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Abstract
This paper proposes a stochastic three species food-chain model with harvesting and
distributed delays. Some criteria for the global dynamics of all positive solutions,
including the existence of global positive solutions, stochastic boundedness,
extinction, global asymptotic stability in the mean, and the probability distribution,
are established by using the stochastic integral inequalities, Lyapunov function
method, and the inequality estimation technique. Furthermore, the effects of
harvesting are discussed, the optimal harvesting strategy and the maximum of
expectation of sustainable yield (MESY for short) are obtained. Finally, numerical
examples are carried out to illustrate our main results.
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1 Introduction
The notion of food-chain was first postulated by Eiton in 1927 (see [1]). As he said, he
proposed this idea due to the Chinese folk-adage: big fish eat small fish, small fish eat
shrimps, shrimps eat mud. We see that food-chain models have been extensively studied
because of their academic and pragmatic implication. The following deterministic three
species food-chain model has been investigated by many scholars (see [2–5]):

⎧
⎪⎪⎨

⎪⎪⎩

dx1(t)
dt = x1(t)[r1 – a11x1(t) – a12x2(t)],

dx2(t)
dt = x2(t)[–r2 + a21x1(t) – a22x2(t) – a23x3(t)],

dx3(t)
dt = x3(t)[–r3 + a32x2(t) – a33x3(t)],

where xi(t) (i = 1, 2, 3) represents population sizes of prey, intermediate predator, and top
predator at time t, respectively.

Nevertheless, in the real world, it is hard to protect population systems from environ-
mental noise (see [6–15]). Taking the influence of white noises into the above model, Liu
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and Bai in [16] proposed the following stochastic three species food-chain model:

⎧
⎪⎪⎨

⎪⎪⎩

dx1(t) = x1(t)[r1 – h1 – a11x1(t) – a12x2(t)] dt + σ1x1(t) dB1(t),

dx2(t) = x2(t)[–r2 – h2 + a21x1(t) – a22x2(t) – a23x3(t)] dt + σ2x2(t) dB2(t),

dx3(t) = x3(t)[–r3 – h3 + a32x2(t) – a33x3(t)] dt + σ3x3(t) dB3(t).

Time-delay is common and inevitable in nature, and often makes the system property
decline or even causes instability. However, any species in nature will not always react
at once to variation in its own population size or that of an interacting species, but will
do so after a time lag preferably. In other words, it is essential to investigate the effect of
delays on the food-chain model. Thus, Li and Wang in [17] proposed a delayed food-chain
system with the Beddington–DeAngelis functional response, and they found that delays
affect the stability of equilibrium points and the existence of Hopf bifurcation.

From [18, 19], we obtain that systems with distributed time delays include those not only
with the discrete time delays but also the continuously distributed time delays. To the best
of our knowledge to date, the problem of a stochastic food-chain model with harvesting
and distributed delays has not been studied in the past research. Motivated by the above
discussion, considering distributed time delays and white noises, in this paper, we establish
the following stochastic three species food-chain model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx1(t) = x1(t)[r1 – h1 – a11x1(t) – a12
∫ 0

–τ12
x2(t + θ ) dμ12(θ )] dt

+ σ1x1(t) dB1(t),

dx2(t) = x2(t)[–r2 – h2 + a21
∫ 0

–τ21
x1(t + θ ) dμ21(θ ) – a22x2(t)

– a23
∫ 0

–τ23
x3(t + θ ) dμ23(θ )] dt + σ2x2(t) dB2(t),

dx3(t) = x3(t)[–r3 – h3 + a32
∫ 0

–τ32
x2(t + θ ) dμ32(θ ) – a33x3(t)] dt

+ σ3x3(t) dB3(t),

(1)

where r1 > 0 is intrinsic growth rate of species x1, ri > 0 (i = 2, 3) stand for death rates of
species xi, aii > 0 (i = 1, 2, 3) are intraspecific competition coefficients of species xi, a12 ≥ 0
and a23 ≥ 0 are capture rates, a21 ≥ 0 and a32 ≥ 0 measure efficiency of food conversion,
hi ≥ 0 (i = 1, 2, 3) stands for the harvesting effort of species xi, μij(θ ) (i, j = 1, 2, 3) are non-
negative variation functions defined on [–τij, 0] satisfying

∫ 0
–τij

dμij(θ ) = 1, Bi(t) (i = 1, 2, 3)
are standard independent Brownian motions defined on the complete probability space
(Ω , {Ft}t≥0, P) with a filtration {Ft}t≥0 satisfying the usual conditions, and σ 2

i (i = 1, 2, 3)
is the intensity of Bi(t).

In this paper we firstly investigate the global dynamics of model (1), including the exis-
tence of global positive solutions, stochastic boundedness, extinction, global asymptotic
stability in the mean, and the probability distribution, by using the stochastic integrals in-
equalities, Lyapunov function method, and the inequality estimation technique. Next, we
discuss the effects of harvesting for the extinction and persistence of species of model (1),
and establish the optimal harvesting effort H∗ = (h∗

1, h∗
2, h∗

3) such that all the species are not
extinct and the maximal expectation of sustained yield Y (H∗) = limt→∞

∑3
i=1 E(h∗

i xi(t)).
The organization of this paper is as follows. In Sect. 2, we propose some useful lem-

mas which will be used in the proofs of main results. We also obtain the existence and
stochastic boundedness of unique global positive solution with any positive initial value.
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In Sect. 3, the global dynamics of positive solutions are investigated. A whole criterion
for the extinction and global asymptotic stability in the mean with probability one is es-
tablished. Furthermore, the criterion for the global asymptotic stability in the probability
distribution is also established. In Sect. 4, the effects of harvesting for the extinction and
persistence of species are discussed, and the sufficient conditions for the existence and
non-existence of optimal harvesting are obtained. We also offer the numerical examples
to illustrate our main results in Sect. 5. Lastly, in Sect. 6 we give a brief conclusion and
propose some interesting open problems.

2 Preliminaries
Firstly, for convenience of the statements, we denote b1 = r1 – h1 – 1

2σ 2
1 , b2 = r2 +

h2 + 1
2σ 2

2 , b3 = r3 + h3 + 1
2σ 2

3 , �11 = b1, �21 = b1a22 + b2a12, �22 = b1a21 – b2a11,
�31 = b1(a22a33 + a32a23) + b2a33a12 – b3a12a23, �32 = a33(b1a21 – b2a11) + b3a11a23, �33 =
(b1a21 –b2a11)a32 –b3(a11a22 +a12a21), H1 = a11, H2 = a11a22 +a12a21, and H3 = a11a22a33 +
a33a12a21 + a11a32a23. Obviously, when b1 ≥ 0, we have �21 ≥ 0. Furthermore, we have the
following.

Lemma 1 If �33 > 0, then �31 > 0 and �32 > 0.

Proof Let x∗
1 = �31

H3
, x∗

2 = �32
H3

, and x∗
3 = �33

H3
. Then x∗

3 > 0. By calculating, we can obtain

a32x∗
2 = b3 + a33x∗

3 > 0, a21x∗
1 = b2 + a22x∗

2 + a23x∗
3 > 0.

Therefore, we have �31 > 0 and �32 > 0. This completes the proof. �

Lemma 2 For any real numbers A ≥ 0, B ≥ 0, Ai ≥ 0 (1 ≤ i ≤ n), and p > 0, q > 0 with
1
p + 1

q = 1, one has

( n∑

i=1

Ai

)p

≤ np
n∑

i=1

Ap
i , AB ≤ Ap

p
+

Bq

q
.

Let γ = max{τ12, τ21, τ23, τ32}. The initial condition for model (1) is given by

x1(θ ) = ξ (θ ), x2(θ ) = η(θ ), x3(θ ) = ς (θ ), –γ ≤ θ ≤ 0. (2)

On the existence and the ultimate boundedness of the global positive solution for model
(1), we have the following results.

Lemma 3 For any (ξ (θ ),η(θ ),ς (θ )) ∈ C([–γ , 0], R3
+)), model (1) with condition (2) has a

unique global solution x(t) = (x1(t), x2(t), x3(t)) ∈ R3
+ a.s. for all t ≥ 0. Moreover, for any

p > 0, there exist constants K1(p) > 0, K2(p) > 0, and K3(p) > 0 such that

lim sup
t→∞

E
[
xp

1(t)
]≤ K1(p), lim sup

t→∞
E
[
xp

2(t)
]≤ K2(p), lim sup

t→∞
E
[
xp

3(t)
]≤ K3(p).

Proof Since the coefficients of model (1) are locally Lipschitz, from [14, 20] we obtain
that, for any initial data (ξ (θ ),η(θ ),ς (θ )) ∈ C([–γ , 0], R3

+)), model (1) has a unique solution
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x(t) = (x1(t), x2(t), x3(t)) ∈ R3
+ for all t ∈ [–γ , τe), where τe is the explosion time. We need to

prove τe = ∞ a.s. Let k0 > 0 be an enough large integer such that ξ (0),η(0),ς (0) ∈ ( 1
k0

, k0).
For each integer k > k0, define stopping times as follows:

τk = inf

{

t ∈ [0, τe) : x1(t) /∈
(

1
k

, k
)

, x2(t) /∈
(

1
k

, k
)

, x3(t) /∈
(

1
k

, k
)}

. (3)

It is clear that τk is increasing with k. Set τ∞ = limk→∞ τk . We have τ∞ ≤ τe a.s. Thus, we
only need to prove τ∞ = ∞ a.s.

If the conclusion is false, then there exist T > 0 and ε ∈ (0, 1) such that P(τ∞ ≤ T) > ε.
Hence, there exists an integer k1 > k0 such that, for any k > k1,

P(τk ≤ T) > ε. (4)

Define Vi(xi) = xi – 1 – ln xi (i = 1, 2, 3). Using Itô’s formula, we obtain

dV1(x1) = L
[
V1(x1)

]
dt + σ1(x1 – 1) dB1(t),

dV2(x2) = L
[
V2(x2)

]
dt + σ2(x2 – 1) dB2(t), (5)

dV3(x3) = L
[
V3(x3)

]
dt + σ3(x3 – 1) dB3(t),

where

L
[
V1(x1)

]
= (x1 – 1)

(

r1 – h1 – a11x1(t) – a12

∫ 0

–τ12

x2(t + θ ) dμ12(θ )
)

+
1
2
σ 2

1 ,

L
[
V2(x2)

]
= (x2 – 1)

(

–r2 – h2 + a21

∫ 0

–τ21

x1(t + θ ) dμ12(θ ) – a22x2(t)

– a23

∫ 0

–τ23

x3(t + θ ) dμ23(θ )
)

+
1
2
σ 2

2 ,

L
[
V3(x3)

]
= (x3 – 1)

(

–r3 – h3 – a33x3(t) + a32

∫ 0

–τ32

x2(t + θ ) dμ32(θ )
)

+
1
2
σ 2

3 .

