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Abstract
This paper addresses the design problem of sampled-data controllers for the
synchronization of complex dynamical networks under controller attack. Some
discontinuous Lyapunov functionals and zero equation are employed to deal with a
sampled-data pattern. Due to the limited access of networks to hackers, cyber-attacks
on the controller are considered randomly occurring and are described as an attack
function which is nonlinear but assumed to be certain known conditions. The
designing conditions for sampled-data controllers against cyber-attack are developed
in terms of linear matrix inequality (LMI) by using Lyapunov theory and some novel
inequalities. Finally, a numerical example is given to prove the usefulness of the
proposed method.

Keywords: Complex network; Synchronization; Sampled-data control; Controller
attack

1 Introduction
Nowadays, most of systems, components, plants are connected complicatedly to each
other thanks to high level of communication technology, which can be called complex
dynamic networks (CDNs). CDNs consist of many nodes with complicated interconnec-
tions among them, so each node is affected and affects the others whether they are willing
or not; for example, World Wide Web (WWW), social media, metabolic systems, Internet
of Things (IoT), transportation networks, power grids, food chain, and so on. By consid-
ering the high potential of CDNs, therefore, it is natural that the research on CDNs has
become a large research area, and many researchers have discovered the nature of CDNs
[1–3]. The synchronization is one of the popular applications of CDNs, which makes all
states of each node in a CDN follow the same trajectories, and it has been widely studied
[4–20]. To solve the synchronization problem for CDNs, various control schemes, such
as feedback control [4–6], adaptive control [7, 8], sliding-mode control [9, 10], dynamic
control [11, 12], event-triggered control [13], impulsive control [14, 15], H∞ control [16],
and pinning control [17–20], have been employed.

In [17], the problem of both exponential synchronization and generalized synchroniza-
tion of CDNs with/without time-varying coupling delays was investigated by designing an
intermittent periodically adaptive pinning controller, and the results were applied to the
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nearest-neighbor network and the Barabasi–Albert network to show the effectiveness.
The paper [7] proposed a concept of consecutive synchronization and designed a dis-
tributed adaptive controller for consecutive synchronization of CDNs with special topol-
ogy structures. Synchronization of CDNs with N-coupled fractional-order chaotic system
oscillators and regular/irregular topologies was studied in [6], and their results were ap-
plied to various fractional-order chaotic systems, Lorenz, Volta, Duffing, and financial
chaotic oscillators. [8] dealt with traffic road network as an application of CDNs, in which
an adaptive controller and adjustable coupling strength were designed to reduce the im-
pact of uncertainties, and pinning control method was employed as well for the smooth
flow of traffic.

Rapidly growing communication technology opened a research field on sampled-data
control. Sampled-data control has many benefits such as easy installation and mainte-
nance, low operation fee, and so on. Therefore, it is natural to have a meteoric rise of
research field on the sampled-data control scheme [21–32]. In [21], an aperiodic sampled-
data controller was designed for controlling the two-wheel inverted pendulum in the T-S
fuzzy model with disturbances on actuators where the proposed controller satisfies very-
strict passivity. In [22], H∞ state estimator for genetic regulatory networks with random
delays, uncertainties, and disturbances was designed using sampled-data of the concen-
trations of mRNAs and proteins. In [23], an observer-based sampled-data controller was
designed for a class of scalar nonlinear affine systems where the discrete-time states were
firstly estimated by a nonlinear state observer, and then they were used for designing
the sampled-data control. And there are a number of papers on the synchronization of
CDNs by a sampled-data controller. The synchronization of CDNs with coupling time-
varying delays was achieved via a sampled-data controller in [24], in which sampled-data
had a constant time delay, and a discontinuous Lyapunov functional based on the ex-
tended Wirtinger inequality was used. In [25], the synchronizability analysis for CDNs
with sampled-data coupling signals was conducted by employing multiple-integral Lya-
punov functionals, and then a sampling period-dependent criterion was derived in terms
of linear matrix inequalities (LMIs). The main feature of the sampled-data controller is
that it uses discontinuous signals because the control signals can be updated at sampling
instants and are held a constant value for sampling periods. To make the efficient use
of this feature, several techniques have been reported, such as input delay approach [26,
27], discontinuous Lyapunov functional based on extended Wirtinger inequality [28], free-
matrix-based time-dependent discontinuous Lyapunov approach [30], looped-functional-
based approach [29], sampling-instant-to-present-time fragmentation approach [31, 32],
and so on.

