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Abstract
This paper presents a novel approach to numerical solution of a class of fourth-order
time fractional partial differential equations (PDEs). The finite difference formulation
has been used for temporal discretization, whereas the space discretization is
achieved by means of non-polynomial quintic spline method. The proposed
algorithm is proved to be stable and convergent. In order to corroborate this work,
some test problems have been considered, and the computational outcomes are
compared with those found in the exiting literature. It is revealed that the presented
scheme is more accurate as compared to current variants on the topic.
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1 Introduction
In the modern era, fractional order differential equations have gained a significant amount
of research work due to their wide range of applications in various branches of science and
engineering such as physics, electrical networks, fluid mechanics, control theory, theory
of viscoelasticity, neurology, and theory of electromagnetic acoustics [1, 2]. Wang [3] in-
troduced the very first approximate solution of nonlinear fractional Korteweg–de Vries
(KdV) Burger equation involving space and time fractional derivatives using Adomian de-
composition method. Zurigat et al. [4] examined the approximate solution of fractional
order algebraic differential equations using homotopy analysis method. Turut and Guzel
[5] implemented Adomian decomposition method and multivariate Pade approximation
method for solving fractional order nonlinear partial differential equations (PDEs). In [6],
Liu and Hou applied the generalized differential transform method to solve the coupled
Burger equation with space and time fractional derivatives. Khan et al. [7] used Adomian
decomposition method and variational iteration method for numerical solution of fourth-
order time fractional PDEs with variable coefficients.

Later on, Abbas et al. [8] employed a finite difference approach based on third degree
trigonometric B-spline functions for approximate solution of one-dimensional wave equa-
tion. Javidi and Ahmad [9] developed a computational technique based on homotopy
perturbation method Laplace transform and Stehfest’s numerical inversion algorithm for
solving fourth-order time fractional PDEs with variable coefficients. The fractional dif-
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ferential transform method and modified fractional differential transform method were
proposed by Kanth and Aruna [10] for series solution to higher dimensional third-order
dispersive fractional PDEs. Pandey and Mishra [11] applied Sumudu transforms and ho-
motopy analysis approach for solving time fractional third-order dispersive type of PDEs.
The fractional variational iteration method was put into action by Prakash and Kumar in
[12] for series solution to third-order fractional dispersive PDEs in a higher dimensional
space.

The spline approximation techniques have been applied extensively for numerical so-
lution of ODEs and PDEs. The spline functions have a variety of significant gains over
finite difference schemes. These functions provide a continuous differentiable estimation
to solution over the whole spatial domain with great accuracy. The straightforward em-
ployment of spline functions provides a solid ground for applying them in the context
of numerical approximations for initial/boundary problems. Bashan et al. [13] used a new
differential quadrature method based on quintic B-spline functions for numerical solution
of Korteweg–de Vries–Burgers (KdVB) equation. Khan and Aziz [14] solved third-order
boundary value problems (BVPs) using a numerical method based on quintic spline func-
tions. In [15], a non-polynomial quintic spline method was employed for numerical so-
lution of fourth-order two-point BVPs. Khan and Sultana [16] proposed non-polynomial
quintic spline functions for numerical solution of third-order BVPs associated with odd-
order obstacle problems. Karakoc et al. [17] employed quintic B-spline collocation tech-
nique to obtain numerical solution of modified regularized long wave (MRLW) equation.
In [18], Srivastava discussed numerical solution of differential equations using polyno-
mial spline functions of different orders. Siddiqi and Arshed [19] brought the fifth degree
basis spline collocation functions into use for approximate solution of fourth-order time
fractional PDEs.

Rashidinia and Mohsenyzadeh [20] used non-polynomial quintic spline technique for
one-dimensional heat and wave equations. Recently, in [21], fifth degree spline approx-
imation technique has been utilized for approximate solution of fourth-order time frac-
tional PDEs. In [22], the new fractional order spline functions were considered to obtain
the approximate solution for fractional Bagely–Torvik equation. Arshed [23] employed
quintic B-spline collocation scheme for solving fourth-order time fractional super diffu-
sion equation. More recently, parametric quintic spline approach and Grunwald–Letnikov
approximation have been proposed in [24] for a fractional sub-diffusion problem.

In the field of modern science and engineering the fourth-order initial/boundary value
problems are of great importance. For example, airplane wings, bridge slabs, floor systems,
and window glasses are being modeled as plates subject to different types of end supports
which are successfully described in terms of fourth-order PDEs [21]. In this work, we con-
sider the following class of fourth-order time fractional PDEs:

∂γ y
∂tγ

+ α
∂4y
∂x4 = u(x, t), t ∈ [0, T], x ∈ [0, L], (1)

with the following initial and boundary conditions:

y(x, 0) = v0(x),

y(0, t) = y(L, t) = 0, yxx(0, t) = yxx(L, t) = 0,
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where γ ∈ (0, 1) is the order of fractional time derivative, α represents the ratio of flexural-
rigidity of beam to its mass per unit length, y(x, t) is the beam transverse displacement,
u(x, t) describes the dynamic driving force per unit mass, and the function v0(x) is known
to be continuous on [0, L]. There are many descriptions to the concept of fractional dif-
ferentiation, but Caputo and Riemann–Liouville have been the most common definitions.
Here, we shall use the Caputo approach because it is more appropriate for real world prob-
lems and it permits initial and boundary conditions in terms of ordinary derivatives. The
Caputo definition of fractional derivative of order γ is given by

∂γ y(x, t)
∂tγ

=

⎧
⎨

⎩

1
Γ (1–γ )

∫ t
0

∂y(x,s)
∂s

ds
(t–s)γ , 0 < γ < 1,

∂y(x,t)
∂t , γ = 1.

This paper has been composed with the aim to develop a spline collocation method for ap-
proximate solution of fourth-order time fractional PDEs. The backward Euler scheme has
been utilized for temporal discretization, whereas non-polynomial quintic spline function,
comprised of a trigonometric part and a polynomial part, has been used to interpolate the
unknown function in spatial direction. The presented technique has also been proved to
be stable and convergent.

This work is arranged as follows. In Sect. 2, a brief explanation of quintic spline scheme is
presented and the consistency relations between the values of spline approximation and its
derivatives at the nodal points are derived. Section 3 describes the use of L1 approximation
in time direction to achieve a backward Euler technique. Non-polynomial quintic spline
scheme for the spatial discretization is discussed in Sect. 4. The computational results and
discussions are given in Sect. 5.

