2qxxxx – pxxxxxx,

G6(p, q) = –20q4p3 + 10q3p2
x + 60q2ppxqx + 70qp2q2

x + 20q3ppxx – 20q2
xpxx

+ 50p2q2qxx – 50pxqxqxx – 22qpxxqxx – 20pq2
xx – 8qqxpxxx – 18qpxqxxx

– 30pqxqxxx – 2q2pxxxx – 12pqqxxxx + qxxxxxx,

F6(p, q) = 30p2q3px – 30p3q2qx – 10qp2
xqx + 10ppxq2

x – 20q2pxpxx + 10pqqxpxx

– 10pqpxqxx + 20p2qxqxx – 10pq2pxxx + qxxpxxx + 10p2qqxxx – pxxqxxx

– qxpxxxx + pxqxxxx + qpxxxxx – pqxxxxx,

H7(p, q) = 140p3q3px – 70q2p3
x – 280pqp2

xqx – 70p2q2
xpx – 280pq2pxpxx – 140p2qqxpxx

+ 70qxp2
xx – 140p2qpxqxx + 112pxpxxqxx – 70p2q2pxxx + 98pxqxpxxx

+ 70qpxxpxxx + 42pqxxpxxx + 28p2
xqxxx + 28ppxxqxxx + 42qpxpxxxx

+ 28pqxpxxxx + 14ppxqxxxx + 14pqpxxxxx – pxxxxxxx,

G7(p, q) = 140p3q3qx – 70q2p2
xqx – 280pqpxq2

x – 70p2q3
x – 140pq2qxpxx – 140pq2pxqxx

– 280p2qqxqxx + 112qxpxxqxx + 70pxq2
xx + 28q2

xpxxx + 28qqxxpxxx

– 70p2q2qxxx + 98pxqxqxxx + 42qpxxqxxx + 70pqxxqxxx – 14qqxpxxxx

+ 28qpxqxxxx + 42pqxqxxxx + 14pqqxxxxx – qxxxxxxx,

F7(p, q) = –35p4q4 + 70pq3p2
x + 70p2q2pxqx + 70p3qq2

x + 21p2
xq2

x + 70p2q3pxx

– 28qpxqxpxx – 14pq2
xpxx – 21q2p2

xx + 70p3q2qxx – 14qp2
xqxx – 28ppxqxqxx

– 56pqpxxqxx – 21p2q2
xx – 28q2pxpxxx – 14pqqxpxxx – 14pqpxqxxx

– 28p2qxqxxx – pxxxqxxx – 14pq2pxxxx + qxxpxxxx – 14p2qqxxxx

+ pxxqxxxx – qxpxxxxx – pxqxxxxx + qpxxxxxx + pqxxxxxx.

Then the reductions q = –p∗ and t̃ = –t exactly result in Equation (2) based on the zero-
curvature equations.

Let us now rewrite the Lax pair (3a)–(3b) in a more convenient form:

Ψx = i(ςσ + Q)Ψ , (4a)

Ψt = –
(
128iς8σ + Q1

)
Ψ , (4b)

where

Q =

(
0 p
p∗ 0

)

, Q1 = 128iς7Q +
7∑

k=1

(2ς )7–kV 0
k .
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3 Riemann–Hilbert problem
In this section, we focus on putting forward a matrix Riemann–Hilbert problem for Equa-
tion (2). Now we assume that the potential function p(x, t) in the Lax pair (4a)–(4b) decays
to zero sufficiently fast as x → ±∞. It can be known from (4a)–(4b) that when x → ±∞,

Ψ ∝ μeiςσx–128iς8σ t ,

which motivates us to introduce the variable transformation

Ψ = μeiςσx–128iς8σ t .

Under this transformation, the Lax pair (4a)–(4b) can be changed into the form

μx = iς [σ ,μ] + U1μ, (5a)

μt = –128iς8[σ ,μ] – Q1μ, (5b)

where [·, ·] is the matrix commutator and U1 = iQ. From (5a)–(5b), we find that tr(U1) =
tr(Q1) = 0.

In the direct scattering process, we will concentrate on the spectral problem (5a), and
the t-dependence will be suppressed. We first introduce two matrix Jost solutions μ± of
(5a) expressed as a collection of columns

μ– =
(
[μ–]1, [μ–]2

)
, μ+ =

(
[μ+]1, [μ+]2

)
, (6)

meeting the asymptotic conditions at large distances

μ– → I, x → –∞,

μ+ → I, x → +∞.