On the other hand, from the recent situation of growing communication technology,
it can be understandably expected that the importance of security against cyber-attack
has been emphasized [33–42]. Adversaries maliciously modified the data by exploiting
the vulnerabilities of networks, which has degraded or destroyed the stability and per-
formance of the system. Mainly two kinds of cyber-attacks exist [33, 34]: one is denial
of service (DoS), another is deception attacks. DoS attacks attempt to block traffic from
the actuator and sensor and as a result bring the absence of data for the related compo-
nents; this situation is well known as the packet dropout. On the other hand, the data
from components can be substituted secretly for the data that adversaries want by hack-
ers which is called deception attacks. Thus, to develop criteria with prevention measure
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against cyber-attacks is a major concern of scholars [38, 39]. In [40], H∞ observer-based
periodic event-triggered controller for the control of a class of cyber-physical systems was
designed under consideration of DoS attacks where the designed controller maximized
the frequency and duration of the DoS attacks. In [41], distributed event-triggered H∞
filters were designed on sensor networks in the presence of sensor saturations and ran-
domly occurring cyber-attacks. In [42], the consensus problem of nonlinear multi-agent
systems was studied by using sampled agents’ states and considering cyber-attacks on con-
nectivity of the network topology, but it was recoverable. Authors in [43] proposed both
event- and self-triggered control schemes for the leader-following consensus problem of
multi-agent systems under consideration of DoS attacks, in which both synchronous and
asynchronous updated strategies for control protocols were derived. Obviously, cyber-
attacks would become a hotter issue for CDNs because CDNs consist of numerous nodes
connected through communication networks. Nevertheless, research on CDNs with the
consideration of cyber-attacks deserves much interest from scholars, only several works
have been reported, which motivates this research.

This paper is about the synchronization of CDNs using sampled-data information un-
der controller attacks. The main contribution of the paper is laid on mainly two streams:
(i) Development of novel discontinuous Lyapunov functionals and zero inequality. Novel
discontinuous Lyapunov functional would help the utilization of sampling characteris-
tic. Combining with the novel discontinuous Lyapunov functionals, a zero inequality is
needed to deal with a rest term of the time derivative of the novel discontinuous Lyapunov
functionals. These may lead to less conservative conditions for designing a sampled-
data controller. (ii) Consideration of cyber-attacks on controllers. Recently, the concept
of cyber-attacks is the hottest issue in control engineering, and many works on cyber-
attacks have been done. However, only few works cover controllers under cyber-attacks,
even controllers of CDNs with cyber-attacks are few or nonexistent. Therefore, this paper
considers deception attacks on controllers and designs the suitable controller against the
attacks.

2 Problem formulation
Consider the following a CDN with N linearly coupled identical nodes:

ẋi(t) = Ax(t) + Bf
(
xi(t)

)
+

N∑

j=1

cijxj(t) + ui(t), i = 1, . . . , N , (1)

where xi = (xi1, xi2, . . . , xin)T ∈ R
n is the state vector of the ith node, A ∈ R

n×n, B ∈ R
n×n

are known constant matrices, f (t) = (f1(t), f2(t), . . . , fn(t))T : Rn →R
n is a smooth nonlinear

vector field, and ui(t) = (ui1, ui2, . . . , uin)T is the control input of ith node. C = (cij)N×N is the
coupling matrix of the network, where each element of the matrix cij is defined as follows:
if there is a connection from node i to node j (i �= j), then cij = 1; otherwise cij = 0 (i �= j),
and the diagonal elements of matrix C are assumed by

cii = –
N∑

j=1,j �=i

cij = –
N∑

j=1,j �=i

cji, i = 1, . . . , N .
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Assumption 1 The nonlinear function fi(·) (i = 1, 2, . . . , n) satisfies the following condi-
tion:

0 ≤ fi(a) – fi(b)
a – b

≤ li, fi(0) = 0,

where li is a positive constant.