2 Description of non-polynomial quintic spline function
Consider xi = ih to be the mesh points of uniform partition of [0, L] into sub-intervals
[xi, xi–1], where h = L

n and i = 0, 1, 2, . . . , n. Let y(x) be a sufficiently smooth function defined
on [0, L]. We denote the non-polynomial quintic spline approximation to y(x) by S(x). Each
non-polynomial spline segment Ri(x) has the following form:

Ri(x) = ai cos
(
ξ (x – xi)

)
+ bi sin

(
ξ (x – xi)

)
+ ci(x – xi)3 + di(x – xi)2 + ei(x – xi) + fi,

i = 0, 1, 2, . . . , n, (2)

where ai, bi, ci, di, ei, and fi are the constants, and the parameter ξ , the frequency of the
trigonometric functions, will be used to enhance the accuracy of the technique. When
ξ approaches zero, Eq. (2) reduces to a quintic polynomial spline function in [a, b]. The
non-polynomial quintic spline can be defined as

S(x) = Ri(x), ∀x ∈ [xi, xi+1], i = 0, 1, 2, . . . , n, (3)

Ri(x) ∈ C4[0, L]. (4)

First of all, we establish the consistency relations for all the coefficients involved in (2) in
terms of Sis, Mis, and Fis, where

Si = S(xi) = Ri(xi),
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Mi = S′′(xi) = R′′
i (xi),

Fi = S(4)(xi) = R(4)
i (xi).

The values of coefficients introduced in (2) can be calculated as

ai =
h4

θ4 Fi,

bi =
h4

θ4 sin(θ )
(
Fi+1 – Fi cos(θ )

)
,

ci =
1

6h
(Mi+1 – Mi) +

h
6θ2 (Fi+1 – Fi),

di =
1
2

Mi +
h2

2θ2 Fi,

ei =
1
h

(Si+1 – Si) +
(

h3

θ4 –
h3

3θ2

)

Fi –
(

h3

θ4 , +
h3

6θ2

)

Fi+1 –
h
6

(Mi+1 + 2Mi),

fi = Si –
h4

θ4 Fi,

where θ = ξh and i = 0, 1, . . . , n – 1.
Now, using the first and third derivative continuity conditions at the knots, i.e., R(τ )

i–1(xi) =
R(τ )

i (xi) for τ = 1, 3, we can derive the following important relations:

Mi–1 + 4Mi + Mi+1 =
6
h2 (Si–1 – 2Si + Si+1) +

6h2

θ2

(
1

θ sin(θ )
–

1
θ2 –

1
6

)

(Fi+1 + Fi–1)

+
6h2

θ2

(
2
θ2 –

2 cos(θ )
θ sin(θ )

–
4
6

)

Fi (5)

and

Mi–1 – 2Mi + Mi+1 = h2
(

1
θ sin(θ )

–
1
θ2

)

(Fi+1 + Fi–1) + 2h2
(

1
θ2 –

cos(θ )
θ sin(θ )

)

Fi. (6)

Solving (5) and (6), we get

Mi =
1
h2 (Si–1 – 2Si + Si+1) + h2

(
1

θ3 sin(θ )
–

1
6θ sin(θ )

–
1
θ4

)

(Fi+1 + Fi–1)

+ h2
(

2
θ4 –

2 cos(θ )
θ3 sin(θ )

+
2 cos(θ )
6θ sin(θ )

–
1
θ2

)

(Fi). (7)

Using (6)–(7), we get the following consistency relation involving Fi and Si for i =
2, 3, . . . , n – 2:

Si+2 – 4Si+1 + 6Si – 4Si–1 + Si–2 = h4(α1Fi–2 + β1Fi–1 + γ1Fi + β1Fi+1 + α1Fi+2), (8)

where

α1 =
(

1
θ4 +

1
6θ sin(θ )

–
1

θ3 sin(θ )

)

, β1 =
(

2 + 2 cos(θ )
θ3 sin(θ )

+
2 – cos(θ )
3θ sin(θ )

–
4
θ4

)

,
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γ1 =
(

1 – 4 cos(θ )
3θ sin(θ )

–
2 + 4 cos(θ )
θ3 sin(θ )

+
6
θ4

)

.

Relation (8) provides (n–3) linear equations with (n–1) unknowns Si, i = 1(1)n–1. Hence,
we require two more equations for direct calculation of Si, one at each end of the range of
integration, which can be formulated as follows:

Setting i = 1, 2 in (5) we have

M0 + 4M1 + M2 =
6
h2 (S0 – 2S1 + S2) + λ̃(F0 + F2) + μ̃F1 (9)

and

M1 + 4M2 + M3 =
6
h2 (S1 – 2S2 + S3) + λ̃(F1 + F3) + μ̃F2. (10)

Similarly, for i = 1, 2, expression (6) returns the following two equations:

M0 – 2M1 + M2 = ˜̃
λ(F0 + F2) + ˜̃μF1 (11)

and

M1 – 2M2 + M3 = ˜̃
λ(F1 + F3) + ˜̃μF2, (12)

where

λ̃ =
6h2

θ2

(
1

θ sin θ
–

1
θ2 –

1
6

)

, μ̃ =
6h2

θ2

(
2
θ2 –

2 cos(θ )
θ sin(θ )

–
4
6

)

,

˜̃
λ = h2

(
1

θ sin(θ )
–

1
θ2

)

and ˜̃μ = 2h2
(

1
θ2 –

cos(θ )
θ sin(θ )

)

.

From (9) and (11), we have

M1 =
1
h2 (S0 – 2S1 + S2) +

λ̃ – ˜̃
λ

6
(F0 + F2) +

μ̃ – ˜̃μ
6

F1. (13)

Similarly, subtracting (12) from (10), we get

M2 =
1
h2 (S1 – 2S2 + S3) +

λ̃ – ˜̃
λ

6
(F1 + F3) +

μ̃ – ˜̃μ
6

F2. (14)

Now, the first end condition is obtained by substituting (13), (14) into (9) for i = 1.

–2S0 + 5S1 – 4S2 + S3 = –h2M0 + h4(ω0F0 + ω1F1 + ω2F2 + ω3F3). (15)

Similarly, the second end condition for i = n is given by

Sn–3 – 4Sn–2 + 5Sn–1 – 2Sn = –h2Mn + h4(ω3Fn–3 + ω2Fn–2 + ω1Fn–1 + ω0Fn), (16)

where

ω0 =
(

2
θ3 sin(θ )

–
2
θ4 +

4
6θ sin(θ )

–
1
θ2

)

, ω1 =
1 – 8 cos(θ )

6θ sin(θ )
–

1 + 4 cos(θ )
θ3 sin(θ )

+
5
θ4 ,
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ω2 =
(

2 + 2 cos(θ )
θ3 sin(θ )

+
2 – cos(θ )
3θ sin(θ )

–
4
θ4

)

, ω3 =
1

6θ sin(θ )
–

1
θ3 sin(θ )

+
1
θ4 .