Here the subscripts of μ indicated refer to which end of the x-axis the boundary conditions
are required for, and I stands for the identity matrix of size 2. Actually, the solutions μ±
are uniquely determined by the integral equations of Volterra type

μ– = I +
∫ x

–∞
eiςσ (x–y)U1(y)μ–(y,ς )eiςσ (y–x) dy, (7a)

μ+ = I –
∫ +∞

x
eiςσ (x–y)U1(y)μ+(y,ς )eiςσ (y–x) dy. (7b)

After direct analysis on Equations (7a)–(7b), we can see that [μ–]1, [μ+]2 are analytic for
ς ∈ C

+ and continuous for ς ∈ C
+ ∪ R, while [μ+]1, [μ–]2 are analytic for ς ∈ C

– and
continuous for ς ∈ C

– ∪ R, where C
– and C

+ are respectively the lower and upper half
ς -planes:

C
– =

{
ς ∈C| Im(ς ) < 0

}
, C

+ =
{
ς ∈C| Im(ς ) > 0

}
.

Next we set out to study the properties of μ±. In fact, it can be shown from Abel’s identity
and tr(U1) = 0 that the determinants of μ± are independent of the variable x. Evaluating
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detμ– at x = –∞ and detμ+ at x = +∞, we get detμ± = 1 for ς ∈ R. In addition, μ–E and
μ+E are both fundamental solutions of (3a), where E = eiςσx, they are linearly dependent

μ–E = μ+ES(ς ), ς ∈ R. (8)

Here S(ς ) = (skj)2×2 is called the scattering matrix and det S(ς ) = 1. Furthermore, we find
from the properties of μ± that s11 allows analytic extension to C

+ and s22 analytically ex-
tends to C

–.
A matrix Riemann–Hilbert problem is closely connected with two matrix functions: one

is analytic in C
+ and the other is analytic in C

–. In consideration of the analytic properties
of μ±, we set

P1(x,ς ) =
(
[μ–]1, [μ+]2

)
(x,ς ), (9)

defining in C
+, be an analytic function of ς . And then, P1 can be expanded into the asymp-

totic series at large-ς

P1 = P(0)
1 +

P(1)
1
ς

+
P(2)

1
ς2 + O

(
1
ς3

)
, ς → ∞. (10)

Inserting expansion (10) into the spectral problem (5a) and equating terms with the same
powers of ς , we obtain

i
[
σ , P(1)

1
]

+ U1P(0)
1 = P(0)

1x , i
[
σ , P(0)

1
]

= 0,

which yields P(0)
1 = I, namely P1 → I as ς ∈C

+ → ∞.
For establishing a matrix Riemann–Hilbert problem, the analytic counterpart of P1 in

C
– is still needed to be given. Note that the adjoint scattering equation of (5a) reads as

Hx = iς [σ , H] – HU1, (11)

and the inverse matrices of μ± meet this adjoint equation. Then we express the inverse
matrices of μ± as a collection of rows

μ–1
± =

(
[μ–1± ]1

[μ–1± ]2

)

, (12)

which obey the boundary conditions μ–1± → I as x → ±∞. It is easy to know from (8) that

E–1μ–1
– = R(ς )E–1μ–1

+ , (13)

where R(ς ) = (rkj)2×2 = S–1(ς ). Thus, the matrix function P2 which is analytic for ς ∈ C
–

is constructed as

P2(x,ς ) =

(
[μ–1

– ]1

[μ–1
+ ]2

)

(x,ς ). (14)
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Analogous to P1, the very large-ς asymptotic behavior of P2 turns out to be P2 → I as
ς ∈C

– → ∞.
Carrying (6) into Equation (8) gives rise to

(
[μ–]1, [μ–]2

)
=

(
[μ+]1, [μ+]2

)
(

s11 s12e–2iςx

s21e2iςx s22

)

,

from which we have

[μ–]1 = s11[μ+]1 + s21e2iςx[μ+]2.

Hence, P1 is of the form

P1 =
(
[μ–]1, [μ+]2

)
=

(
[μ+]1, [μ+]2

)
(

s11 0
s21e2iςx 1

)

.