Let us consider a target note as ṡ(t) = As(t) + Bf (s(t)). Then the aim of this paper is syn-
chronizing all nodes of a CDN up to the target node, i.e., limt→∞ ‖s(t) – xi(t)‖ = 0 for
i = 1, 2, . . . , N . To this end, we define error vectors as ei(t) = s(t) – xi(t). Then the error
dynamics is given as follows:

ėi(t) = Ae(t) + Bf̄i(t) –
N∑

j=i

cijej(t) – ui(t), i = 1, . . . , N , (2)

where f̄i(t) = f (s(t)) – f (xi(t)).
In this paper, the controllers are designed using sampled-data signals as follows:

uF
i (t) = Kiei(tk), tk ≤ t < tk+1, (3)

where Ki is the gain matrices for ith node to be determined, tk is the updating instant time
of the Zero-Order-Hold (ZOH) satisfying tk+1 – tk = h, h is a positive scalar.

Recently, the controller has become a target of hackers to alter the transmitted informa-
tion. So, this paper is concerned with designing a sampled-data controller under cyber-
attack. Because of the limited communication capacity of the network resources for hack-
ers, the attacks might randomly destroy the control signals, and the maliciously modified
signals would not be far away from the original one. To reflect this situation, we introduce
Bernoulli random variable γi(t) ∈ {0, 1}, satisfying Pr{γi(t) = 1} = γi, where Pr{x} implies
the occurrence probability of the event x, and γi is a known positive constant less than 1.
Here, γi(t) = 1 means the cyber-attacks are launched to the controller uF

i (t). The specific
controller model under cyber-attack is as follows:

ui(t) =
(
1 – γi(t)

)
Kiei(tk) + γi(t)Kigi

(
ei
(
t – d(t)

))
, (4)

where gi(t) = (gi1(t), gi2(t), . . . , gin(t))T : Rn → R
n is the function of controller attacks, d(t)

is time-varying delay satisfying 0 ≤ d(t) ≤ d and ḋ(t) ≤ μ, and d and μ are known positive
constants.

Assumption 2 The cyber-attack function gi(·) is satisfied gi(0) = 0 and ∀i ∈ {1, 2, . . . , n},
a �= b

0 ≤ gij(a) – gij(b)
a – b

≤ mij,

where mij is a positive constant.
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Remark 1 It can be strictly said that the cyber-attacks considered in this paper are ran-
domly occurring deception attacks because, when a controller is under cyber-attacks, the
real control inputs are replaced with the incorrect ones which adversaries want. And the
cyber-attacks would be launched at any time, this introduces randomly occurring sense.
Since adversaries try to adjust real control signals and transmit them through commu-
nication networks, the considered cyber-attacks signals contain time-delayed informa-
tion.

Then the closed-loop error systems with controller (4) can be rewritten in the following
vector-matrix form:

ė(t) = AN e(t) + BN F
(
e(t)

)
– CN e(t) – Γ̄ (t)Ke(tk)

– Γ (t)G
(
e
(
t – d(t)

))
, (5)

where e(t) = [eT
1 (t), eT

2 (t), . . . , eT
N (t)]T , F(e(t)) = [f̄ T

1 (e1(t)), f̄ T
2 (e2(t)), . . . , f̄ T

N (eN (t))]T , G(e(t)) =
[gT

1 (e1(t)), gT
2 (e2(t)), . . . , gT

N (eN (t))]T , K = diag{K1, K2, . . . , KN }, Γ (t) = diag{γ1(t),γ2(t), . . . ,
γN (t)} ⊗ In, Γ̄ (t) = (IN – Γ (t)) ⊗ In, AN = IN ⊗ A, BN = IN ⊗ B, CN = C ⊗ In, and ⊗ stands
for the notation of Kronecker product.

3 Main results
This section proposes a design scheme for the sampled-data controller under cyber-attack
synchronizing a CDN. Before proceeding further, the following lemma is given.