Lemma 2.1 The local truncation error ti, i = 1(1)n – 1 associated with Eqs. (8), (15), and
(16) is given by

ti =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 11
12 – ω0 – ω1 – ω2 – ω3)h4y(4)

i + ( 1
12 + ω0 – ω2 – 2ω3)h5y(5)

i

+ ( 11
90 – 1

2ω0 – 1
2ω2 – 2ω3)h6y(6)

i + ( 1
60 + 1

6ω0 – 1
6ω2 – 4

3ω3)h7y(7)
i

+ ( 17
2240 – 1

24ω0 – 1
24ω2 – 2

3ω3)h8y(8)
i + O(h9), i = 1,

(1 – 2α1 – 2β1 – γ1)h4y(4)
i + ( 1

6 – 4α1 – β1)h6y(6)
i

+ ( 1
180 – 4

3α1 – 1
12β1)h8y(8)

i + ( 17
30,240 – 8

45α1 – 1
360β1)h10y(10)

i

+ O(h11), i = 2(1)n – 2,

( 11
12 – ω0 – ω1 – ω2 – ω3)h4y(4)

i + ( 1
12 + ω0 – ω2 – 2ω3)h5y(5)

i

+ ( 11
90 – 1

2ω0 – 1
2ω2 – 2ω3)h6y(6)

i + ( 1
60 + 1

6ω0 – 1
6ω2 – 4

3ω3)h7y(7)
i

+ ( 17
2240 – 1

24ω0 – 1
24ω2 – 2

3ω3)h8y(8)
i + O(h9), i = n – 1.

(17)

Proof We have to find local truncation error ti, i = 1, 2, . . . , n – 1, for the present scheme.
First of all, we write Eqs. (8), (15), and (16) as follows:

t1 = –2y0 + 5y1 – 4y2 + y3 + h2M0 – h4(ω0y(4)
0 + ω1y(4)

1 + ω2y(4)
2 + ω3y(4)

3
)
,

ti = yi–2 – 4yi–1 + 6yi – 4yi+1 + yi+2 – h4(α1y(4)
i–2 + β1y(4)

i–1

+ γ1y(4)
i + β1y(4)

i+1 + α1y(4)
i+2

)
,

tn–1 = yn–3 – 4yn–2 + 5yn–1 – 2yn + h2Mn + h4(ω3y(4)
n–3

+ ω2y(4)
n–2 + ω1

)
y(4)

n–1 + ω0y(4)
n ).

The expressions for ti, i = 1, 2, . . . , n – 1, can be obtained by expanding the terms y0, y1, y(4)
1 ,

y2, y(4)
2 , y3, y(4)

3 , etc. about the points xi, i = 1, 2, . . . , n – 1, using Taylor’s series respectively.
�

Equating the coefficients of y(τ )
i for τ = 4, 5, 6, 7, we get

α1 = –
1

720
, β1 =

31
180

, γ1 =
79

120
,

ω0 =
7

90
, ω1 =

49
72

, ω2 = –
7

45
, and ω3 =

1
360

.

The local truncation error given in Eq. (17) takes the following form:

ti =

⎧
⎪⎪⎨

⎪⎪⎩

– 241
60,480 h8y(8)

i + O(h9), i = 1,
1

3024 h10y(10)
i + O(h11), i = 2(1)n – 2,

– 241
60,480 h8y(8)

i + O(h9), i = n – 1.

(18)

3 Temporal discretization
In order to discretize the time fractional derivative, the backward Euler scheme is em-
ployed. We consider tp = p�t for p = 0(1)K with �t = T

K as the step size in time direction.
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The computation of Caputo time fractional derivative at t = tp+1 can be made as

∫ tw+1

0

∂y(x, w)
∂w

(tp+1 – w)–γ dw

=
p∑

j=0

∫ tj+1

tj

∂y(x, w)
∂w

(tp+1 – w)–γ dw

=
p∑

j=0

y(x, tj+1) – y(x, tj)
�t

∫ tj+1

tj

(tp+1 – w)–γ dw + lp+1
�t

=
p∑

j=0

y(x, tj+1) – y(x, tj)
�t

∫ tp–j+1

tp–j

(υ)–γ dυ + lp+1
�t

=
p∑

j=0

y(x, tp–j+1) – y(x, tp–j)
�t

∫ tj+1

tj

(υ)–γ dυ + lp+1
�t

=
1

1 – γ

p∑

j=0

y(x, tp–j+1) – y(x, tp–j)
�t

(
(j + 1)1–γ – j1–γ

)
+ lp+1

�t

=
1

1 – γ

p∑

j=0

bj
y(x, tp–j+1) – y(x, tp–j)

�t
+ lp+1

�t ,

where bj = (j + 1)1–γ – j1–γ and υ = (tp+1 – w). The above equation along with the definition
of Caputo fractional derivative gives the following relation:

∂γ y(x, tp+1)
∂tγ

=
1

Γ (2 – γ )

p∑

j=0

bj
y(x, tp–j+1) – y(x, tp–j)

�tγ
+ lp+1

�t . (19)

Now, we define a semi-discrete fractional differential operator Gγ
t as

Gγ
t y(x, tp+1) =

1
Γ (2 – γ )

p∑

j=0

bj
y(x, tp–j+1) – y(x, tp–j)

�tγ
.

Then Eq. (19) can be written as

∂γ y(x, tp+1)
∂tγ

= Gγ
t y(x, tp+1) + lp+1

�t . (20)

Here, lp+1
�t denotes the truncation error between ∂γ

∂tγ y(x, tp+1) and Gγ
t y(x, tp+1). Let Gγ

t y(x,
tp+1) be the approximation of Caputo time fractional derivative at t = tp+1, then Eq. (1) can
be expressed as

Gγ
t y(x, tp+1) + α

∂4

∂x4 y(x, tp+1) = u(x, tp+1). (21)
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Using (19), the above equation can be written as

yp+1(x) + βαyp+1
xxxx = (b0 – b1)yp(x) +

p–1∑

j=1

(bj – bj+1)yp–j(x) + bpy0(x) + βup+1(x),

p = 1, 2, 3, . . . , j – 1, (22)

where β = Γ (2 – γ )�tγ and yp+1(x) = y(x, tp+1) with the initial and boundary conditions as
follows:

y0 = v0(x), x ∈ [0, L].