On the other hand, via substituting (12) into Equation (13), we get

(
[μ–1

– ]1

[μ–1
– ]2

)

=

(
r11 r12e–2iςx

r21e2iςx r22

)(
[μ–1

+ ]1

[μ–1
+ ]2

)

,

from which we can express [μ–1
– ]1 as

[μ–1
– ]1 = r11[μ–1

+ ]1 + r12e–2iςx[μ–1
+ ]2.

As a consequence, P2 is written as

P2 =

(
[μ–1

– ]1

[μ–1
+ ]2

)

=

(
r11 r12e–2iςx

0 1

)(
[μ–1

+ ]1

[μ–1
+ ]2

)

.

With two matrix functions P1 and P2 which are analytic in C
+ and C

– respectively in
hand, we are in a position to deduce a matrix Riemann–Hilbert problem for Equation
(2). After denoting that the limit of P1 is P+ as ς ∈ C

+ → R and the limit of P2 is P– as
ς ∈C

– →R, a matrix Riemann–Hilbert problem can be given as follows:

P–(x,ς )P+(x,ς ) =

(
1 r12e–2iςx

s21e2iςx 1

)

, (15)

with its canonical normalization conditions as

P1(x,ς ) → I, ς ∈ C
+ → ∞,

P2(x,ς ) → I, ς ∈ C
– → ∞,

and r11s11 + r12s21 = 1.
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4 N-Soliton solution
Having described a matrix Riemann–Hilbert problem for Equation (2), we now turn to
seeking its multi-soliton solutions. To achieve the goal, we first need to solve the Riemann–
Hilbert problem (15) under the assumption of irregularity, which signifies that both det P1

and det P2 possess some zeros in the analytic domains of their own. From the definitions
of P1 and P2 as well as Equation (8), we have

det P1(ς ) = s11(ς ), ς ∈C
+,

det P2(ς ) = r11(ς ), ς ∈C
–,

which means that det P1 and det P2 have the same zeros as s11 and r11 respectively, and
r11 = (S–1)11 = s22.

With the above analysis, it is now necessary to reveal the characteristic feature of zeros.
Manifestly, the potential matrix Q possesses the symmetry relation Q† = Q, upon which
we deduce

μ
†
±(ς∗) = μ–1

± (ς ). (16)

Here the superscript † stands for the Hermitian of a matrix. For facilitating discussion, we
introduce two special matrices J1 = diag(1, 0) and J2 = diag(0, 1), and express (9) and (14)
in terms of

P1 = μ–J1 + μ+J2, (17a)

P2 = J1μ
–1
– + J2μ

–1
+ . (17b)

A direct computation of the Hermitian of expression (17a), using relation (16), generates
that

P†
1(ς∗) = P2(ς ), ς ∈C

–, (18)

and S†(ς∗) = S–1(ς ), which leads to

s∗
11(ς∗) = r11(ς ), ς ∈C

–. (19)

This equality implies that each zero ±ςk of s11 results in each zero ±ς∗
k of r11 correspond-

ingly. Therefore, our assumption is that det P1 has simple zeros {ςj ∈ C
+, 1 ≤ j ≤ N} and

det P2 has simple zeros {ς̂j ∈C
–, 1 ≤ j ≤ N}, where ς̂j = ς∗

j . The full set of the discrete scat-
tering data is composed of these zeros and the nonzero column vectors υj and row vectors
υ̂j, which satisfy the following equations:

P1(ςj)υj = 0, (20a)

υ̂jP2(ς̂j) = 0. (20b)

Taking the Hermitian of Equation (20a) and using (18) as well as comparing with Equa-
tion (20b), we find that the eigenvectors fulfill the relation

υ̂j = υ
†
j , 1 ≤ j ≤ N . (21)
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Differentiating Equation (20a) in x and t and taking advantage of Lax pair (5a)–(5b), we
arrive at

P1(ςj)
(

∂υj

∂x
– iςjσυj

)
= 0,

P1(ςj)
(

∂υj

∂t
+ 128iς8

j συj

)
= 0,

which yields

υj = e(iςjx–128iς8
j t)σ

υj,0, 1 ≤ j ≤ N .

Here υj,0, 1 ≤ j ≤ N , are complex constant vectors. Making use of relation (21), we have

υ̂j = υ
†
j,0e(–iς∗

j x+128iς∗
j

8t)σ , 1 ≤ j ≤ N .