(6)

For any integer n > 0, using Lemma 2 we can obtain

L
[
V1(x1)

]≤ σ 2
1

2
– (r1 – h1) +

n2

2
a12 + (r1 – h1)x1 + a11x1 – a11x2

1

+
1

2n2 a12

∫ 0

–τ12

x2
2(t + θ ) dμ12(θ ),

L
[
V2(x2)

]≤ σ 2
2

2
+ (r2 + h2) +

n
2

a21

∫ 0

–τ21

x2
1(t + θ ) dμ21(θ ) – (r2 + h2)x2 + a22x2

– a22x2
2 +

x2
2

2n
a21 +

n2

2
a23 +

1
2n2 a23

∫ 0

–τ23

x2
3(t + θ ) dμ23(θ ),

L
[
V3(x3)

]≤ σ 2
3

2
+ (r3 + h3) +

x2
3

2n
a32 – (r3 + h3)x3 + a33x3 – a33x2

3

+
n
2

a32

∫ 0

–τ32

x2
2(t + θ ) dμ32(θ ).

(7)
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Define V0(x1, x2, x3) = αV1(x1) + V2(x2) + ηV3(x3) + V4(t), where

V4(t) =
α

2n2 a12

∫ 0

–τ12

∫ t

t+θ

x2
2(s) ds dμ12(θ ) +

(
n
2

a21

∫ 0

–τ21

∫ t

t+θ

x2
1(s) ds dμ21(θ )

+
1

2n2 a23

∫ 0

–τ23

∫ t

t+θ

x2
3(s) ds dμ23(θ )

)

+ η
n
2

a32

∫ 0

–τ32

∫ t

t+θ

x2
2(s) ds dμ32(θ ).

Choose the positive constants α, η and integer n > 0 such that

(

–a22 +
1

2n
a21

)

+
nη

2
a32 +

α

2n2 a12 < 0,

(

–a33 +
1

2n
a32

)

η +
1

2n2 a23 < 0, –a11α +
n
2

a21 < 0.
(8)

In fact, from (–a33 + 1
2n a32)η + 1

2n2 a23 = 0 and –a11α + n
2 a21 = 0, we have η = a23

n(2na33–a32) and
α = na21

2a11
. Substituting η and α into the left of the first inequality of (8), we can obtain that

there is enough large n > 0 such that 2na33 – a32 > 0 and –a22 + a21
2n + a32a23

2(2na33–a32) + a12a21
4na11

<
– 1

2 a22. From this, we further choose positive constants η > a23
n(2na33–a32) and α > na21

2a11
such

that (8) holds.
Using Itô’s formula, from (5) we have

d
[
V0(x1, x2, x3)

]
= LV0(x1, x2, x3) dt + ασ1(x1 – 1) dB1(t)

+ σ2(x2 – 1) dB2(t) + ησ3(x3 – 1) dB3(t).

From (6) and (7), we obtain

L
[
V0(x1, x2, x3)

]
= αLV1(x1) + LV2(x2) + ηLV3(x3) +

d
dt

V4(t)

≤ ασ 2
1

2
– α(r1 – h1) +

αn2

2
a12 + α(r1 – h1)x1 + αa11x1 – αa11x2

1

+
σ 2

2
2

+ (r2 + h2) – (r2 + h2)x2 + a22x2 – a22x2
2 +

x2
2

2n
a21

+
n2

2
a23 +

ησ 2
3

2
+ (r3 + h3)η +

ηx2
3

2n
a32 – η(r3 + h3)x3 + ηa33x3

– ηa33x2
3 +

α

2n2 x2
2a12 +

n
2

x2
1a21 +

1
2n2 x2

3a23 +
nη

2
x2

2a32.

From (8) we can obtain that there exists a constant K > 0 such that

d
[
V0(x1, x2, x3)

] ≤ K dt + ασ1(x1 – 1) dB1(t)

+ σ2(x2 – 1) dB2(t) + ησ3(x3 – 1) dB3(t). (9)

Then, from (4) and (9), a similar argument as in [21] we can get the following contradiction:

∞ > V0
(
x1(0), x2(0), x3(0)

)
+ KT ≥ ∞.

Thus, we obtain τ∞ = ∞ a.s., and hence, τe = ∞ a.s.
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For any p > 0, let Q1(t) = etxp
1(t). By Itô’s formula, we have

dQ1(t) = LQ1(t) dt + petxp
1σ1 dB1(t), (10)

where

LQ1(t) = etxp
1

{

1 +
p(p – 1)σ 2

1
2

+ p
[

r1 – h1 – a11x1 – a12

∫ 0

–τ12

x2(t + θ ) dμ12(θ )
]}

≤ K1(p)et (11)

with

K1(p) = max
x1≥0

{[

p(r1 – h1) + 1 +
p(p – 1)σ 2

1
2

]

xp
1 – pa11xp+1

1

}

.

Integrating both sides of (10) and then taking expectations lead to

E
[
etxp

1
]

– ξp(0) ≤ K1(p)
(
et

1 – 1
)
, (12)

which implies lim supt→∞ E[xp
1(t)] ≤ K1(p).

For any constant p > 0 and integer n > 0 with a22 – a21
p

p+1 n– p+1
p > 0, we define Q2(t) as

follows:

Q2(t) = C∗
1 Q1(t) + etxp

2(t) + eτ21
pnp+1

p + 1
a21

∫ 0

–τ21

∫ t

t+θ

esxp+1
1 (s) ds dμ21(θ ), (13)

where C∗
1 = a–1

11 eτ21 np+1a21. We have by Itô’s formula

dQ2(t) = LQ2(t) dt + C∗
1 petxp

1σ1 dB1(t) + petxp
2σ2 dB2(t). (14)

From (11), we have

LQ2(t) = C∗
1LQ1(t) + L

(
etxp

2(t)
)

+
d
dt

(

eτ21
pnp+1

p + 1
a21

∫ 0

–τ21

∫ t

t+θ

esxp+1
1 (s) ds dμ21(θ )

)

= C∗
1 etxp

1

{

1 +
p(p – 1)σ 2

1
2

+ p
[

r1 – h1 – a11x1 – a12

∫ 0

–τ12

x2(t + θ ) dμ12(θ )
]}

+ etxp
2

{

1 +
p(p – 1)σ 2

2
2

+ p
[

–r2 – h2 + a21

∫ 0

–τ21

x1(t + θ ) dμ21(θ )

– a22x2(t) – a23

∫ 0

–τ23

x3(t + θ ) dμ23(θ )
]}

+ eτ21
pnp+1

p + 1
a21

(

etxp+1
1 (t) –

∫ 0

–τ21

et+θ xp+1
1 (t + θ ) dμ21(θ )

)

≤ C∗
1 et
{[

1 +
p(p – 1)σ 2

1
2

+ p(r1 – h1)
]

xp
1 – pa11xp+1

1

}

+ et
{[

1 +
p(p – 1)σ 2

2
2

– p(r2 + h2)
]

xp
2 – p

[

a22 – a21
p

p + 1
n– p+1

p

]

xp+1
2
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+
p

p + 1
np+1a21

∫ 0

–τ21

xp+1
1 (t + θ ) dμ21(θ )

}

+ eτ21
pnp+1

p + 1
a21

(

etxp+1
1 (t) – e–τ21

∫ 0

–τ21

etxp+1
1 (t + θ ) dμ21(θ )

)

≤ et
{[

1 +
p(p – 1)σ 2

2
2

– p(r2 + h2)
]

xp
2 – p

[

a22 – a21
p

p + 1
n– p+1

p

]

xp+1
2

+ C∗
1

[

1 +
p(p – 1)σ 2

1
2

+ p(r1 – h1)
]

xp
1 – eτ21

p2

p + 1
np+1a21xp+1

1

}

. (15)

Obviously, there is a constant K2(p) > 0 such that LQ2(t) ≤ K2(p)et . According to (13) and
(14), we obtain

E
[
etxp

2
]≤ EQ2(t) ≤ EQ2(0) + K2(p)

(
et – 1

)
,

which implies lim supt→∞ E[xp
2(t)] ≤ K2(p).

For any constant p > 0 and integer n > 0 with a33 – a32
p

p+1 n– p+1
p > 0, we define Q3(t) as

follows:

Q3(t) = C∗
2 Q2(t) + etxp

3 + eτ32
pnp+1

p + 1
a32

∫ 0

–τ32

∫ t

t+θ

esxp+1
2 (s) ds dμ32(θ ), (16)

where C∗
2 = a–1

22 eτ32 np+1a32.
Applying Itô’s formula to Q3(t), we obtain

dQ3(t) = LQ3(t) dt + C∗
2
(
C∗

1 petxp
1σ1 dB1(t) + petxp

2σ2 dB2(t)
)

+ petxp
3σ3 dB3(t), (17)

where

LQ3(t) = C∗
2LQ2(t) + L

[
etxp

3
]

+ a32eτ32 etxp+1
2

pnp+1

p + 1

– a32eτ32
pnp+1

p + 1

∫ 0

–τ32

etxp+1
2 (t + θ ) dμ32(θ )

≤ C∗
2LQ2(t) + L

[
etxp

3
]

+ a32eτ32 etxp+1
2

pnp+1

p + 1

– a32
pnp+1

p + 1

∫ 0

–τ32

xp+1
2 (t + θ ) dμ32(θ ).

Since

L
[
etxp

3
]

= et
{[

1 +
p(p – 1)σ 2

3
2

+ p(–r3 – h3)
]

xp
3

+ a32pxp
3

∫ 0

–τ32

x2(t + θ ) dμ32(θ ) – a33pxp+1
3 (t)

}

≤ et
{[

1 – p(r3 + h3) +
p(p – 1)σ 2

3
2

]

xp
3 + a32

p
p + 1

np+1
∫ 0

–τ32

xp+1
2 (t + θ ) dμ32(θ )

– p
[

a33 – a32
p

p + 1
n– p+1

p

]

xp+1
3

}

,
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from (15) we further obtain

LQ3(t) ≤ et
{[

1 – p(r3 + h3) +
p(p – 1)σ 2

3
2

]

xp
3 – p

[

a33 – a32
p

p + 1
n– p+1

p

]

xp+1
3

+
(

1 – p(r2 + h2) +
p(p – 1)σ 2

2
2

)

xp
2C∗

2

–
p2

p + 1
(
np+1a32eτ32 + n– p+1

p a21C∗
2
)
xp+1

2

– C∗
2 eτ21

p2

p + 1
np+1a21xp+1

1 + C∗
1 C∗

2

[

1 + p(r1 – h1) +
p(p – 1)σ 2

1
2

]

xp
1

}

.