Lemma 1 For given three scalars a, b, c where a ≤ b ≤ c, a positive definite matrix W ∈
R

n×n, and any matrix S ∈R
2n×2n and all continuous function η in [a, c] →R

n the following
inequality holds:

∫ c

a
η̇T (s)W η̇(s) ds ≥ βT (t)Wβ(t),

subject to

[
diag{W , 3W } S

� diag{W , 3W }

]

> 0,

where

β(t) =
[
ΩT

1 (a, b),ΩT
2 (a, b),ΩT

1 (b, c),ΩT
2 (b, c)

]T ,

Ω1(a, b) = η(b) – η(a),

Ω2(a, b) = η(b) + η(a) –
2

b – a

∫ b

a
η(s) ds.

Proof It is easy to derive Lemma 1 when we combined with Wirtinger-based integral in-
equality [44] and reciprocal convex lemma [45].
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The following notations are used in the paper. The block entry matrices and a vector are
defined as bi (i = 1, . . . , 10) ∈R

10nN×nN (for example, b3 = [0, 0, I, 0, . . . , 0︸ ︷︷ ︸
7

]) and

ζ (t) =
[

eT (t), eT(t – d(t)
)
, eT (t – d),

1
d(t)

∫ t

t–d(t)
eT (s) ds,

1
d – d(t)

∫ t–d(t)

t–d
eT (s) ds, eT (tk),

∫ t

tk

eT (s) ds, ėT (t),

FT (t), GT(t – d(t)
)
]T

. �

Now, the main result is given by the following theorem.

Theorem 1 For given scalars d, h, μ, α, γi (i = 1, 2, . . . , N ), li (i = 1, 2, . . . , n), mij (i =
1, 2, . . . , N ; j = 1, 2, . . . , n), there exists a sampled-data controller with cyber-attack (4) for the
synchronization of CDN (1) if there exist positive-definite matrices P, Q1, Q2, Q3 ∈R

nN×nN ,

R =

⎡

⎢⎢
⎣

R1 R2 R3

�

�
R4

⎤

⎥⎥
⎦ ∈R

3nN×3nN ,

positive diagonal matrices U1, U2, X1, X2 ∈ R
nN×nN , a symmetric matrix H5 ∈ R

nN×nN , a
diagonal matrix D ∈R

nN×nN , any matrices H1, H2, H3, H4, K̄ ∈R
nN×nN , S ∈R

2nN×2nN , Y ∈
R

10nN×nN satisfying the following LMIs:

P = diag{P, 0, 0} + hH > 0, (6)

Q =

[
diag{Q3, 3Q3} S

� diag{Q3, 3Q3}

]

> 0, (7)

R4 > 0, (8)

Υ1 + hΥ2 < 0, (9)
[
Υ1 – hb6R1bT

6 Y
� – 1

h R4

]

< 0, (10)

where

Υ1 = Sym
{

b1PbT
8 – b6R2(b1 – b6)T – b6R3bT

7 + YΠT
5 + b1LU1bT

9

+ b2MX1bT
10 + (b1 + αb8)

(
–DbT

8 + D(AN – CN )bT
1 + DBN bT

9 – Γ̄ K̄bT
6

– Γ K̄bT
10
)}

– Π1HΠT
1 + b1(Q1 + Q2)bT

1 – (1 – μ)b2Q1bT
2 – b3Q2bT

3

+ db8Q3bT
8 – Π3QΠT

3 + b1LU2LbT
1 – b9(2U1 + U2)bT

9 + b2MX2MbT
2

– b10(2X1 + X2)bT
10,

Υ2 = Sym
{
Π1HΠT

2
}

+ Π4RΠT
4 ,
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H =

⎡

⎢
⎣

H1 + HT
1 –H1 – H2 H3

� H2 + HT
2 H4

� � H5

⎤

⎥
⎦ ,

Π1 = [b1, b6, b7],

Π2 = [b8, 0, b1 – b6],

Π3 = [b1 – b2, b1 + b2 – 2b4, b2 – b3, b2 + b3 – 2b5],

Π4 = [b6, b8, b1],

Π5 = [b1 – b6, b7],

L = IN ⊗ diag{l1, l2, . . . , ln},
M = diag{M1, M2, . . . , MN },
Mi = diag{mi1, mi2, . . . , min},
Γ = diag{γ1,γ2, . . . ,γN } ⊗ In,

Γ̄ = (IN – Γ ) ⊗ In,

with the notation Sym{X} indicating X + XT . Also, the desired control gain matrices (4) can
be given by K = D–1K̄ .