Moreover, the coefficients bj involved in (19) have the following properties:
• b′

js are non-negative for j = 0, 1, . . . , p;
• 1 = b0 > b1 > b2 > b3 > · · · > bp, bp → 0 as p → ∞;
•

∑p
j=0(bj – bj+1) + bp+1 = (b0 – b1) +

∑p–1
j=1 (bj – bj+1) + bp = 1.

The truncation error in (20) is bounded, i.e.,

∣
∣lp+1

�t
∣
∣ ≤ c�t2–γ , (23)

where the constant c is dependent on y. To apply this scheme, we need the values y0 and y1.
For p = 0, (22) takes the following form:

y1(x) + βαy1
xxxx = v0(x) + βy1(x). (24)

For p = 1, (22) becomes

y2(x) + βαy2
xxxx = (b0 – b1)y1(x) + b1y0(x) + βy2(x).

Now (22) and (24) with initial and boundary conditions formulate a complete set of semi-
discrete problem for (1).

The error term lp+1 can also be defined as [25]

lp+1 = β

(
∂γ

∂tγ
y(x, tp+1) – Gγ

t y(x, tp+1)
)

. (25)

From Eqs. (20) and (23), the error term can be expressed as

∣
∣lp+1∣∣ = Γ (2 – γ )�tγ

∣
∣lp+1

�t
∣
∣ ≤ cy�t2. (26)

Now, we define some functional spaces and their standard norms as

H2(η) =
{

g ∈ L2(η), gx, gxx ∈ L2(η)
}

,

H2
0 (η) =

{
g ∈ H2(η), g|∂η = 0, gx|∂η = 0

}
,

Hn(η) =
{

g ∈ L2(η), g(r)
x ,∀r ≤ n

}
,
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where L2(η) denotes the space of all measurable functions whose square is Lebesgue inte-
grable in η. The inner product and norm in L2(η) are given by

〈f , g〉 =
∫

η

fg dx, ‖g‖0 = 〈g, g〉 1
2 .

The inner product and norm in S2(η) are given by

〈f , g〉2 = 〈f , g〉 + 〈fx, gx〉 + 〈fxx, gxx〉, ‖g‖2 = 〈g, g〉 1
2
2 .

Also, the norm ‖ · ‖ in Hn(η) is defined in the following way:

‖g‖n =

( n∑

r=0

∥
∥g(r)

x
∥
∥2

0

) 1
2

.

It is also preferred to define ‖ · ‖2

‖g‖2 =
(‖g‖2

0 + βα
∥
∥g(2)

x
∥
∥2

0

) 1
2 . (27)

Now, for the stability and convergence analysis, we are to find yp+1 ∈ H2
0 (η) such that, for

all g ∈ H2
0 (η), Eqs. (22) and (24) give the following two relations:

〈
yp+1, g

〉
+ βα

〈
yp+1

xxxx, g
〉

= (1 – b1)
〈
yp, g

〉
+

p–1∑

j=1

(bj – bj+1)
〈
yp–j, g

〉
+ bp

〈
y0, g

〉
+ β

〈
up+1, g

〉
(28)

and

〈
y1, g

〉
+ βα

〈
y1

xxxx, g
〉

=
〈
y0, g

〉
+ β

〈
u1, g

〉
. (29)

The theorem given below describes the unconditional stability of the semi-discrete prob-
lem.

Theorem 1 The discrete problem is unconditionally stable in such a way that ∀�t > 0, it
holds

∥
∥yp+1∥∥

2 ≤
(

∥
∥y0∥∥

0 + β

p+1∑

j=1

∥
∥uj∥∥

0

)

, p = 0, 1, 2, . . . , K – 1, (30)

where ‖ · ‖2 is discussed in Eq. (27).

Proof In order to prove this result, mathematical induction is used. For p = 0 and g = y1,
Eq. (29) takes the following form:

〈
y1, y1〉 + βα

〈
y1

xxxx, y1〉 =
〈
y0, y1〉 + β

〈
u1, y1〉.



Amin et al. Advances in Difference Equations        (2019) 2019:183 Page 10 of 22

Integrating by parts, the above result can be written as

〈
y1, y1〉 + βα

〈
y1

xx, y1
xx

〉
=

〈
y0, y1〉 + β

〈
u1, y1〉. (31)

Due to the boundary conditions on g , all the boundary related contributions disappear.
From the Schwarz inequality and the inequality ‖g‖0 ≤ ‖g‖2, Eq. (31) becomes

∥
∥y1∥∥2

2 ≤ ∥
∥y0∥∥

0

∥
∥y1∥∥

0 + β
∥
∥u1∥∥

0

∥
∥y1∥∥

0

≤ ∥
∥y0∥∥

0

∥
∥y1∥∥

2 + β
∥
∥u1∥∥

0

∥
∥y1∥∥

2,
∥
∥y1∥∥

2 ≤ (∥
∥y0∥∥

0 + β
∥
∥u1∥∥

0

)
.

Suppose that the result is true for g = yj, i.e.,

∥
∥yj∥∥

2 ≤
(

∥
∥y0∥∥

0 + β

j∑

i=1

∥
∥ui∥∥

0

)

, j = 2, 3, . . . , p. (32)

Let g = yp+1 in Eq. (28)

〈
yp+1, yp+1〉 + αβ

〈
yp+1

xxxx, yp+1〉

= (1 – b1)
〈
yp, yp+1〉 +

p–1∑

j=1

(bj – bj+1)
〈
yp–j, yp+1〉 + bp

〈
y0, yp+1〉 + β

〈
up+1, yp+1〉. (33)

Integrating by parts, we get

〈
yp+1, yp+1〉 + βα

〈
yp+1

xx , yp+1
xx

〉

= (1 – b1)
〈
yp, yp+1〉 +

p–1∑

j=1

(bj – bj+1)
〈
yp–j, yp+1〉 + bp

〈
y0, yp+1〉 + β

〈
up+1, yp+1〉. (34)

Again, due to the boundary conditions on g , all the boundary related contributions disap-
pear. From the Schwarz inequality and the inequality ‖g‖0 ≤ ‖g‖2, the above expression
changes to