Obviously, there is a constant K3(p) > 0 such that LQ3(t) ≤ K3(p)et . Hence, from (16) and
(17) we obtain

E
[
etxp

3
]≤ E

[
Q3(t)

]≤ E
[
Q3(0)

]
+ K3(p)

(
et – 1

)
.

Consequently, lim supt→∞ E[xp
3(t)] ≤ K3(p). This completes the proof. �

Lemma 4 Assume that functions Y ∈ C(R+ × Ω , R+) and Z ∈ C(R+ × Ω , R) satisfy
limt→∞ Z(t)

t = 0 a.s.
(1) If there are three positive constants T , β , and β0 such that, for all t ≥ T ,

ln Y (t) = βt – β0

∫ t

0
Y (s) ds + Z(t) a.s.,

then limt→∞〈Y (t)〉 = β

β0
a.s., and limt→∞ ln Y (t)

t = 0 a.s.
(2) If there exist two positive constants β0 and T , and a constant β ∈ R such that, for

t ≥ T ,

ln Y (t) ≤ βt – β0

∫ t

0
Y (s) ds + Z(t) a.s.,

then lim supt→∞〈Y (t)〉 ≤ β

β0
a.s. if β ≥ 0, and limt→∞ Y (t) = 0 a.s. if β < 0.

(3) If there exist three positive constants T , β , and β0 such that, for all t ≥ T ,

ln Y (t) ≥ βt – β0

∫ t

0
Y (s) ds + Z(t) a.s.,

then lim inft→∞〈Y (t)〉 ≥ β

β0
a.s.

Lemma 4 can be found in [22]. We consider the following auxiliary system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dY1(t) = Y1(t)[r1 – h1 – a11Y1(t)] dt + σ1Y1(t) dB1(t),

dY2(t) = Y2(t)[–r2 – h2 + a21
∫ 0

–τ21
Y1(t + θ ) dμ21(θ ) – a22Y2(t)] dt

+ σ2Y2(t) dB2(t),

dY3(t) = Y3(t)[–r3 – h3 + a32
∫ 0

–τ32
Y2(t + θ ) dμ32(θ ) – a33Y3(t)] dt

+ σ3Y3(t) dB3(t)

(18)
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with the initial condition

Y1(θ ) = ξ (θ ), Y2(θ ) = η(θ ), Y3(θ ) = ζ (θ ), –r ≤ θ ≤ 0. (19)

Firstly, by a similar argument as in the proof of Lemma 3, we can obtain that for any condi-
tion (19) system (18) has a unique global solution (Y1(t), Y2(t), Y3(t)) ∈ R3

+ a.s. for all t ≥ 0.
We have the following results.

Lemma 5 Assume that (Y1(t), Y2(t), Y3(t)) is a global positive solution of system (18). Then
we have:

(1) If �11 < 0, then limt→∞ Yi(t) = 0 a.s. for i = 1, 2, 3.
(2) If �11 = 0, then limt→∞〈Y1(t)〉 = 0 and limt→∞ Yi(t) = 0 a.s. for i = 2, 3.
(3) If �11 > 0 and �22 < 0, then limt→∞〈Y1(t)〉 = �11

a11
and limt→∞ Yi(t) = 0 a.s. for

i = 2, 3.
(4) If �22 = 0, then limt→∞〈Y1(t)〉 = �11

a11
, limt→∞〈Y2(t)〉 = 0, and limt→∞ Y3(t) = 0 a.s.

(5) If �22 > 0 and �33 < 0, then limt→∞〈Y1(t)〉 = �11
a11

, limt→∞〈Y2(t)〉 = �22
a11a22

, and
limt→∞ Y3(t) = 0 a.s.

(6) If �33 = 0, then limt→∞〈Y1(t)〉 = �11
a11

, limt→∞〈Y2(t)〉 = �22
a11a22

, and limt→∞〈Y3(t)〉 = 0
a.s.

(7) If �33 > 0, then

lim
t→∞

〈
Y1(t)

〉
=

�11

a11
, lim

t→∞
〈
Y2(t)

〉
=

�22

a11a22
, lim

t→∞
〈
Y3(t)

〉
=

�33

a11a22a33
a.s.

(8) lim supt→∞
ln Yi(t)

t ≤ 0 a.s. for i = 1, 2, 3.

Proof Applying Itô’s formula to system (18), we have

ln Y1(t) = b1t – a11

∫ t

0
Y1(s) ds + σ1B1(t) + ln Y1(0), (20)

ln Y2(t) = –b2t + a21

∫ t

0

∫ 0

–τ21

Y1(s + θ ) dμ21(θ ) ds

– a22

∫ t

0
Y2(s) ds + σ2B2(t) + ln Y2(0)

= –b2t + a21

∫ t

0
Y1(s) ds – a22

∫ t

0
Y2(s) ds + ψ1(t), (21)

and

ln Y3(t) = –b3t + a32

∫ t

0

∫ 0

–τ32

Y2(s + θ ) dμ32(θ ) ds

– a33

∫ t

0
Y3(s) ds + σ3B3(t) + ln Y3(0)

= –b3t + a32

∫ t

0
Y2(s) ds – a33

∫ t

0
Y3(s) ds + ψ2(t), (22)
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where

ψ1(t) = σ2B2(t) + ln Y2(0) + a21

∫ 0

–τ21

∫ 0

θ

Y1(s) ds dμ21(θ )

– a21

∫ 0

–τ21

∫ t

t+θ

Y1(s) ds dμ21(θ ),

ψ2(t) = σ3B3(t) + ln Y3(0) + a32

∫ 0

–τ32

∫ 0

θ

Y2(s) ds dμ32(θ )

– a32

∫ 0

–τ32

∫ t

t+θ

Y2(s) ds dμ32(θ ).

Assume �11 ≤ 0. From Lemma 4 and (20) we have limt→∞ Y1(t) = 0 a.s. or
limt→∞〈Y1(t)〉 = 0 a.s. Thus, limt→∞ 1

t ψ1(t) = 0 a.s. From (21), we have limt→∞ Y2(t) = 0,
then limt→∞ 1

t ψ2(t) = 0 a.s. From (22), we further have limt→∞ Y3(t) = 0 a.s.
Assume �11 > 0 and �22 < 0. From Lemma 4 and (20) we obtain limt→∞〈Y1(t)〉 = �11

a11
a.s. Thus,

∫ t
0 Y1(s) ds = �11

a11
t + α1(t) for any t ≥ 0, where limt→∞ α1(t)

t = 0 a.s. From (21), we
obtain

ln Y2(t) =
�22

a11
t – a22

∫ t

0
Y2(s) ds + ψ1(t) + a21α1(t). (23)

Since limt→∞ 1
t ψ1(t) = 0 a.s., from Lemma 4 we obtain limt→∞ Y2(t) = 0 a.s. Further, we

also have limt→∞ Y3(t) = 0 a.s.
Assume �22 = 0. Then we have �11 > 0. By a similar argument we obtain limt→∞〈Y1(t)〉 =

�11
a11

a.s., limt→∞〈Y2(t)〉 = 0 a.s., and limt→∞ Y3(t) = 0 a.s.
Assume �22 > 0 and �33 < 0. Then we have �11 > 0. From Lemma 4, (20), and (23) we

directly obtain limt→∞〈Y1(t)〉 = �11
a11

a.s. and limt→∞〈Y2(t)〉 = �22
a11a22

a.s. Hence,
∫ t

0 Y2(s) ds =
�22

a11a22
t + α2(t) for any t ≥ 0, where limt→∞ α2(t)

t = 0 a.s. From (22), we obtain

ln Y3(t) =
�33

a11a22
t – a33

∫ t

0
Y3(s) ds + ψ2(t) + a32α2(t). (24)

Since limt→∞ 1
t ψ2(t) = 0 a.s., from Lemma 4 we obtain limt→∞ Y3(t) = 0 a.s.

Assume �33 = 0 or �33 > 0. Then we have �11 > 0 and �22 > 0. Hence, we obtain
limt→∞〈Y1(t)〉 = �11

a11
and limt→∞〈Y2(t)〉 = �22

a11a22
a.s. Then, from (24) and Lemma 4 we

further obtain limt→∞〈Y3(t)〉 = 0 a.s. or limt→∞〈Y3(t)〉 = �33
a11a22a33

a.s.
For any i ∈ {1, 2, 3}, from the above discussions we obtain that there is one of the follow-

ing three cases: (a) limt→∞ Yi(t) = 0 a.s., (b) limt→∞〈Yi(t)〉 = 0 a.s., (c) limt→∞〈Yi(t)〉 = αi

a.s., where α1 = �11
a11

, α2 = �22
a11a22

, and α3 = �33
a11a22a33

. For cases (a) and (b), we directly
have lim supt→∞

ln Yi(t)
t ≤ 0 a.s. For case (c), from (20) or (23), or (24) we can obtain

lim supt→∞
ln Yi(t)

t = 0 a.s. Therefore, conclusion (8) holds. This completes the proof. �

Lemma 6 Assume that (x1(t), x2(t), x3(t)) and (Y1(t), Y2(t), Y3(t)) are the solutions of model
(1) and system (18), respectively. If the initial values satisfy xi(θ ) ≤ Yi(θ ) for all –r ≤ θ ≤ 0
and i = 1, 2, 3, then

(1) xi(t) ≤ Yi(t) for all t ≥ 0, i = 1, 2, 3,
(2) lim supt→∞

ln xi(t)
t ≤ 0 a.s., i = 1, 2, 3,

(3) for any constant τ > 0, limt→∞ 1
t
∫ t

t–τ
xi(s) ds = 0 a.s., i = 1, 2, 3.
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Proof From model (1) we obtain

dx1(t) ≤ x1(t)
[
r1 – h1 – a11x1(t)

]
dt + σ1x1(t) dB1(t),

dx2(t) ≤ x2(t)
[

–r2 – h2 + a21

∫ 0

–τ21

x1(t + θ ) dμ21(θ ) – a22x2(t)
]

dt + σ2x2(t) dB2(t),

dx3(t) = x3(t)
[

–r3 – h3 + a32

∫ 0

–τ32

x2(t + θ ) dμ32(θ ) – a33x3(t)
]

dt + σ3x3(t) dB3(t).