Proof Consider the following discontinuous Lyapunov functional for the error system (5):

V (t) = V1(t) + V2(t) + V3(t), t ∈ [tk , tk+1), (11)

where

V1(t) = eT (t)Pe(t) + (tk+1 – t)νT
1 (t)Hν1(t),

V2(t) =
∫ t

t–d(t)
eT (s)Q1e(s) ds +

∫ t

t–d
eT (s)Q2e(s) ds

+
∫ 0

–d

∫ t

t+θ

ėT (s)Q3ė(s) ds dθ ,

V3(t) = (tk+1 – t)
∫ t

tk

νT
2 (s)Rν2(s) ds,

with

ν1(t) =
[
eT (t), eT (tk),

∫ t
tk

eT (s) ds
]T

,

ν2(t) =
[
eT (tk), ėT (t), eT (t)

]T
.

The matrix H is not defined as positive definite, so we firstly show the positiveness of
V1(t).

V1(t) =
(

tk+1 – t
h

+
t – tk

h

)
eT (t)Pe(t) + (tk+1 – t)νT

1 (t)Hν1(t)

=
tk+1 – t

h
νT

1 (t)Pν1(t) +
t – tk

h
eT (t)Pe(t).
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From LMI (6), we can know V1(t) is positive definite. And next, it is obvious that (i) V3(t)
is discontinuous at t = tk , i.e., V3(tk) = limt→t+

k
V3(t) �= limt→t–

k
V3(t); (ii) V3(t) is positive

during t ∈ (tk–1, tk); (iii) V3(tk) = 0. Therefore, we can conclude limt→t–
k

V (t) ≥ V (tk).
The infinitesimal operator L of V (xt) is defined as follows:

LV (xt) = lim
c→0+

1
c
{
E
{

V (xt+h)|xt
}}

,

where E{x} means the expectation of the stochastic variable x.
Then we can have

LV1(t) = 2eT (t)Pė(t) + 2(tk+1 – t)νT
1 (t)Hν3(t) – νT

1 (t)Hν1(t)

= ζ T (t)
(
Sym

{
b1PbT

8 + (tk+1 – t)Π1HΠT
2
}

– Π1HΠT
1
)
ζ (t), (12)

where Π1 and Π2 are defined in Theorem 1.
Also, we have

LV2(t) = eT (t)(Q1 + Q2)e(t) –
(
1 – ˙h(t)

)
eT(t – d(t)

)
Q1e

(
t – d(t)

)

– eT (t – d)Q2e(t – d) + dėT (t)Q3ė(t) –
∫ t

t–d
ėT (s)Q3ė(s) ds

≤ ζ T (t)
(
b1(Q1 + Q2)bT

1 – (1 – μ)b2Q1bT
2 – b3Q2bT

3 + db8Q3bT
8
)
ζ (t)

–
∫ t

t–d
ėT (s)Q3ė(s) ds

≤ ζ T (t)
(
b1(Q1 + Q2)bT

1 – (1 – μ)b2Q1bT
2 – b3Q2bT

3 + db8Q3bT
8

– Π3QΠT
3
)
ζ (t), (13)

where Π3 and Q are defined in Theorem 1, and Lemma 1 with LMI (7) is used to obtain
the last equation.

Also,

LV3(t) = (tk+1 – t)νT
2 (t)Rν2(t) –

∫ t

tk

νT
2 (s)Rν2(s) ds

= (tk+1 – t)νT
2 (t)Rν2(t) – (t – tk)eT (tk)R1e(tk)

– 2eT (tk)R2
(
e(t) – e(tk)

)
– 2eT (tk)R3

∫ t

tk

e(s) ds

–
∫ t

tk

νT
4 (s)R4ν4(s) ds

= ζ T (t)
(
(tk+1 – t)Π4RΠT

4 – (t – tk)b6R1bT
6

– Sym
{

b6R2(b1 – b6)T + b6R3bT
7
})

ζ (t)

–
∫ t

tk

νT
4 (s)R4ν4(s) ds, (14)
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where Π4 is defined in Theorem 1 and

ν4(t) =
[
ėT (t), eT (t)

]T
.