∥
∥yp+1∥∥2

2 ≤ (1 – b1)
∥
∥yp∥∥

0

∥
∥yp+1∥∥

0 +
p–1∑

j=1

(bj – bj+1)
∥
∥yp–j∥∥

0

∥
∥yp+1∥∥

0

+ bp
∥
∥y0∥∥

0

∥
∥yp+1∥∥

0 + β
∥
∥up+1∥∥

0

∥
∥yp+1∥∥

0,

∥
∥yp+1∥∥2

2 ≤ (1 – b1)
∥
∥yp∥∥

0

∥
∥yp+1∥∥

2 +
p–1∑

j=1

(bj – bj+1)
∥
∥yp–j∥∥

0

∥
∥yp+1∥∥

2

+ bp
∥
∥y0∥∥

0

∥
∥yp+1∥∥

2 + β
∥
∥up+1∥∥

0

∥
∥yp+1∥∥

2,

∥
∥yp+1∥∥

2 ≤ (1 – b1)
∥
∥yp∥∥

0 +
p–1∑

j=1

(bj – bj+1)
∥
∥yp–j∥∥

0 + bp
∥
∥y0∥∥

0 + β
∥
∥up+1∥∥

0.
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Using (32), the above relation takes the following form:

∥
∥yp+1∥∥

2 ≤
(

∥
∥y0∥∥

0 + β

p–1∑

j=1

∥
∥uj∥∥

0

)(

(1 – b1) +
p–1∑

j=1

(bj – bj+1) + bp

)

+ β
∥
∥up+1∥∥

0.

Using the properties of bj, we can write

∥
∥yp+1∥∥

2 ≤
(

∥
∥y0∥∥

0 + β

p+1∑

j=1

∥
∥uj∥∥

0

)

.
�

Lemma 3.1 Let {yp}K
p=0 be the time discrete solution to Eqs. (28)–(29) and y be the exact

solution of (1), then

∥
∥y(tp) – yp∥∥

2 ≤ cyb–1
p–1�t2, p = 1, 2, . . . , K . (35)

Proof Consider ep = y(x, tp) – yp(x) for p = 1, the error equation takes the following form
by combining Eqs. (1), (29), and (27):

〈
e1, g

〉
+ βα

〈
e1

xx, gxx
〉

=
〈
e0, g

〉
+

〈
l1, g

〉
, ∀g ∈ S2

0(η).

Let g = e1 and e0 = 0 give the following relation:

∥
∥e1∥∥

2 ≤ ∥
∥l1∥∥

0. (36)

Equation (26) along with (36) gives

∥
∥y(t1) – y1∥∥

2 ≤ cyb–1
0 �t2. (37)

For p = 1, Eq. (35) is satisfied.
Next, suppose that (35) is true for p = 1, 2, 3, . . . , r, i.e.,

∥
∥y(tp) – yp∥∥

2 ≤ cyb–1
p–1�t2. (38)

Using (1), (27), (28) and for p = r + 1, the error equation is obtained as follows:

〈
ep+1, g

〉
+ βα

〈
ep+1

xx , gxx
〉

= (1 – b1)
〈
ep, g

〉
+

p–1∑

j=1

(bj – bj+1)
〈
ep–j, g

〉
+ bp

〈
e0, g

〉
+

〈
lp+1, g

〉
. (39)

Now, using the induction assumption and taking g = ep+1 along with the relation
b–1

j
bj+1

< 1
for all positive integer j, Eq. (39) can be written as

∥
∥ep+1∥∥

2 ≤ cyb–1
p �t2.

Hence, proved. �
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Also, from the definition of bp, the following useful equation can be formulated:

lim
p→∞

b–1
p–1

pγ
≤ lim

p→∞
p–γ

p1–γ – (p – 1)1–γ

= lim
p→∞

p–1

1 – (1 – 1
p )1–γ

=
1

1 – γ
.

The function ψ(z) is defined as ψ(z) = z–γ

z1–γ –(z–1)1–γ , as ψ(z) ≥ 0 ∀z > 1, the function ψ(z)

is increasing on z. This indicates that as 1 < p → ∞,
b–1

p–1
pγ increasingly approaches to 1

1–γ
.

Since, for p = 1, p–γ b–1
p–1 = 1. Therefore, it can be written in the following form:

p–γ b–1
p–1 ≤ 1

1 – γ
, p = 1, 2, . . . , K .

Therefore, ∀p such that p�t ≤ T ,

∥
∥y(tp) – yp∥∥

2 ≤ cyb–1
p–1�t2

= cyp–γ b–1
p–1p–γ �t2–γ +γ

≤ cy
1

1 – γ
(p�t)γ (�t)2–γ

≤ cy.γ Tγ �t2–γ .

The above discussion can be summed up in the following theorem.

Theorem 2 Let y be the analytical exact solution to (1) and {yp}K
p=0 be the time discrete

solution to Eq. (28) and Eq. (29) subject to the initial condition y0 = v0(x), x ∈ [0, L], then
the following holds:

∥
∥y(tp) – yp∥∥

2 ≤ cy.γ Tγ �t2–γ , p = 1, 2, 3, . . . , K . (40)

4 Discretization in space
Let (xi, tp) be the grid points which uniformly discretize the region [0, L] × [0, T] with
xi = ih, tp = p�t, T = K�t, where, i = 0(1)n and p = 0(1)K . The parameters h, �t are the
grid sizes in the space and time directions, respectively. The space discretization of Eq. (22)
using non-polynomial quintic spline is formulated as follows:

Sp+1
i + αβFp+1 = (1 – b1)Sp

i +
p–1∑

j=1

(bj – bj+1)Sp–j
i + bpvi + βup+1

i . (41)

The operator Φ is defined as

ΦSj = α1Sj–2 + β1Sj–1 + γ1Sj + β1Sj+1 + α1Sj+2. (42)
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Now, Eq. (8) takes the following form:

ΦFi =
1
h4 (Si–2 – 4Si–1 + 6Si – 4Si+1 + Si+2). (43)

Applying the operator Φ on Eq. (41), we get the following result:

α1Sp+1
i–2 + β1Sp+1

i–1 + γ1Sp+1
i + β1Sp+1

i+1 + α1Sp+1
i+2 +

αβ

h4

(
Sp+1

i–2 – 4Sp+1
i–1 + 6Sp+1

i – 4Sp+1
i+1 + Sp+1

i+2
)

= (1 – b1)
(
α1Sp

i–2 + β1Sp
i–1 + γ1Sp

i + β1Sp
i+1 + α1Sp

i+2
)

+
p–1∑

j=1

(bj – bj+1)
(
α1Sp–j

i–2 + β1Sp–j
i–1 + γ1Sp–j

i + β1Sp–j
i + α1Sp–j

i+2
)

+ bp(α1vi–2 + β1vi–1 + γ1vi + β1vi+1 + α1vi+2)

+ β
(
α1up+1

i–2 + β1up+1
i–1 + γ1up+1

i + β1up+1
i+1 + α1up+1

i+2
)
, p = 1, 2, 3, . . . , K – 1. (44)

After simplifying, system (44) takes the following form:

(

α1 +
αβ

h4

)