Using the comparison theorem and Theorem 2.1 given in Bao and Yuan [23], for any t ≥ 0,
we obtain xi(t) ≤ Yi(t) (i = 1, 2, 3). Then from Lemma 5 we obtain that lim supt→∞

ln xi(t)
t ≤

0 a.s. (i = 1, 2, 3), and limt→∞ 1
t
∫ t

t–τ
xi(s) ds = 0 a.s. (i = 1, 2, 3) for any constant τ > 0. This

completes the proof. �

3 Global dynamics
Firstly, on the extinction and persistence and global stability in the mean with probability
one, we can establish the following integrated results.

Theorem 1 Assume that (x1(t), x2(t), x3(t)) is a global positive solution of model (1). Then
we have

(1) If �11 < 0, then limt→∞ xi(t) = 0 a.s. for i = 1, 2, 3.
(2) If �11 = 0, then limt→∞〈x1(t)〉 = 0 and limt→∞ xi(t) = 0 a.s. for i = 2, 3.
(3) If �11 > 0 and �22 < 0, then limt→∞〈x1(t)〉 = �11

H1
and limt→∞ xi(t) = 0 a.s. for i = 2, 3.

(4) If �22 = 0, then limt→∞〈x1(t)〉 = �11
H1

, limt→∞〈x2(t)〉 = 0, and limt→∞ x3(t) = 0 a.s.
(5) If �22 > 0 and �33 < 0, then limt→∞〈x1(t)〉 = �21

H2
, limt→∞〈x2(t)〉 = �22

H2
, and

limt→∞ x3(t) = 0 a.s.
(6) If �33 = 0 and a33a22(a11a22 + a12a21) – a12a21a23a32 > 0, then limt→∞〈x1(t)〉 = �21

H2
,

limt→∞〈x2(t)〉 = �22
H2

, and limt→∞〈x3(t)〉 = 0 a.s.
(7) If �33 > 0 and a33a22(a11a22 + a12a21) – a12a21a23a32 > 0, then

lim
t→∞

〈
x1(t)

〉
=

�31

H3
, lim

t→∞
〈
x2(t)

〉
=

�32

H3
, lim

t→∞
〈
x3(t)

〉
=

�33

H3
a.s.

Proof Using Itô’s formula to model (1), we obtain

ln x1(t) = b1t – a11

∫ t

0
x1(s) ds – a12

∫ t

0

∫ 0

–τ12

x2(s + θ ) dμ12(θ ) ds + σ1B1(t) + ln x1(0)

= b1t – a11

∫ t

0
x1(s) ds – a12

∫ t

0
x2(s) ds + φ1(t), (25)

ln x2(t) = –b2t + a21

∫ t

0

∫ 0

–τ21

x1(s + θ ) dμ21(θ ) ds – a22

∫ t

0
x2(s) ds

– a23

∫ t

0

∫ 0

–τ23

x3(s + θ ) dμ23(θ ) ds + σ2B2(t) + ln x2(0)

= –b2t + a21

∫ t

0
x1(s) ds – a22

∫ t

0
x2(s) ds – a23

∫ t

0
x3(s) ds + φ2(t) (26)
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and

ln x3(t) = –b3t + a32

∫ t

0

∫ 0

–τ32

x2(s + θ ) dμ32(θ ) ds – a33

∫ t

0
x3(s) ds + σ3B3(t) + ln x3(0)

= –b3t + a32

∫ t

0
x2(s) ds – a33

∫ t

0
x3(s) ds + φ3(t), (27)

where

φ1(t) = σ1B1(t) + ln x1(0) + a12

∫ 0

–τ12

∫ t

t+θ

x2(s) ds dμ12(θ )

– a12

∫ 0

–τ12

∫ 0

θ

x2(s) ds dμ12(θ ),

φ2(t) = σ2B2(t) + ln x2(0) + a21

∫ 0

–τ21

∫ 0

θ

x1(s) ds dμ21(θ )

– a21

∫ 0

–τ21

∫ t

t+θ

x1(s) ds dμ21(θ )

+ a23

∫ 0

–τ23

∫ t

t+θ

x3(s) ds dμ23(θ ) – a23

∫ 0

–τ23

∫ 0

θ

x3(s) ds dμ23(θ ),

φ3(t) = σ3B3(t) + ln x3(0) + a32

∫ 0

–τ32

∫ 0

θ

x2(s) ds dμ32(θ )

– a32

∫ 0

–τ32

∫ t

t+θ

x2(s) ds dμ32(θ ).

Further, we also obtain

ln x1(t) ≤ b1t – a11

∫ t

0
x1(s) ds + σ1B1(t) + ln x1(0) (28)

and

ln x2(t) ≤ –b2t + a21

∫ t

0

∫ 0

–τ21

x1(s + θ ) dμ21(θ ) ds – a22

∫ t

0
x2(s) ds + σ2B2(t) + ln x2(0)

= –b2t + a21

∫ t

0
x1(s) ds – a22

∫ t

0
x2(s) ds + σ2B2(t) + ln x2(0)

+ a21

∫ 0

–τ21

∫ 0

θ

x1(s) ds dμ21(θ ) – a21

∫ 0

–τ21

∫ t

t+θ

x1(s) ds dμ21(θ ). (29)

Assume �11 ≤ 0. From (28), Lemmas 5 and 6, we can immediately obtain that conclu-
sions (1) and (2) hold.

Assume �11 > 0 and �22 ≤ 0. From (28), Lemmas 5 and 6, we immediately obtain that
lim supt→∞〈x1(t)〉 ≤ �11

H1
, limt→∞ x2(t) = 0 or limt→∞〈x2(t)〉 = 0, and limt→∞ x3(t) = 0 a.s.

For any ε > 0 with b1 – a12ε > 0, we have
∫ t

0 x2(s) ds < εt a.s. for enough large t, and from
(25)

ln x1(t) ≥ (b1 – a12ε)t – a11

∫ t

0
x1(s) ds + φ1(t).
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Since

∫ 0

–τ12

∫ t

t+θ

x2(s) ds dμ12(θ ) ≤
∫ 0

–τ12

dμ12(θ )
∫ t

t–τ12

x2(s) ds,

∫ 0

–τ12

∫ 0

θ

x2(s) ds dμ12(θ ) ≤
∫ 0

–τ12

dμ12(θ )
∫ 0

–τ12

x2(s) ds,

by Lemma 6 we obtain limt→∞ 1
t
∫ 0

–τ12

∫ t
t+θ

x2(s) ds dμ12(θ ) = 0 and limt→∞ 1
t ×

∫ 0
–τ12

∫ 0
θ

x2(s) ds dμ12(θ ) = 0. Hence, limt→∞ φ1(t)
t = 0 a.s. Thus, from Lemma 4 and the ar-

bitrariness of ε we have lim inft→∞〈x1(t)〉 ≥ �11
H1

. This shows that limt→∞〈x1(t)〉 = �11
H1

.
Assume �33 > 0. From (25)–(27), we obtain

a32
[
a21 ln x1(t) + a11 ln x2(t)

]
+ H2 ln x3(t) = �33t – H3

∫ t

0
x3(s) ds + φ4(t), (30)

where φ4(t) = a21a32φ1(t) + a11a32φ2(t) + H2φ3(t). By a similar argument as in the above, for
φ1(t), we have limt→∞ φ4(t)

t = 0 a.s. For any ε > 0 with �33 – 2ε > 0, by Lemma 6, ln x1(t) <
ε

a32a21+1 t and ln x2(t) < ε
a32a11+1 t for t enough large. Then from (30) we further have

H2 ln x3(t) > (�33 – 2ε)t – H3

∫ t

0
x3(s) ds + φ4(t).

Hence, by Lemma 4 and the arbitrariness of ε, we further have

lim inf
t→∞

〈
x3(t)

〉≥ �33

H3
. (31)

From (25) and (26), we obtain

a22 ln x1(t) – a12 ln x2(t) = �21t – H2

∫ t

0
x1(s) ds + a12a23

∫ t

0
x3(s) ds + φ5(t), (32)

where φ5(t) = a22φ1(t) – a12φ2(t). Similarly, as in the above for φ1(t), we can obtain
limt→∞ φ5(t)

t = 0 a.s. For any ε > 0, from Lemma 6 and the properties of superior limit,
we have

∫ t
0 x3(s) ds < (lim supt→∞〈x3(t)〉 + ε)t and ln x2(t) < ε

a12+1 t for enough large t. Then
from (32) we further have

a22 ln x1(t) ≤ �21t + a12a23

(
lim sup

t→∞

〈
x3(t)

〉
+ ε

)
t + εt – H2

∫ t

0
x1(s) ds + φ5(t).

From Lemma 4 and the arbitrariness of ε it follows that

lim sup
t→∞

〈
x1(t)

〉≤ �21 + a12a23 lim supt→∞〈x3(t)〉
H2

a.s. (33)

Combining (31), for any ε > 0 enough small, when t is enough large, we have

∫ t

0
x3(s) ds >

(
�33

H3
– ε

)

t,
∫ t

0
x1(s) ds <

(
�21 + a12a23 lim supt→∞〈x3(t)〉

H2
+ ε

)

t.
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Hence, from (29) we further have

ln x2(t) ≤ –b2t +
(

a21(�21 + a12a23 lim supt→∞〈x3(t)〉)
H2

+ ε

)

t

– a23

(
�33

H3
– ε

)

t – a22

∫ t

0
x2(s) ds + φ2(t). (34)

We have limt→∞ φ2(t)
t = 0 a.s. by Lemma 6. From (31), we obtain

–b2 +
a21(�21 + a12a23 lim supt→∞〈x3(t)〉)

H2
– a23

�33

H3

≥ –b2 + a21
�21

H2
– a23

�33

H3
+

a21a12a23�33

H2H3
=

a22�32

H3
> 0.

Hence, from (34), Lemma 4, and the arbitrariness of ε, we have

a22 lim sup
t→∞

〈
x2(t)

〉 ≤
(

–b2 +
a21(�21 + a12a23 lim supt→∞〈x3(t)〉

H2
– a23

�33

H3

)

� M a.s. (35)

For any ε > 0, when t is enough large, we have
∫ t

0 x2(s) ds < ( M
a22

+ ε)t. Then from (27) it
follows that

ln x3(t) ≤ –b3t + a32

(
M
a22

+ ε

)

t – a33

∫ t

0
x3(s) ds + φ3(t)

≤ –b3t + a32εt +
a32

a22

(

–b2 +
a21(�21 + a12a23 lim supt→∞〈x3(t)〉)

H2
– a23

�33

H3

)

t

– a33

∫ t

0
x3(s) ds + φ3(t). (36)

We have limt→∞ φ3(t)
t = 0 a.s. by Lemma 6. From (31), we also have

–b3 +
a32

a22

(

–b2 +
a21(�21 + a12a23 lim supt→∞〈x3(t)〉)

H2
– a23

�33

H3

)

≥ –b3 +
a32

a22

(

–b2 + a21
�21

H2
– a23

�33

H3
+

a21a12a23�33

H2H3

)

= a33
�33

H3
> 0.