However, in order to derive soliton solutions of Equation (2), we investigate the
Riemann–Hilbert problem (15) corresponding to the reflectionless case, i.e., s21 = 0. We
introduce an N × N matrix M defined as

M = (Mkj)N×N =
(

υ̂kυj

ςj – ς̂k

)

N×N
, 1 ≤ k, j ≤ N .

Thus the solutions [30] to problem (15) can be determined by

P1(ς ) = I –
N∑

k=1

N∑

j=1

υk υ̂j(M–1)kj

ς – ς̂j
, (22a)

P2(ς ) = I +
N∑

k=1

N∑

j=1

υkυ̂j(M–1)kj

ς – ςk
, (22b)

where (M–1)kj denotes the (k, j)-entry of M–1. From expression (22a), it can be seen that

P(1)
1 = –

N∑

k=1

N∑

j=1

υk υ̂j
(
M–1)

kj.

In what follows, we shall retrieve the potential function p(x, t) based on the scattering
data. Expanding P1(ς ) at large-ς as

P1(ς ) = I +
P(1)

1
ς

+
P(2)

1
ς2 + O

(
1
ς3

)
, ς → ∞,

and carrying this expansion into (5a) gives rise to

Q = –
[
σ , P(1)

1
]
.

Consequently, the potential function is reconstructed as

p(x, t) = 2
(
P(1)

1
)

12,

with (P(1)
1 )12 being the (1, 2)-entry of P(1)

1 .
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To conclude, setting the nonzero vectors υk,0 = (αk ,βk)T and θk = iςkx – 128iς8
k t, the

general N-soliton solution for the eighth-order NLS equation (2) is written as

p(x, t) = –2
N∑

k=1

N∑

j=1

αkβ
∗
j eθ∗

j –θk
(
M–1)

kj, (23)

where

Mkj =
α∗

k αje–θ∗
k –θj + β∗

k βjeθ∗
k +θj

ςj – ς∗
k

, 1 ≤ k, j ≤ N .

The bright one- and two-soliton solutions will be our main concern in the rest of this
section. For the simplest case of N = 1, the bright one-soliton solution can be readily de-
rived as

p(x, t) = –2α1β
∗
1 eθ∗

1 –θ1
ς1 – ς∗

1

|α1|2e–θ∗
1 –θ1 + |β1|2eθ∗

1 +θ1
, (24)

where θ1 = iς1x – 128iς8
1 t. Furthermore, via fixing α1 = 1 and setting ς1 = ã1 + ib̃1 as well

as |β1|2 = e2ξ1 , the solution (24) is then turned into the following form:

p(x, t) = –2ib̃1β
∗
1 eθ∗

1 –θ1 e–ξ1 sech
(
θ∗

1 + θ1 + ξ1
)
, (25)

where

θ∗
1 + θ1 = –2b̃1x + 2048ã7

1b̃1t – 14336ã5
1b̃3

1t + 14336ã3
1b̃5

1t – 2048ã1b̃7
1t,

θ∗
1 – θ1 = –2iã1x – 7168iã2

1b̃6
1t – 7168iã6

1b̃2
1t + 17920iã4

1b̃4
1t + 256ib̃8

1t + 256iã8
1t.

Hence we can further write the bright one-soliton solution (25) as

p(x, t) = –2ib̃1β
∗
1 eθ∗

1 –θ1 e–ξ1

× sech
{

–2b̃1
[
x –

(
1024ã7

1 – 7168ã5
1b̃2

1 + 7168ã3
1b̃4

1 – 1024ã1b̃6
1
)
t
]

+ ξ1
}

, (26)

from which it is indicated that the solution (26) takes the shape of hyperbolic secant func-
tion with peak amplitude

H = 2
∣
∣β∗

1
∣
∣b̃1e–ξ1

and velocity

V = 1024ã7
1 – 7168ã5

1b̃2
1 + 7168ã3

1b̃4
1 – 1024ã1b̃6

1.