If condition (8) holds, then we have

0 = 2ζ T (t)Y

([
e(t) – e(tk)
∫ t

tk
e(s) ds

]

–
∫ t

tk

ν4(s) ds

)

≤ (t – tk)ζ T (t)YR–1
4 Y Tζ (t) + 2ζ T (t)Y

[
e(t) – e(tk)
∫ t

tk
e(s) ds

]

+
∫ t

tk

νT
4 (s) ds

R4

(t – tk)

∫ t

tk

ν4(s) ds

≤ (t – tk)ζ T (t)YR–1
4 Y Tζ (t) + 2ζ T (t)Y

[
e(t) – e(tk)
∫ t

tk
e(s) ds

]

+
∫ t

tk

νT
4 (s)R4ν4(s) ds,

where Jensen’s inequality [46] is used to obtain the last equation.
Therefore, the following inequality can be derived:

–
∫ t

tk

νT
4 (s)R4ν4(s) ds

≤ 2ζ T (t)Y

[
e(t) – e(tk)
∫ t

tk
e(s) ds

]

+ (t – tk)ζ T (t)YR–1
4 Y Tζ (t)

= ζ T (t)
(
Sym

{
YΠT

5
}

+ (t – tk)YR–1
4 Y T)ζ (t), (15)

where Π5 is defined in Theorem 1.
According to Assumptions 1 and 2, for positive diagonal matrices U1, U2, X1, X2, we can

obtain the following inequalities:

0 ≤ 2
(
eT (t)L – FT(e(t)

))
U1F

(
e(t)

)
+ eT (t)LU2Le(t) – FT(e(t)

)
U2F

(
e(t)

)

= ζ T (t)
(
b1LU2LbT

1 – b9(2U1 + U2)
)
bT

9 + Sym
{

b1LU1bT
9
})

ζ (t), (16)

0 ≤ 2
(
eT(t – d(t)

)
M – GT(e

(
t – d(t)

)))
X1G

(
e
(
t – d(t)

))

+ eT(t – d(t)
)
MX2Me

(
t – d(t)

)
– GT(e

(
t – d(t)

))
X2G

(
e
(
t – d(t)

))

= ζ T (t)
(
b2MX2MbT

2 – b10(2X1 + X2)
)
bT

10 + Sym
{

b2MX1bT
10
})

ζ (t). (17)

Also, according to the error system (5), for a scalar α and a diagonal matrix D, the fol-
lowing equation holds:

0 = E
{

2
[
eT (t)D + αėT (t)D

][
–ė(t) + (AN – CN )e(t) + BN F(t)

– Γ̄ Ke(tk) – Γ KG
(
t – d(t)

)]}
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= E
{
ζ T (t)

(
Sym

{
(b1 + αb8)

(
–DbT

8 + D(AN – CN )bT
1 + DBN bT

9

– Γ̄ K̄bT
6 – Γ K̄bT

10
)})

ζ (t)
}

, (18)

where K̄ = DK .
By adding Eqs. (15)–(18) to E{LV (t)}, the new upper bound of E{LV (t)} can be ob-

tained:

E
{
LV (t)

}≤ E

{
ζ T (t)

(
tk+1 – t

h
(Υ1 + hΥ2) +

t – tk

h
(Υ1 + hΥ3)

)
ζ (t)

}
, (19)

where

Υ3 = YR–1
4 Y T – b6R1bT

6 .