Hence, from (36), Lemma 4, and the arbitrariness of ε, one can derive that

a33 lim sup
t→∞

〈
x3(t)

〉

≤ –b3 +
a32

a22

(

–b2 + a21
�21

H2
+

a12a21a23 lim supt→∞〈x3(t)〉
H2

– a23
�33

H3

)

.

That is equivalent to the following equation:

[
a33a22(a11a22 + a12a21) – a12a21a23a32

]
lim sup

t→∞
〈
x3(t)

〉

≤ [
a33a22(a11a22 + a12a21) – a12a21a23a32

]× �33

H3
.



Tuerxun et al. Advances in Difference Equations        (2019) 2019:187 Page 15 of 30

Hence, we obtain lim supt→∞〈x3(t)〉 ≤ �33
H3

a.s. Combining (31), we finally obtain
limt→∞〈x3(t)〉 = �33

H3
a.s.

From (33) and (35) we can obtain

lim sup
t→∞

〈
x1(t)

〉≤ b1(a22a33 + a32a23) + b2a33a12 – b3a12a23

a11a22a33 + a12a21a33 + a11a32a23
=

�31

H3
a.s. (37)

and

lim sup
t→∞

〈
x2(t)

〉≤ b1a21a33 – b2a33a11 + b3a11a23

a11a22a33 + a12a21a33 + a11a32a23
=

�32

H3
a.s. (38)

For any ε > 0, from Lemma 6 there is T > 0 such that, for any t > T ,

∫ t

0
x3(s) ds <

(
�33

H3
+ ε

)

t, ln x1(t) <
ε

a21 + 1
t. (39)

From (25) and (26), we obtain

a21 ln x1(t) + a11 ln x2(t) = �22t – H2

∫ t

0
x2(s) ds – a11a23

∫ t

0
x3(s) ds + φ6(t), (40)

where φ6(t) = a21φ1(t) + a11φ2(t). We have limt→∞ φ6(t)
t = 0 a.s. by Lemma 6. Substituting

(39) into (40), we have, when t > T ,

a11 ln x2(t) ≥ �22t – a11a23

(
�33

H3
+ ε

)

t – εt – H2

∫ t

0
x2(s) ds + φ6(t).

From Lemma 4 and the arbitrariness of ε, we have lim inft→∞〈x2(t)〉 ≥ �32
H3

a.s. Combining
(38), we finally obtain limt→∞〈x2(t)〉 = �32

H3
a.s.

For any ε > 0, from (38) when t is enough large we have
∫ t

0 x2(s) ds < ( �32
H3

+ ε)t. Then
from (25) it follows that

ln x1(t) ≥ b1t – a11

∫ t

0
x1(s) ds – a12

(
�32

H3
+ ε

)

t + φ1(t).

From Lemma 4 and the arbitrariness of ε, we have lim inft→∞〈x1(t)〉 ≥ �31
H3

. Combining
(37), we finally obtain limt→∞〈x1(t)〉 = �31

H3
a.s.

Assume �33 = 0. Then we can have �22 > 0 and �11 > 0. By a similar argument as in the
above for case �33 > 0, we can obtain

a33 lim sup
t→∞

〈
x3(t)

〉≤ –b3 +
a32

a22

(

–b2 + a21
�21

H2
+

a12a21a23 lim supt→∞〈x3(t)〉
H2

)

.

That is equivalent to the following equation:

[
a33a22(a11a22 + a12a21) – a12a21a23a32

]
lim sup

t→∞

〈
x3(t)

〉≤ 0.
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Therefore, we finally have limt→+∞〈x3(t)〉 = 0. Thus, for any ε > 0, there is T > 0 such that
∫ t

0 x3(s) ds < εt for all t > T . Hence, from (39) and (40) we further obtain as t > T

a11 ln x2(t) ≥ �22t – a11a23εt – εt – H2

∫ t

0
x2(s) ds + φ6(t).

From Lemma 4 and the arbitrariness of ε, we have

lim inf
t→∞

〈
x2(t)

〉≥ �22

H2
a.s. (41)

Using the same method as in the proof of lim inft→∞〈x1(t)〉 ≥ �31
H3

in the above, we
can successively prove lim supt→∞〈x1(t)〉 ≤ �21

H2
a.s., lim supt→∞〈x2(t)〉 ≤ �22

H2
a.s., and

lim inft→∞〈x1(t)〉 ≥ �21
H2

a.s. Combining (41), we finally obtain limt→∞〈x2(t)〉 = �22
H2

a.s. and
limt→∞〈x1(t)〉 = �21

H2
a.s.

Assume �22 > 0 and �33 < 0. From (30) we directly obtain

a32
[
a21 ln x1(t) + a11 ln x2(t)

]
+ H2 ln x3(t) ≤ �33t + φ4(t).

Hence,

lim sup
t→∞

1
t
(
a21a32 ln x1(t) + a11a32 ln x2(t) + H2 ln x3(t)

)≤ �33 < 0.

This shows limt→∞(x1(t))a21a32 (x2(t))a11a32 (x3(t))H2 = 0, which implies that there is i ∈
{1, 2, 3} such that

lim
t→∞ xi(t) = 0. (42)

For 1 ≤ i ≤ j ≤ 3, similarly to the above arguments for cases �11 ≤ 0, and �11 > 0 and
�22 ≤ 0, we can easily prove that if limt→∞ xi(t) = 0 a.s., then limt→+∞ xj(t) = 0 a.s. There-
fore, from (42) we finally obtain limt→∞ x3(t) = 0 a.s. Consequently, limt→∞〈x3(t)〉 = 0 a.s.
By a similar argument as in the above for case �33 = 0, we also know limt→∞〈x1(t)〉 = �21

H2
and limt→∞〈x2(t)〉 = �22

H2
. This completes the proof. �

Next, we can establish the following result on the global attractivity in the expectation
for any global positive solutions of model (1).

Theorem 2 Let (x1(t;φ), x2(t;φ), x3(t;φ)) and (y1(t;φ∗), y2(t;φ∗), y3(t;φ∗)) be two solutions
of model (1) with initial values φ,φ∗ ∈ C([–γ , 0], R3

+)). Assume that there are positive con-
stants w1, w2, and w3 such that

w1a11 – w2a21 > 0, w2a22 – w1a12 – w3a32 > 0, w3a33 – w2a23 > 0.

Then

lim
t→∞ E

√∣
∣x1(t;φ) – x1

(
t;φ∗)∣∣2 +

∣
∣x2(t;φ) – x2

(
t;φ∗)∣∣2 +

∣
∣x3(t;φ) – x3

(
t;φ∗)∣∣2 = 0.
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Proof We only need to show

lim
t→∞ E

∣
∣xi(t;φ) – xi

(
t;φ∗)∣∣ = 0, i = 1, 2, 3. (43)

Define functions as follows:

Vi(xi) =
∣
∣ln xi(t;φ) – ln yi

(
t;φ∗)∣∣, i = 1, 2, 3.

Applying Itô’s formula, we obtain

LV1(x1) ≤ –a11
∣
∣x1(t;φ) – y1

(
t;φ∗)∣∣

+ a12

∫ 0

–τ12

∣
∣x2(t + θ ;φ) – y2

(
t + θ ;φ∗)∣∣dμ12(θ ), (44)

LV2(x2) ≤ –a22
∣
∣x2(t;φ) – y2

(
t;φ∗)∣∣ + a21

∫ 0

–τ21

∣
∣x1(t + θ ;φ) – y1

(
t + θ ;φ∗)∣∣dμ21(θ )

+ a23

∫ 0

–τ23

∣
∣x3(t + θ ;φ) – y3

(
t + θ ;φ∗)∣∣dμ23(θ ), (45)

and

LV3(x3) ≤ –a33
∣
∣x3(t;φ) – y3

(
t;φ∗)∣∣

+ a32

∫ 0

–τ32

∣
∣x2(t + θ ;φ) – y2

(
t + θ ;φ∗)∣∣dμ32(θ ). (46)

Define function as follows:

V (t) = w1V1(x1) + w2V2(x2) + w3V3(x3) + V4(t), (47)

where

V4(t) = w1a12

∫ 0

–τ12

∫ t

t+θ

∣
∣x2(s;φ) – y2

(
s;φ∗)∣∣ds dμ12(θ )

+ w2a21

∫ 0

–τ21

∫ t

t+θ

∣
∣x1(s;φ) – y1

(
s;φ∗)∣∣ds dμ21(θ )

+ w2a23

∫ 0

–τ23

∫ t

t+θ

∣
∣x3(s;φ) – y3

(
s;φ∗)∣∣ds dμ23(θ )

+ w3a32

∫ 0

–τ32

∫ t

t+θ

∣
∣x2(s;φ) – y2

(
s;φ∗)∣∣ds dμ32(θ ). (48)

From (44)–(48) we obtain

LV (t) = w1LV1(x1) + w2LV2(x2) + w3LV3(x3) +
dV4(t;φ,φ∗)

dt
≤ –(w1a11 – w2a21)

∣
∣x1(t;φ) – y1

(
t;φ∗)∣∣
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– (w2a22 – w1a12 – w3a32)
∣
∣x2(t;φ) – y2

(
t;φ∗)∣∣

– (w3a33 – w2a23)
∣
∣x3(t;φ) – y3

(
t;φ∗)∣∣.

Hence, we have

E
[
V (t)

] ≤ E
[
V (0)

]
– (w1a11 – w2a21)

∫ t

0
E
[∣
∣x1(s;φ) – y1

(
s;φ∗)∣∣]ds

– (w2a22 – w1a12 – w3a32)
∫ t

0
E
[∣
∣x2(s;φ) – y2

(
s;φ∗)∣∣]ds

– (w3a33 – w2a23)
∫ t

0
E
[∣
∣x3(s;φ) – y3

(
s;φ∗)∣∣]ds,

which implies

∫ t

0
E
[∣
∣xi(s;φ) – yi

(
s;φ∗)∣∣]ds < +∞, i = 1, 2, 3. (49)

Define functions

Fi(t) = E
[∣
∣xi(t;φ) – yi

(
t;φ∗)∣∣], i = 1, 2, 3.