Sp+1
i–2 +

(

β1 – 4
αβ

h4

)

Sp+1
i–1

+
(

γ1 + 6
αβ

h4

)

Sp+1
i +

(

β1 – 4
αβ

h4

)

Sp+1
i+1 +

(

α1 +
αβ

h4

)

Sp+1
i+2 = Qi,

i = 2, 3, . . . , n – 2, p = 1, 2, . . . , K – 1, (45)

where

Qi = (1 – b1)
(
α1Sp

i–2 + β1Sp
i–1 + γ1Sp

i + β1Sp
i+1 + α1Sp

i+2
)

+
p–1∑

j=1

(bj – bj+1)
(
α1Sp–j

i–2 + β1Sp–j
i–1 + γ1Sp–j

i + β1Sp–j
i + α1Sp–j

i+2
)

+ bp(α1vi–2 + β1vi–1 + γ1vi + β1vi+1 + α1vi+2)

+ β
(
α1up+1

i–2 + β1up+1
i–1 + γ1up+1

i + β1up+1
i+1 + α1up+1

i+2
)
. (46)

System (46) provides (n – 3) equations involving Sp+1
i , i = 1, 2, . . . , n – 1. Therefore, we fur-

ther need two equations for complete solution of Sp+1
i . The required two end conditions

can be derived using simply supported boundary conditions as follows:

(

ω0 – 2
αβ

h4

)

Sp+1
0 +

(

ω1 + 5
αβ

h4

)

Sp+1
1 +

(

ω2 – 4
αβ

h4

)

Sp+1
2 +

(

ω3 +
αβ

h4

)

Sp+1
3

= (1 – b1)
(
ω0Sp

0 + ω1Sp
1 + ω2Sp

2 + ω3Sp
3
)

+
p–1∑

j=1

(bj – bj+1)
(
ω0Sp–j

0 + ω1Sp–j
1 + ω2Sp–j

2 + ω3Sp–j
3

)

+ bp(ω0v0 + ω1v1 + ω2v2 + ω3v3)

+ β
(
ω0up+1

0 + ω1up+1
1 + ω2up+1

2 + ω3up+1
3

)
. (47)
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Similarly,

(

ω3 +
αβ

h4

)

Sp+1
n–3 +

(

ω2 – 4
αβ

h4

)

Sp+1
n–2 +

(

ω1 + 5
αβ

h4

)

Sp+1
n–1 +

(

ω0 – 2
αβ

h4

)

Sp+1
n

= (1 – b1)
(
ω3Sp

n–3 + ω2Sp
n–2 + ω1Sp

n–1 + ω0Sp
n
)

+
p–1∑

j=1

(bj – bj+1)
(
ω3Sp–j

n–3 + ω2Sp–j
n–2 + ω1Sp–j

n–1 + ω0Sp–j
n

)

+ bp(ω3vn–3 + ω2vn–2 + ω1vn–1 + ω0vn)

+ β
(
ω3up+1

n–3 + ω2up+1
n–2 + ω1up+1

n–2 + ω0up+1
n–2

)
. (48)

The proposed algorithm is a five point scheme. In order to implement it, the numerical
values of S2 = [S2

1, S2
2, S2

3, . . . , S2
n–1]T and S1 = [S1

1, S1
2, S1

3, . . . , S1
n–1]T are needed. To calculate

the values of S2, it is required to find S1. Solving Eq. (24) and using the non-polynomial
quintic spline technique, value of S1 can be found as follows:

(

α1 +
αβ

h4

)

S1
i–2 +

(

β1 – 4
αβ

h4

)

S1
i–1 +

(

γ1 + 6
αβ

h4

)

S1
i

+
(

β1 – 4
αβ

h4

)

S1
i+1 +

(

α1 +
αβ

h4

)

S1
i+2 = Ji, i = 2, 3, . . . , n – 2, (49)

where

Ji = (α1vi–2 + β1vi–1 + γ1vi + β1vi+1 + α1vi+2)

+ β
(
α1up+1

i–2 + β1u1
i–1 + γ1u1

i + β1u1
i+1 + α1u1

i+2
)
.

System (49) consists of (n – 3) equations involving S1
i , i = 1, 2, . . . , n – 1. Hence, to get a

unique solution to this system, two additional end equations can be obtained from simply
supported boundary conditions in the following way:

(

ω0 – 2
αβ

h4

)

S1
0 +

(

ω1 + 5
αβ

h4

)

S1
1 +

(

ω2 – 4
αβ

h4

)

S1
2 +

(

ω3 +
αβ

h4

)

S1
3

= (ω0v0 + ω1v1 + ω2v2 + ω3v3) + β
(
ω0u1

0 + ω1u1
1 + ω2u1

2 + ω3u1
3
)

(50)

and
(

ω3 +
αβ

h4

)

S1
n–3 +

(

ω2 – 4
αβ

h4

)

S1
n–2 +

(

ω1 + 5
αβ

h4

)

S1
n–1 +

(

ω0 – 2
αβ

h4

)

S1
n

= (ω3vn–3 + ω2vn–2 + ω1vn–1 + ω0vn) + β
(
ω3u1

n–3 + ω2u1
n–2 + ω1u1

n–1 + ω0u1
n
)
. (51)

Suppose v = [v1, v2, . . . , vn–1]T , u = [u1, u2, . . . , un–1]T , ṽ = [v0, 0, . . . , 0, vn]T , and ũ = [u0, 0,
. . . , 0, un]T are column vectors with dimension (n – 1). The system in (49)–(51) can be
expressed as

AS1 = B(v + βu) + C(ṽ + βũ),
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where A, B, and C are square matrices of order (n – 1) such that

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω1 + 5 αβ

h4 ω2 – 4 αβ

h4 ω3 + αβ

h4 0 0 0 . . . 0
β1 – 4 αβ

h4 γ1 + 6 αβ

h4 β1 – 4 αβ

h4 α1 + αβ

h4 0 0 . . . 0
α1 + αβ

h4 β1 – 4 αβ

h4 γ1 + 6 αβ

h4 β1 – 4 αβ

h4 α1 + αβ

h4 0 . . . 0
. . .

. . .
. . .