By Schur complement, it is clear that LMIs (9) and (10) and E{LV (t)} < 0 are equivalent.
In other words, the designed controller (4) makes the error system asymptotically stable
against controller attacks. This completes the proof. �

4 Numerical examples
This section considers CDNs (1) consisting of five Chua’s chaotic circuits in which the
parameters are given as follows:

A =

⎡

⎢
⎣

–am1 a 0
1 –1 1
0 –b 0

⎤

⎥
⎦ , B =

⎡

⎢
⎣

–a(m0 – m1) 0 0
0 0 0
0 0 0

⎤

⎥
⎦ ,

C = 0.2 ×

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

–3 1 1 0 1
1 –4 1 1 1
1 1 –3 1 0
0 1 1 –3 1
1 1 0 1 –3

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

,

fj
(
xij(t)

)
=

1
2
(∣∣xij(t) + c

∣∣ –
∣∣xij(t) – c

∣∣), j = 1, . . . , n; i = 1, . . . , N ,

a = 9, b = 14.28, c = 1,

m0 = –1/7, m1 = 2/7, li = 1 (i = 1, . . . , n).

For the simulation, we choose the following parameters and initial conditions: d(t) =
0.4 + 0.1 sin(t), d = 0.5, h = 0.4, α = 0.1, γij = 0.5 (i = 1, . . . , N ; j = 1, . . . , n), gij(a) =
tanh(0.04a) (i = 1, . . . , N ; j = 1, . . . , n), x1(0) = [–0.1 –0.5 –0.7], x2(0) = [–0.1 –0.4 0.3],
x3(0) = [0.6 –1.5 0], x4(0) = [0.1 0.1 0.1], x5(0) = [0 0.5 –0.4], and s(0) = [0.1 0.5 –0.7].

With the above parameters, Theorem 1 calculates the following control gains:

K = diag{K1, . . . , K5},
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where

K1 =

⎡

⎢
⎣

4.8871 0.0018 –0.0005
–0.0016 0.6933 –0.0005
–0.0004 0.0010 4.8007

⎤

⎥
⎦ ,

K2 =

⎡

⎢
⎣

4.8307 0.0011 0.0001
0.0011 0.6290 0.0000

–0.0003 0.0002 4.7882

⎤

⎥
⎦ ,

K3 =

⎡

⎢
⎣

4.8360 –0.0005 –0.0005
0.0000 0.6312 0.0006

–0.0009 0.0002 4.8005

⎤

⎥
⎦ ,

K4 =

⎡

⎢
⎣

4.8643 0.0026 –0.0004
0.0019 0.6111 0.0007
0.0001 –0.0012 4.8000

⎤

⎥
⎦ ,

K5 =

⎡

⎢
⎣

4.8733 0.0014 0.0005
0.0008 0.6719 0.0023
0.0069 0.0030 4.8101

⎤

⎥
⎦ .

Then the controlled error signals can be obtained in Fig. 1 which shows the error dy-
namics asymptotically converse to zero; in other words, the synchronization is achieved
between s(t) and xi(t) for i = 1, . . . , N . Figures 2 and 3 show the applied control signals ui(t)
and cyber-attack scenario γi(t), respectively. Figure 4 displays the attack signals trans-
mitted to the CDNs instead of the real control signals when cyber-attacks are launched
to the controller of ith node, i.e., γi(t) = 1. The difference between the real control sig-
nals(without cyber-attack) uF

i (t) and the control signals under attack ui(t) is depicted in
Fig. 5. As seen in Figs. 1 and 5, the controller attacks make big changes from real control

Figure 1 The error trajectories with controller (4) under cyber-attacks e(t)
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Figure 2 The applied control signals for each node under cyber-attacks ui(t)

Figure 3 The random cyber-attack scenario for each node γi(t)

signals, but our designed controller works very well to synchronize all the states of CDNs
up to the target.
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Figure 4 The attack signals to each node Kigi(ei(t – d(t))

Figure 5 The difference between control signals with/without cyber-attacks, ui(t) – uFi (t)

5 Conclusions
In this paper, the design problem of sampled-data controllers for the synchronization of
CDNs was investigated. To reflect a real-world situation, we considered the controllers un-
der cyber-attacks which are randomly occurring. The maliciously reformed control data
by adversaries was assumed to be a nonlinear function including time-varying delayed
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control information. Using discontinuous Lyapunov functionals and a zero inequality, the
designing conditions of the sampled-data controller were derived in terms of LMI. The
validity of the proposed method was proven by a numerical example.
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