Then, for any t1, t2 ∈ [0, +∞), we obtain, for each i = 1, 2, 3,

∣
∣Fi(t2) – Fi(t1)

∣
∣ =

∣
∣E
[∣
∣xi(t2;φ) – yi

(
t2;φ∗)∣∣ –

∣
∣xi(t1;φ) – yi

(
t1;φ∗)∣∣]∣∣

≤ E
[∣
∣
(
xi(t2;φ) – yi

(
t2;φ∗)) –

(
xi(t1;φ) – yi

(
t1;φ∗))∣∣]

≤ E
[∣
∣xi(t2;φ) – xi(t1;φ)

∣
∣
]

+ E
[∣
∣yi
(
t2;φ∗) – yi

(
t1;φ∗)∣∣]. (50)

From model (1), applying Itô’s formula, we have

x1(t2;φ) – x1(t1;φ)

=
∫ t2

t1

x1(s;φ)
[

r1 – h1 – a11x1(s;φ) – a12

∫ 0

–τ12

x2(s + θ ;φ) dμ12(θ )
]

ds

+
∫ t2

t1

σ1x1(s;φ) dB1(s),

x2(t2;φ) – x2(t1;φ)

=
∫ t2

t1

x2(s;φ)
[

–r2 – h2 + a21

∫ 0

–τ21

x1(s + θ ;φ) dμ21(θ ) – a22x2(s;φ)

– a23

∫ 0

–τ23

x3(s + θ ;φ) dμ23(θ )
]

ds +
∫ t2

t1

σ2x2(s;φ) dB2(s),

x3(t2;φ) – x3(t1;φ)

=
∫ t

0
x3(s;φ)

[

–r3 – h3 + a32

∫ 0

–τ32

x2(s + θ ;φ) dμ32(θ ) – a33x3(s)
]

ds

+
∫ t2

t1

σ3x3(s;φ) dB3(s).

(51)
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For any t2 > t1 and p > 1, using Hölder’s inequality, from the first equation of (51), we have

(
E
[∣
∣x1(t2;φ) – x1(t1;φ)

∣
∣
])p

≤ E
[∣
∣x1(t2;φ) – x1(t1;φ)

∣
∣p
]

≤ E
[(∫ t2

t1

x1(s;φ)
∣
∣
∣
∣r1 – h1 – a11x1(s;φ) – a12

∫ 0

–τ12

x2(s + θ ;φ) dμ12(θ )
∣
∣
∣
∣ds

+
∣
∣
∣
∣

∫ t2

t1

σ1x1(s;φ) dB1(s)
∣
∣
∣
∣

)p]

≤ 2pE
[(∫ t2

t1

x1(s;φ)
∣
∣
∣
∣r1 – h1 – a11x1(s;φ) – a12

∫ 0

–τ12

x2(s + θ ;φ) dμ12(θ )
∣
∣
∣
∣ds

)p]

+ 2pE
[∣
∣
∣
∣

∫ t2

t1

σ1x1(s;φ) dB1(s)
∣
∣
∣
∣

p]

. (52)

Using Hölder’s inequality again, we also have

E
[(∫ t2

t1

x1(s;φ)
∣
∣
∣
∣r1 – h1 – a11x1(s;φ) – a12

∫ 0

–τ12

x2(s + θ ;φ) dμ12(θ )
∣
∣
∣
∣ds

)p]

≤ E
[(∫ t2

t1

(

|r1 – h1|x1(s;φ) + a11x2
1(s;φ)

+ a12

∫ 0

–τ12

x1(s;φ)x2(s + θ ;φ) dμ12(θ )
)

ds
)p]

≤ (t2 – t1)p–1E
[∫ t2

t1

(

|r1 – h1|x1(s;φ) + a11x2
1(s;φ)

+ a12

∫ 0

–τ12

x1(s;φ)x2(s + θ ;φ) dμ12(θ )
)p

ds
]

≤ (t2 – t1)p–1E
[∫ t2

t1

3p
(

|r1 – h1|pxp
1(s;φ) + ap

11x2p
1 (s;φ)

+
(

a12

∫ 0

–τ12

x1(s;φ)x2(s + θ ;φ) dμ12(θ )
)p)

ds
]

= 3p(t2 – t1)p–1|r1 – h1|p
∫ t2

t1

E
[
xp

1(s;φ)
]

ds + 3pap
11(t2 – t1)p–1

∫ t2

t1

E
[
x2p

1 (s;φ)
]

ds

+ 3p(t2 – t1)p–1E
[∫ t2

t1

(

a12

∫ 0

–τ12

x1(s;φ)x2(s + θ ;φ) dμ12(θ )
)p

ds
]

(53)

and

E
[∫ t2

t1

(

a12

∫ 0

–τ12

x1(s;φ)x2(s + θ ;φ) dμ12(θ )
)p

ds
]

≤ E
[∫ t2

t1

(
1
2

a12x2
1(s;φ) +

1
2

a12

∫ 0

–τ12

x2
2(s + θ ;φ) dμ12(θ )

)p

ds
]

≤ E
[∫ t2

t1

(

ap
12x2p

1 (s;φ) +
(

a12

∫ 0

–τ12

x2
2(s + θ ;φ) dμ12(θ )

)p)

ds
]
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≤ E
[∫ t2

t1

(

ap
12x2p

1 (s;φ) + ap–1
12

∫ 0

–τ12

x2p
2 (s + θ ;φ) dμ12(θ )

)

ds
]

= ap
12

∫ t2

t1

E
[
x2p

1 (s;φ)
]

ds + ap–1
12

∫ t2

t1

∫ 0

–τ12

E
[
x2p

2 (s + θ ;φ)
]

dμ12(θ ) ds. (54)

In view of Theorem 7.1 in [24], for any t2 > t1 and 1 < p ≤ 2, we obtain

E
[∣
∣
∣
∣

∫ t2

t1

σ1x1(s;φ) dB1(s)
∣
∣
∣
∣

p]

≤ ∣
∣σ

p
1
∣
∣

(
p(p – 1)

2

) p
2

(t2 – t1)
p–2

2

∫ t2

t1

E
[
xp

1(s;φ)
]

ds. (55)

From Lemma 3, there exist K∗∗
1 (p) > 0, K∗∗

2 (p) > 0, and K∗∗
3 (p) > 0 such that

supt≥–γ E[xp
1(t)] ≤ K∗∗

1 (p), supt≥–γ E[xp
2(t)] ≤ K∗∗

2 (p), and supt≥–γ E[xp
3(t)] ≤ K∗∗

3 (p). There-
fore, from (52)–(55) there exists δ > 0 such that, for any t1 ≥ 0, t2 ≥ 0, and 1 < p ≤ 2 with
|t2 – t1| ≤ δ,

(
E
[∣
∣x1(t2;φ) – x1(t1;φ)

∣
∣
])p

≤ 2p
[
∣
∣σ

p
1
∣
∣

(
p(p – 1)

2

) p
2

(t2 – t1)
p
2 K∗∗

1 (p)
]

+ 2p[3p(t2 – t1)p|r1 – h1|pK∗∗
1 (p)

+ 3pap
11(t2 – t1)pK∗∗

1 (2p)
]

+ 2p3p(t2 – t1)pap
12
[
K∗∗

1 (2p) + K∗∗
2 (2p)

]

≤ M∗∗
1 |t2 – t1| p

2 ,

where

M∗∗
1 =

∣
∣σ

p
1
∣
∣
(
2p(p – 1)

) p
2 K∗∗

1 (p) + [36δ]
p
2
[|r1 – h1|pK∗∗

1 (p) + ap
11K∗∗

1 (2p)
]

+ [36δ]
p
2 ap

12
[
K∗∗

1 (2p) + K∗∗
2 (2p)

]
.

Similarly, we also obtain

(
E
[∣
∣y1
(
t2;φ∗) – y1

(
t1;φ∗)∣∣])p ≤ M∗∗

1 |t2 – t1| p
2

for any t1 ≥ 0, t2 ≥ 0 with |t2 – t1| ≤ δ and 1 < p ≤ 2. Thus, from (50), we obtain

∣
∣F1(t2) – F1(t1)

∣
∣ ≤ E

[∣
∣x1(t2;φ) – x1(t1;φ)

∣
∣
]

+ E
[∣
∣y1
(
t2;φ∗) – y1

(
t1;φ∗)∣∣]

≤ 2
(
M∗∗

1
) 1

p
√|t2 – t1|. (56)

Using a similar argument, for F2(t) and F3(t) we can also obtain that there is δ > 0 for
any t1 ≥ 0, t2 ≥ 0 with |t2 – t1| ≤ δ and 1 < p ≤ 2

∣
∣F2(t2) – F2(t1)

∣
∣≤ 2

(
M∗∗

2
) 1

p
√|t2 – t1| (57)

and

∣
∣F3(t2) – F3(t1)

∣
∣≤ 2

(
M∗∗

3
) 1

p
√|t2 – t1|, (58)
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where

M∗∗
2 =

∣
∣σ

p
2
∣
∣
(
2p(p – 1)

) p
2 K∗∗

2 (p) + [64δ]
p
2
[|r2 + h2|pK∗∗

2 (p) + ap
22K∗∗

2 (2p)
]

+ [64δ]
p
2 ap

23
[
K∗∗

2 (2p) + K∗∗
3 (2p)

]
+ [64δ]

p
2 ap

21
[
K∗∗

1 (2p) + K∗∗
3 (2p)

]

and

M∗∗
3 =

∣
∣σ

p
3
∣
∣
(
2p(p – 1)

) p
2 K∗∗

3 (p) + [36δ]
p
2
[|r2 + h2|pK∗∗

3 (p) + ap
33K∗∗

3 (2p)
]

+ [36δ]
p
2 ap

32
[
K∗∗

3 (2p) + K∗∗
2 (2p)

]
.

From (56)–(58), we obtain that F1(t), F2(t), and F3(t) for t ∈ (0,∞) are uniformly contin-
uous. Therefore, from (48) and Barbalat lemma in [25] we can finally obtain (43). This
completes the proof. �

Denote by P([–γ , 0], R3
+) the space of all probability measures on C([–γ , 0], R3

+). For
P1, P2 ∈P([–γ , 0], R3

+), define

dBL(P1, P2) = sup
f ∈BL

∣
∣
∣
∣

∫

R3
+

f (z)P1(dz) –
∫

R3
+

f (z)P2(dz)
∣
∣
∣
∣,

where set BL is defined as follows:

BL =
{

f : C
(
[–γ , 0], R3

+
)→ R :

∣
∣f (z1) – f (z2)

∣
∣≤ ‖z1 – z2‖,

∣
∣f (·)∣∣≤ 1

}
.