0 . . . 0 α1 + αβ

h4 β1 – 4 αβ

h4 γ1 + 6 αβ

h4 0β1 – 4 αβ

h4 α1 + αβ

h4

0 . . . 0 α1 + αβ

h4 β1 – 4 αβ

h4 γ1 + 6 αβ

h4 β1 – 4 αβ

h4

0 . . . 0 0 0 ω3 + αβ

h4 ω2 – 4 αβ

h4 ω1 + 5 αβ

h4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

B =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω1 ω2 ω3 0 0 0 . . . 0
α1 β1 γ1 α1 0 0 . . . 0
α1 β1 γ1 β1 α1 0 . . . 0

. . . . . . . . .
0 . . . 0 α1 β1 γ1 β1 α1

0 . . . 0 0 α1 β1 γ1 β1

0 . . . 0 0 0 ω3 ω2 ω1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ω0 0 0 0 0 0 0 . . . 0
1 0 0 0 0 0 0 . . . 0
0 0 0 0 0 0 0 . . . 0

. . . . . . . . .
0 . . . 0 0 0 0 0 0 0
0 . . . 0 0 0 0 0 0 1
0 . . . 0 0 0 0 0 0 ω0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

4.1 Calculation of truncation error
Equation (44) can be written in the following form:

h4(α1Sp+1
i–2 + β1Sp+1

i–1 + γ1Sp+1
i + β1Sp+1

i+1 + α1Sp+1
i+2

)

+ αβ
(
Sp+1

i–2 – 4Sp+1
i–1 + 6Sp+1

i – 4Sp+1
i+1 + Sp+1

i+2
)

= h4(1 – b1)
(
α1Sp

i–2 + β1Sp
i–1 + γ1Sp

i + β1Sp
i+1 + α1Sp

i+2
)

+
b–1∑

j=1

h4(bj – bj+1) +
(
α1Sp–j

i–2 + β1Sp–j
i–1 + γ1Sp–j

i + β1Sp–j
i + α1Sp–j

i+2
)

+ h4bp(α1vi–2 + β1vi–1 + γ1vi + β1vi+1 + α1vi+2)

+ h4β
(
α1up+1

i–2 + β1up+1
i–1 + γ1up+1

i + β1up+1
i+1 + α1up+1

i+2
)
, p = 1, 2, 3, . . . , K – 1. (52)

Expanding equation (52) with Taylor series in terms of S(xi, tp) and its spatial derivatives,
the truncation error is obtained as follows:

Ti =
(

(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

Sp+1
i

+ βγ

(

h4D4
x +

1
6

h6D6
x +

1
80

h8D8
x + · · ·

)

Sp+1
i
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–
(

(1 – b1)(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

Sp
i

–

( b–1∑

j=1

(pj – pj+1)(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x

+
(

4
3
α1 + β1

)

h8D4
x + · · ·

)

Sp–j
i

–
(

bp(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

vi

–
(

β(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

up+1
i

or

Ti =
(

(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

Sp+1
i

+ βγ

(

h4D4
x +

1
6

h6D6
x +

1
80

h8D8
x + · · ·

)

Sp+1
i

–
(

(1 – b1)(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

Sp
i

–

( p–1∑

j=1

(bj – bj+1)(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x

+
(

4
3
α1 + β1

)

h8D4
x + · · ·

)

Sp–j
i

–
(

bp(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

S0
i

–
(

β(2α1 + 2β1 + γ1)h4 + (4α1 + β1)h6D2
x +

(
4
3
α1 + β1

)

h8D4
x + · · ·

)

× (
D2–α

t + γ D4
x
)
Sp+1

i . (53)

Using (52) and (53), we have

Ti =
(
μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )Sp+1

i + αβ

(

h4D4
x +

1
6

h6D6
x

+
1

80
h8D8

x + · · ·
)

Sp+1
i –

(
(1 – b1)μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )Sp

i

–

( p–1∑

j=1

(bj – bj+1)μ1h4 + μ2h6D2
x + μ3h8D4

x + · · ·
)

Sp–j
i – bp

(
μ1h4 + μ2h6D2

x

+ μ3h8D4
x + · · · )S0

i – β
(
μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )Sp+1

i , (54)

where

μ1 = 2α1 + 2β1 + γ1, μ2 = 4α1 + β1, and μ3 =
4
3
α1 + β1.
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Equation (54) along with Theorem 2 gives the following result:

Ti =
(
μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )Sp+1

i + αβ

(

h4D4
x +

1
6

h6D6
x +

1
80

h8D8
x + · · ·

)

Sp+1
i

–
(
(1 – b1)μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )Sp

i –

( p–1∑

j=1

(bj – bj+1)μ1h4

+ μ2h6D2
x + μ3h8D4

x + · · ·
)

Sp–j
i – bp

(
μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )S0

i

– β
(
μ1h4 + μ2h6D2

x + μ3h8D4
x + · · · )(D2–γ

t + αD4
x
)
Sp+1

i . (55)

From the above discussion it is concluded that the proposed numerical scheme is of O(h4 +
�t2–γ ).

5 Numerical results
In this section, we consider three test problems to check the validity and efficiency of the
proposed numerical scheme. The approximate results are compared with quintic spline
collocation method (QnSM) used in [21]. All the computations are executed in Mathe-
matica 9.0. The accuracy of the presented technique is tested by error norms L∞, L2 and
order of convergence (χ ), which are calculated as follows:

L∞ = max |yi – Yi|, L2 =

√∑n
i=0 |yi – Yi|2
∑n

i=0 |yi|2 ,

χ =
1

log(2)

[

log
L∞(n)

L∞(2n)

]

,

where yi, Yi represent the exact and approximate solution at the ith knot, respectively.

Problem 1 Consider the fourth-order time fractional PDE [21]:

∂γ y
∂tγ

+ α
∂4y
∂x4 = u(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T ,

with the initial condition

y(x, 0) = sin(πx)

and the boundary conditions

y(0, t) = y(1, t) = 0, yxx(0, t) = yxx(1, t) = 0.

The exact solution is y(x, t) = sin(πx)et . The computational error norms L∞ and L2 cor-
responding to different values of γ are listed in Table 1 when α = 0.01 and n = 100. It is
obvious that our proposed computational approach produces more accurate results with
�t = 0.01 as compared to QnSM used in [21] with �t = 0.000001. A comparison of L∞, L2

and order of convergence χ with QnSM [21] at t = 1 corresponding to γ = 0.5 and �t = h
is reported in Table 2. It is observed that the order of convergence in numerical results
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Table 1 Comparison of absolute error for Problem 1 when n = 100