To show the localized structures and dynamic behaviors of one-soliton solution (26),
we select the involved parameters as ã1 = 0.3, b̃1 = 0.25, α1 = β1 = 1, ξ1 = 0. The plots are
depicted in Figs. 1–3.
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Figure 1 One-soliton solution (26) with ã1 = 0.3, b̃1 = 0.25, α1 = β1 = 1, ξ1 = 0. (a) Perspective view of
modulus of p; (b) The soliton along the x-axis with different time in Fig. 1(a)

Figure 2 One-soliton solution (26) with ã1 = 0.3, b̃1 = 0.25, α1 = β1 = 1, ξ1 = 0. (a) Perspective view of the real
part of p; (b) The soliton along the x-axis with different time in Fig. 2(a)

Figure 3 One-soliton solution (26) with ã1 = 0.3, b̃1 = 0.25, α1 = β1 = 1, ξ1 = 0. (a) Perspective view of the
imaginary part of p; (b) The soliton along the x-axis with different time in Fig. 3(a)
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Then, for the case of N = 2, the bright two-soliton solution for Equation (2) is generated
as

p(x, t) =
2

M12M21 – M11M22

(
α1β

∗
1 eθ∗

1 –θ1 M22 – α1β
∗
2 eθ∗

2 –θ1 M12

– α2β
∗
1 eθ∗

1 –θ2 M21 + α2β
∗
2 eθ∗

2 –θ2 M11
)
, (27)

where

M11 =
|α1|2e–θ∗

1 –θ1 + |β1|2eθ∗
1 +θ1

ς1 – ς∗
1

, M12 =
α∗

1α2e–θ∗
1 –θ2 + β∗

1 β2eθ∗
1 +θ2

ς2 – ς∗
1

,

M21 =
α∗

2α1e–θ∗
2 –θ1 + β∗

2 β1eθ∗
2 +θ1

ς1 – ς∗
2

, M22 =
|α2|2e–θ∗

2 –θ2 + |β2|2eθ∗
2 +θ2

ς2 – ς∗
2

,

and θ1 = iς1x – 128iς8
1 t, θ2 = iς2x – 128iς8

2 t, ς1 = ã1 + ib̃1, ς2 = ã2 + ib̃2.
After assuming that α1 = α2 = 1 and β1 = β2 as well as |β1|2 = e2ξ1 , the bright two-soliton

solution (27) becomes

p(x, t) =
2

M12M21 – M11M22

× (
β∗

1 eθ∗
1 –θ1 M22 – β∗

2 eθ∗
2 –θ1 M12 – β∗

1 eθ∗
1 –θ2 M21 + β∗

2 eθ∗
2 –θ2 M11

)
, (28)

where

M11 = –
i

b̃1
eξ1 cosh

(
θ∗

1 + θ1 + ξ1
)
,

M12 =
2eξ1

(ã2 – ã1) + i(b̃1 + b̃2)
cosh

(
θ∗

1 + θ2 + ξ1
)
,

M21 =
2eξ1

(ã1 – ã2) + i(b̃1 + b̃2)
cosh

(
θ∗

2 + θ1 + ξ1
)
,

M22 = –
i

b̃2
eξ1 cosh

(
θ∗

2 + θ2 + ξ1
)
.

The localized structure and dynamic behaviors of two-soliton solution (28) are depicted
in Fig. 4 via a selection of the parameters as follows: ã1 = 0.3, b̃1 = b̃2 = 0.2, α1 = α2 = β1 =
β2 = 1, ã2 = ξ1 = ξ2 = 0.

5 Conclusion
In this investigation, the aim was to explore multi-soliton solutions for an eighth-order
nonlinear Schrödinger equation arising in an optical fiber. The method we resort to was
the Riemann–Hilbert approach which is based on a matrix Riemann–Hilbert problem.
Therefore, we first described a related Riemann–Hilbert problem via analyzing the spec-
tral problem. After solving the resulting Riemann–Hilbert problem without reflection,
we finally derived the expression of general N-soliton solution explicitly. We remark that
this work mainly emphasizes the effectiveness of the Riemann–Hilbert method in dealing
with higher-order nonlinear differential equation. Specifically, an eighth-order nonlinear
Schrödinger equation is considered, which can also be generated from the AKNS hierar-
chy [29].
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Figure 4 Two-soliton solution (28) with ã1 = 0.3, b̃1 = b̃2 = 0.2, α1 = α2 = β1 = β2 = 1, ã2 = ξ1 = ξ2 = 0.
(a) Perspective view of modulus of p; (b) The soliton along the x-axis with different time in Fig. 4(a)
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