Denote by p(t,φ, dx) the transition probability of process x(t) = (x1(t), x2(t), x3(t)). We have
the following results.

Theorem 3 Assume that there are positive constants q1, q2, and q3 such that

q1a11 – q2a21 > 0, q2a22 – q1a12 – q3a32 > 0, q3a33 – q2a23 > 0.

Then model (1) is asymptotically stable in distribution, i.e., there exists a unique probability
measure v(·) such that, for any initial function φ ∈ C([–γ , 0], R3

+), the transition probability
p(t,φ, ·) of x(t,φ) = (x1(t,φ), x2(t,φ), x3(t,φ)) satisfies

lim
t→∞ dBL

(
p(t,φ, ·), v(·)) = 0.

This theorem can be proved using a standard argument as in [15, 16] by using Lemma
1 and Theorem 2. Hence, we here omit it.

4 Effect of harvesting
In model (1), hi ≥ 0 (i = 1, 2, 3) denotes the harvesting rates of species xi, respectively.
Firstly, based on Theorem 1, we discuss the effects of harvesting for the persistence and
extinction of species in model (1).

From �11 = 0, the critical value of harvesting rate h1 for prey x1 is determined by h′
1 =

r1 – σ 2
1
2 . When h1 ≥ h′

1, all species x1 (i = 1, 2, 3) will die out from conclusions (1) and (2) of
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Theorem 1. This shows that the excessive harvesting for the prey will lead to the extinction
of all species in a food-chain system.

When h1 < h′
1, from �22 = 0, the critical value of harvesting rate h2 for middle predator

x2 is determined by h′
2 = a21

a11
(r1 – σ 2

1
2 – h1) – (r2 + σ 2

2 ). When h2 ≥ h′
2, from conclusions (3)

and (4) of Theorem 1 we see that prey x1 will be permanent in the mean, but two predators
x2 and x3 will die out. This shows that the excessive harvesting for the middle predator will
lead to the extinction of all top species. Furthermore, we see that h′

2 decreasingly depends
on the harvesting rate h1 for prey x1. This shows that when we increase the harvest for
the prey, then the harvest for the middle predator must decrease to just guarantee the
non-extinction of the whole food-chain system.

When h2 < h′
2, from �33 = 0, we further obtain that the critical value of harvesting rate

h3 for top predator x3 is

h′
3 =

[(r1 – σ 2
1
2 – h1)a21 – (r2 + σ 2

2
2 + h2)a11]a32

H2
–
(

r3 +
σ 2

3
2

)

.

When h3 ≥ h′
3, then from conclusions (5) and (6) of Theorem 1 we see that prey x1

and middle predator x2 will be permanent in the mean, but top predator x3 will die
out; whereas when h3 < h′

3, from conclusion (7) of Theorem 1 we see that all species x1

(i = 1, 2, 3) will be permanent in the mean. This shows that only temperate harvesting for
all species can ensure the persistence of all species and a continuous income. Further-
more, we also see that h′

3 decreasingly depends on the harvesting rates h1 and h2 for prey
and middle predators x1 and x2. This shows that when there exist the harvests for prey
and middle predator, then the harvest for the top predator must decrease; if not, then top
predator will die out.

Next, we discuss the optimal harvesting problem under the harvesting rates h1, h2, and
h3 for species x1, x2, and x3, respectively. We can establish the following comparatively
integrated results.

Theorem 4 Assume that there are positive constants m1, m2, and m3 such that

m1a11 – m2a21 > 0, m2a22 – m1a12 – m3a32 > 0, m3a33 – m2a23 > 0.

Let

h∗
1 =

–a11(a32 – a23)2 + 2a33a21(a12 – a21) + 4a11a22a33

2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

(

r1 –
σ 2

1
2

)

+
a11a33(a12 + a21)

4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2

(

r2 +
σ 2

2
2

)

+
a11(a12 + a21)(a32 – a23)

2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

(

r3 +
σ 2

3
2

)

,

h∗
2 =

{
2a22a33(a12 + a21)

2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

+
(a32 – a23)(a23a12 – a32a21)

2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

}(

r1 –
σ 2

1
2

)

+
a33a12(a12 – a21) – a11a32(a23 – a32) – 4a11a22a33

4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2

(

r2 +
σ 2

2
2

)

(59)
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+
{

(a12 – a21)(a21a32 – a12a23)
2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

+
2a11a22(a23 + a32)

2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

}(

r3 +
σ 2

3
2

)

,

h∗
3 =

a33(a21 – a12)(a23 + a32)
2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

(

r1 –
σ 2

1
2

)

–
2a11a33(a23 + a32)

4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2

(

r2 +
σ 2

2
2

)

+
a33(a12 – a21)2 + 2a11a23(a23 – a32) – 4a11a22a33

2[4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2]

(

r3 +
σ 2

3
2

)

and

Y ∗(H) = –(a22a33 + a23a32)h2
1 + (a33a12 – a33a21)h1h2

– a11a33h2
2 + (a11a23 – a11a32)h2h3 – (a11a22 + a12a21)h2

3

– (a12a23 + a21a32)h1h3 +
[(

r1 –
σ 2

1
2

)

(a22a33 + a23a32)

+
(

r2 +
σ 2

2
2

)

a33a12 –
(

r3 +
σ 2

3
2

)

a12a23

]

h1

+
[(

r1 –
σ 2

1
2

)

a33a21 –
(

r2 +
σ 2

2
2

)

a11a33 +
(

r3 +
σ 2

3
2

)

a11a23

]

h2

+
[(

r1 –
σ 2

1
2

)

a21a32 –
(

r2 +
σ 2

2
2

)

a11a32

–
(

r3 +
σ 2

3
2

)

(a11a22 + a12a21)
]

h3. (60)

We have the following conclusions.
(A1) If h∗

1 ≥ 0, h∗
2 ≥ 0, and h∗

3 ≥ 0, and

�33|h1=h∗
1,h2=h∗

2,h3=h∗
3

> 0,

4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2 > 0.
(61)

Then there is an optimal harvesting strategy H∗ = (h∗
1, h∗

2, h∗
3) for model (1), and

MESY =
Y ∗(H∗)

H3
. (62)

(A2) If one of the following conditions holds, then there is not the optimal harvesting strat-
egy for model (1).

(B1) b1|h1 = h∗
1 ≤ 0;

(B2) �33|h1=h∗
1,h2=h∗

2,h3=h∗
3
≤ 0;

(B3) h∗
1 < 0 or h∗

2 < 0 or h∗
3 < 0;

(B4) 4a11a22a33 – a33(a12 – a21)2 – a11(a23 – a32)2 < 0.
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Proof Define a set as follows:

U =
{

H = (h1, h2, h3)T ∈ R3 : �33 > 0, hi ≥ 0, i = 1, 2, 3
}

.

It is clear that for any H ∈ U conclusion (7) of Theorem 1 holds. From the condition of
conclusion (A1), we see that if optimal harvesting strategy H∗ exists, then H∗ ∈ U .

Proof of conclusion (A1). Based on condition (61) we obtain that U is not empty.
From Theorem 3, we obtain that there exists a unique invariant measure v(·) for model
(1). From Corollary 3.4.3 in Prato and Zbczyk [26], we obtain that v(·) is strong mix-
ing. By Theorem 3.2.6 in [26], we further obtain that measure v(·) is also ergodic. Let
x(t) = (x1(t), x2(t), x3(t)) be any global positive solution of model (1) with initial value
(ξ (θ ),η(θ ),ς (θ )) ∈ C([–γ , 0], R3

+)). Based on Theorem 3.3.1 in [26], for H = (h1, h2, h3)T ∈
U , we have

lim
t→∞

1
t

∫ t

0
HT x(s) ds =

∫

R3
+

HT xv(dx). (63)

Let �(z) be the stationary probability density of model (1), then we get

Y (H) = lim
t→∞ E

[ 3∑

i=1

hixi(t)

]

= lim
t→∞ E

[
HT x(t)

]
=
∫

R3
+

HT x�(x) dx. (64)

Note that the invariant measure of model (1) is unique and there exists a one-to-one cor-
respondence between �(z) and its corresponding invariant measure. We deduce

∫

R3
+

HT x�(x) dx =
∫

R3
+

HT xv(dx). (65)

Therefore, from conclusion (5) of Theorem 1, (59), and (63)–(65), we have

Y (H) = lim
t→+∞

1
t

∫ t

0
HT x(s) ds

= h1 lim
t→+∞

1
t

∫ t

0
x1(s) ds + h2 lim

t→+∞
1
t

∫ t

0
x2(s) ds + h3 lim

t→+∞
1
t

∫ t

0
x3(s) ds

=
Y ∗(H)

H3
.

By calculating we obtain

∂Y ∗(H)
∂h1

= –2(a22a33 + a23a32)h1 + (a33a12 – a33a21)h2 – (a12a23 + a21a32)h3

+
(

r1 –
σ 2

1
2

)

(a22a33 + a23a32) +
(

r2 +
σ 2

2
2

)

a33a12 –
(

r3 +
σ 2

3
2

)

a12a23,

∂Y ∗(H)
∂h2

= –2a11a33h2 + (a33a12 – a33a21)h1 + (a11a23 – a11a32)h3

+
(

r1 –
σ 2

1
2

)

a33a21 –
(

r2 +
σ 2

2
2

)

a11a33 +
(

r3 +
σ 2

3
2

)

a11a23,
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∂Y ∗(H)
∂h3

= –2(a11a22 + a12a21)h3 + (a11a23 – a11a32)h2 – (a12a23 + a21a32)h1

+
(

r1 –
σ 2

1
2

)

a21a32 –
(

r2 +
σ 2

2
2

)

a11a32 –
(

r3 +
σ 2

3
2

)

(a11a22 + a12a21).

Solving equations ∂Y∗(H)
∂h1

= 0, ∂Y∗(H)
∂h2

= 0, and ∂Y∗(H)
∂h3

= 0, we can obtain h1 = h∗
1, h2 = h∗

2, and
h3 = h∗

3, which are given in (59). Let H∗ = (h∗
1, h∗

2, h∗
3), by calculating we further obtain

∂2Y ∗(H∗)
∂h2

1
= –2(a22a33 + a23a32),

∂2Y ∗(H∗)
∂h1∂h2

= a33(a12 – a21),

∂2Y ∗(H∗)
∂h1∂h3

= –(a12a23 + a21a32),
∂2Y ∗(H∗)

∂h2
2

= –2a11a33,

∂2Y ∗(H∗)
∂h2∂h1

= a33(a12 – a21),
∂2Y ∗(H∗)
∂h2∂h3

= a11(a23 – a32),

∂2Y ∗(H∗)
∂h2

3
= –2(a11a22 + a12a21),

∂2Y ∗(H∗)
∂h3∂h1

= –(a12a23 + a21a32),

∂2Y ∗(H∗)
∂h3∂h2

= a11(a23 – a32).