γ Method in [21] Proposed method

�t = 0.000001, t = 0.0001 �t = 0.01, t = 1

L∞ L2 L∞ L2

0.25 1.2346× 10–5 8.7299× 10–7 6.4023× 10–8 1.6489× 10–8

0.50 1.7841× 10–6 1.2616× 10–7 5.6896× 10–8 1.7455× 10–8

0.75 5.1222× 10–7 6.6219× 10–8 4.0157× 10–8 1.3770× 10–9

1.00 9.2130× 10–7 6.5146× 10–8 9.0571× 10–9 3.3451× 10–9

Table 2 Computational error norms and order of convergence for Problem 1 when �t = h

n Method in [21] Proposed method

�t = 0.000001, t = 0.0001 �t = 0.01, t = 1

L∞ χ L2 χ L∞ χ L2 χ

10 – – – – 5.3290× 10–4 – 1.5741× 10–4 –
20 1.3279× 10–2 – 2.0995× 10–3 – 2.9936× 10–5 4.1539 8.2199× 10–4 4.2592
40 4.4730× 10–3 1.5700 8.0009× 10–4 1.3918 1.5100× 10–6 4.3092 4.5177× 10–8 4.1873
80 1.5282× 10–3 1.5496 3.2081× 10–5 1.3183 7.5135× 10–8 4.3289 2.7099× 10–8 4.0573
160 5.2715× 10–4 1.5357 9.9469× 10–5 1.6892 4.2651× 10–9 4.1388 1.6778× 10–9 4.0136

Figure 1 Exact and approximate solution for Problem 1 when n = 100, �t = 0.01, and γ = 0.25

Figure 2 Absolute error for Problem 1 using
n = 100, �t = 0.01, and γ = 0.25

exhibits a good agreement with the theoretical estimation. In Fig. 1, three-dimensional
visuals of exact and approximate solutions are displayed for n = 100, �t = 0.01. The abso-
lute numerical error at t = 1 corresponding to n = 100, �t = 0.01, and γ = 0.5 is portrayed
in Fig. 2.
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Table 3 Comparison of absolute errors for Problem 2 when n = 100

γ Method in [21] Proposed method

�t = 0.000001, t = 0.0001 �t = 0.01, t = 1

L∞ L2 L∞ L2

0.25 9.6400× 10–7 6.8165× 10–8 9.5143× 10–9 9.2399× 10–9

0.50 9.9135× 10–7 7.0099× 10–8 8.9541× 10–9 8.4093× 10–9

0.75 9.9997× 10–7 7.0709× 10–8 9.7525× 10–9 8.2487× 10–9

1.00 1.0000× 10–6 7.0711× 10–8 9.8911× 10–9 9.0927× 10–9

Table 4 Computational error norms and order of convergence for Problem 2 when γ = 0.5

n Method in [21] Proposed method

�t = 0.000001, t = 0.0001 �t = 0.01, t = 1

L∞ χ L2 χ L∞ χ L2 χ

20 1.0861× 10–2 – 1.7173× 10–3 – 9.5789× 10–4 – 9.4891× 10–4 –
40 3.9014× 10–3 1.4771 5.3619× 10–4 1.6793 4.9968× 10–5 4.2606 4.8987× 10–5 4.2763
80 1.3892× 10–3 1.4897 2.0983× 10–4 1.3535 2.4519× 10–6 4.3490 2.4361× 10–6 4.3291
160 4.9276× 10–4 1.4953 6.7546× 10–5 1.6353 1.2826× 10–7 4.2567 1.2943× 10–7 4.2578

Problem 2 Consider the following fourth-order time fractional PDE [21]:

∂γ y
∂tγ

+ 0.05
∂4y
∂x4 = u(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T ,

with the initial condition

y(x, 0) = 0

and the boundary conditions

y(0, t) = y(1, t) = 0,

yxx(0, t) = yxx(1, t) = 0.

The closed form solution is y(x, t) = t sin(πx). The computational error norms L∞ and L2

for n = 100 and different choices of γ are presented in Table 3. It can be observed that our
presented approach yields more accurate results with �t = 0.01 as compared to QnSM
employed in [21] with �t = 0.000001. Table 4 presents the error norms L∞, L2 and the
corresponding order of convergence at t = 1 for �t = h and γ = 0.5. Figure 3 shows three-
dimensional plots of exact and approximate solutions for n = 100, �t = 0.01, and γ = 0.5.
The absolute numerical error at t = 1 corresponding to n = 100, �t = 0.01, and γ = 0.25 is
portrayed in Fig. 4.

Problem 3 Consider the fourth-order time fractional PDE [21]:

∂γ y
∂tγ

+ 0.05
∂4y
∂x4 = u(x, t), 0 ≤ x ≤ 1, 0 < t ≤ T ,

with the initial condition

y(x, 0) = sinπx,
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Figure 3 Exact and approximate solution for Problem 2 when n = 100, �t = 0.01, and γ = 0.5

Figure 4 Absolute error for Problem 2 when
n = 100, �t = 0.01, and γ = 0.5

Table 5 Comparison of absolute errors for Problem 3 when n = 40

γ Method in [21] Proposed method

�t = 0.000001, t = 0.0001 �t = 0.01, t = 1

L∞ L2 L∞ L2

0.25 – – 8.7834× 10–8 7.1567× 10–8

0.50 2.1423× 10–4 2.3952× 10–5 3.5666× 10–8 1.5945× 10–8

0.75 – – 5.5943× 10–8 3.4214× 10–8

1.00 2.6524× 10–5 2.9654× 10–6 1.4199× 10–8 7.1879× 10–9

and the boundary conditions

y(0, t) = y(1, t) = 0, yxx(0, t) = yxx(1, t) = 0.

The analytical exact solution is y(x, t) = (t + 1) sinπx. Table 5 shows a comparison of
computational error norms with QnSM [21] corresponding to different selections of γ .
It is found that our computational outcomes are better than QnSM [21]. In Fig. 5, three-
dimensional visuals of exact and approximate solutions are displayed for n = 40, γ = 0.5,
and �t = 0.01. The absolute numerical error at t = 1 corresponding to n = 40, �t = 0.01,
and γ = 0.5 is portrayed in Fig. 6. It is obvious that approximate solution is highly con-
sistent with the analytical exact solution, which proves the effectiveness of the proposed
scheme.

6 Conclusion
In this work, non-polynomial quintic spline collocation method has been employed for ap-
proximate solution of fourth-order time fractional partial differential equations. The back-
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Figure 5 Exact and approximate solution for Problem 3 when γ = 0.5, n = 40, and �t = 0.01

Figure 6 Absolute error for Problem 3 when n = 40,
�t = 0.01, and γ = 0.5

ward Euler method has been used for temporal discretization, whereas non-polynomial
quintic spline function composed of a trigonometric part and a polynomial part has been
employed to interpolate the unknown function in spatial direction. The proposed numer-
ical algorithm is proved to be convergent and unconditionally stable. The numerical out-
comes are found to be more accurate as compared to QnSM [21].
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