Define matrix M = ( ∂2Y∗(H∗)
∂hi∂hj

)1≤i,j≤3. Then condition (61) implies that matrix M is negative
definite. We hence obtain that Y ∗(H) has a unique maximum value Y ∗(H∗). This shows
that H∗ is an optimal harvesting strategy, and MESY is given in (62).

Proof of conclusion (A2). From conclusions (1) and (2) of Theorem 1, we can obtain
limt→∞ xi(t) = 0 (i = 1, 2, 3) if condition (B1) holds. Hence, the optimal harvesting does
not exist.

Assume that condition (B2) or (B3) holds. If there is an optimal harvesting strategy H̃∗ =
(̃h∗

1, h̃∗
2, h̃∗

3), then H̃∗ ∈ U . That is,

�33|h1=̃h∗
1,h2=̃h∗

2,h3=̃h∗
3

> 0, h̃∗
1 ≥ 0, h̃∗

2 ≥ 0, h̃∗
3 ≥ 0. (66)

On the other hand, if H̃∗ = (̃h∗
1, h̃∗

2, h̃∗
3) ∈ U is the optimal harvesting strategy, then we also

have (̃h∗
1, h̃∗

2, h̃∗
3) must be the unique solution of the following system:

∂Y ∗(H)
∂h1

= 0,
∂Y ∗(H)

∂h2
= 0,

∂Y ∗(H)
∂h3

= 0.

Therefore, we have (h∗
1, h∗

2, h∗
3) = (̃h∗

1, h̃∗
2, h̃∗

3). Thus, condition (66) becomes

�33|h1=h∗
1,h2=h∗

2,h3=h∗
3

> 0, h∗
1 ≥ 0, h∗

2 ≥ 0, h∗
3 ≥ 0,

which contradicts both (B2) and (B3).
Lastly, we consider condition (B4). We can assume that conditions (B2) and (B3) do not

hold. Hence, h∗
1 ≥ 0, h∗

2 ≥ 0, and h∗
3 ≥ 0, and �33|h1=h∗

1,h2=h∗
2,h3=h∗

3
> 0. Thus, U is not empty.

Condition (B4) implies that matrix M is not negative semidefinite. Therefore, there is not
any maximum point. This completes the proof. �
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5 Numerical examples
In this section, we will provide the numerical examples to illustrate our main results. The
numerical approaches are proposed in [13], and also refer to [16]. Firstly, we indicate in
the following numerical examples that the initial values always are fixed by x1(θ ) = 0.3eθ ,
x2(θ ) = 0.2eθ , and x3(θ ) = 0.3eθ for all θ ∈ [– ln 2, 0], and τ12 = τ21 = τ23 = τ32 = ln 2.

Example 1 In model (1), parameters r1 = 2.0, r2 = 1.0, r3 = 0.5, and h1 = h2 = h3 = 0 are
fixed. We consider the following cases.

Case 1. Taking parameters a11 = 1, a22 = 0.5, a33 = 0.25, a12 = 1, a21 = 1, a23 = 1, a32 = 1,
σ1 = 2.5, σ2 = 0.1, and σ3 = 0.05, we have �11 = –1.125 < 0. Hence, the conditions of con-
clusion (1) in Theorem 1 are satisfied. The numerical simulations given in Fig. 1 illustrate
that all species xi (i = 1, 2, 3) are extinct with probability one.

Case 2. Taking parameters a11 = 1, a22 = 0.5, a33 = 0.25, a12 = 1, a21 = 1, a23 = 1, a32 = 1,
σ1 = 2.0, σ2 = 0.1, and σ3 = 0.05, we have �11 = 0. Hence, the conditions of conclusion
(2) in Theorem 1 are satisfied. The numerical simulations given in Fig. 2 illustrate that all
species xi (i = 1, 2, 3) also are extinct with probability one.

Case 3. Taking parameters a11 = 1, a22 = 0.5, a33 = 0.25, a12 = 1, a21 = 0.7, a23 = 1, a32 = 1,
σ1 = 1.0, σ2 = 0.6, and σ3 = 0.05, we have �11 = 1.5 > 0 and �22 = –0.13 < 0. Hence, the
conditions of conclusion (3) in Theorem 1 are satisfied. The numerical simulations given
in Fig. 3 illustrate that species x1(t) is persistent in the mean while species xi(t) (i = 2, 3)
go to extinction.

Case 4. Taking parameters a11 = 1, a22 = 0.5, a33 = 0.25, a12 = 1, a21 = 0.78667, a23 = 1,
a32 = 1, σ1 = 1.0, σ2 = 0.5, and σ3 = 0.3, we have �22 = 0. Hence, the conditions of con-
clusion (4) in Theorem 1 are satisfied. The numerical simulations given in Fig. 4 illustrate

Figure 1 Species xi (i = 1, 2, 3) are extinct with probabilty one

Figure 2 Species xi (i = 1, 2, 3) are also extinct with probability one
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Figure 3 Species x1(t) is persistent in the mean while species xi(t) (i = 2, 3) go to extinction

Figure 4 Species x1(t) is persistent in the mean, species x2(t) is extinct in the mean and x3(t) is extinct

Figure 5 Species x1(t) and x2(t) are persistent in the mean while species x3(t) goes to extinction

that species x1(t) is persistent in the mean, species x2(t) is extinct in the mean and x3(t) is
extinct.

Case 5. Taking parameters a11 = 1, a22 = 0.5, a33 = 2.5, a12 = 1, a21 = 2, a23 = 1, a32 = 1,
σ1 = 0.5, σ2 = 0.3, and σ3 = 1.5, we have �22 = 2.505 > 0 and �33 = –1.5575 < 0. Hence, the
conditions of conclusion (5) in Theorem 1 are satisfied. The numerical simulations given
in Fig. 5 illustrate that species x1(t) and x2(t) are persistent in the mean while species x3(t)
goes to extinction.

Case 6. Taking parameters a11 = 1, a22 = 0.5, a33 = 2.5, a12 = 1, a21 = 2, a23 = 1, a32 = 1,
σ1 = 0.5, σ2 = 0.3, and σ3 =

√
1.004, we have �33 = 0. Hence, the conditions of conclusion

(6) in Theorem 1 are satisfied. The numerical simulations given in Fig. 6 illustrate that
species x1(t) and x2(t) are persistent in the mean while species x3(t) is extinct in the mean.

Case 7. Taking parameters a11 = 1, a22 = 0.5, a33 = 1, a12 = 1, a21 = 2, a23 = 1, a32 = 2, σ1 =
0.1, σ2 = 0.2, and σ3 = 0.9, we have �33 = 0.2425 > 0. Hence, the conditions of conclusion
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Figure 6 Species x1(t) and x2(t) are persistent in the mean while species x3(t) is extinct in the mean

Figure 7 Species xi(t) (i = 1, 2, 3) are persistent in the mean

(7) in Theorem 1 are satisfied. The numerical simulations given in Fig. 7 illustrate that all
species xi(t) (i = 1, 2, 3) are persistent in the mean.

Example 2 In model (1) we take parameters r1 = 1, r2 = 0.3, r3 = 0.1, m1 = 1, m2 = 0.3,
m3 = 0.1, a11 = 0.4, a12 = 0.1, a22 = 0.5, a21 = 0.75, a23 = 0.1, a32 = 0.45, a33 = 0.6, σ1 = 0.2,
σ2 = 0.1, and σ3 =

√
0.012.

We have m1a11 – m2a21 = 0.1075 > 0, m2a22 – m1a12 – m3a32 = 0.005 > 0, and m3a33 –
m2a23 = 0.03 > 0. Calculating h∗

i (i = 1, 2, 3) in Theorem 2, we have h∗
1 = 0.0023 > 0, h∗

2 =
0.1414 > 0, and h∗

3 = 0.0958 > 0. Furthermore, we also have 4a11a22a33 – a33(a12 – a21)2 –
a11(a23 – a32)2 = 0.1175 > 0, �33|h1=h∗

1,h2=h∗
2,h3=h∗

3
= 0.4769 > 0, and H3 = 0.183. Hence, all

conditions of conclusion (A1) in Theorem 2 are satisfied. Hence, there is an optimal har-
vesting strategy H∗ = (0.0023, 0.1414, 0.0958)T , and the maximum of expectation of sus-
tainable yield (MESY) is Y∗(H∗)

H3
= 0.3464. The numerical simulations are given in Fig. 8.

6 Conclusion
Ecological and mathematical improvements have provided that three species are more ad-
vantageous than two-species models (Pimm [27], Hastings and Powell [28]). Besides, con-
sidering the influence of distributed delays and environmental noise, we analyze a stochas-
tic three species food-chain model with harvesting in this paper. By using the stochastic
integral inequalities, Lyapunov function method, and the inequality estimation technique,
some criteria on the existence of global positive solutions, stochastic boundedness, extinc-
tion, global asymptotic stability in the mean and the probability distribution, and the effect
of harvesting are established. Our results show some meaningful facts:

(i) Theorem 1 shows the sufficient and necessary conditions for the extinction and
global asymptotic stability in the mean with probability one. In addition, Theorem 1
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Figure 8 Species xi(t) (i = 1, 2, 3) are also persistent in the mean. There is an optimal harvesting strategy
H∗ = (h∗

1 ,h
∗
2 ,h

∗
3)
T = (0.0023, 0.1414, 0.0958)T , and the maximum of expectation of sustainable yield (MESY) is

Y∗ (H∗ )
H3

= 0.3464

also reveals the effects of harvesting for the extinction and permanence in the mean
of prey, middle predator, and top predator.

(ii) Theorem 2 and Theorem 3 guarantee the global attractivity in the expectation and
the global asymptotic stability in distribution, respectively.

(iii) Theorem 4 reveals the existence of optimal harvesting strategy and MESY are
affected by environmental fluctuations.

There are still some problems waiting for further investigation. Firstly, it is meaningful
to study more complex systems, for example, stochastic systems with Lévy jumps (see, for
example, [22, 29]), Markovian switching (see, for example, [30]) and nonlinear functional
responses (see, for example, [31]), and general stochastic many species food-chain sys-
tems. Furthermore, the optimal harvesting problem for other stochastic population sys-
tems with distributed delays, for instance, competitive systems and cooperative systems,
still are rarely investigated at present. We will leave to investigate these problems in the
future.
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