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Abstract
In this paper, the mean-square asymptotical heterogeneous synchronization of
interdependent networks with stochastic disturbances, which is a zero-mean real
Wiener process, is investigated. The network discussed consists of two sub-networks,
which are one-by-one inter-coupled. The unknown but bounded nonlinear coupling
functions not only exist in the intra-coupling but also in the inter-coupling between
two sub-networks. Based on the stochastic Lyapunov stability theory, adaptive
control, Itô formula and the linear matrix inequality, several sufficient conditions are
proposed to guarantee adaptive mean-square heterogeneous asymptotical
synchronization of the interdependent networks. In order to better illustrate the
feasibility and effectiveness of the synchronization conditions derived in this brief,
numerical simulations are provided finally.
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1 Introduction
Interdependent networks are a special form of complex networks which are coupled by
two or more sub-networks. With the progress of science and technology, there are more
and more dependencies in different infrastructures or systems. Most of the modern so-
ciety infrastructures or systems are interdependent networks, such as electric-calculator
networks [1], traffic-transportation networks [2], and so on. A typical example for interde-
pendent networks is the Italian electrical destruction on Sept. 28th, 2003. The shutdown
of power stations directly led to the failure of nodes in the computer networks, which in
turn caused deeper breakdown of power stations [1, 3]. Buldyrev et al. firstly proposed the
interdependent networks in 2010, which opened the new chapter of complex networks
[4]. They reveal that the failure of a node in one sub-network may cause the failure of in-
terdependent nodes in other sub-networks. The investigation and growing understanding
of the interdependent networks will enable us to make the infrastructures we use in every-
day life more efficient and more robust. From then on, the investigation of interdependent
networks became an issue of focus in the network science [5].

Recently, there have been some results for interdependent networks [6–12]. In Ref. [6],
Zhang et al. extended the system’s robustness under different attack strategies. In Ref.
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[7], Ji et al. improved the robustness of interdependent networks by adding connectivity.
In Ref. [8], Xu et al. studied the generalized mutual synchronization between two con-
trolled interdependent networks. In Ref. [9], the authors explored the local adaptive het-
erogeneous synchronization for interdependent networks with delayed coupling consist-
ing of two sub-networks. In Ref. [10], the author proposed new methods for improving the
robustness of interdependent networks. In Ref. [12], the author studied the coevolution
of strategy and network interdependence. When investigating interdependent networks,
stochastic disturbances are inevitable and should be considered. They exist everywhere
[13–15]. Interdependent networks usually are affected by stochastic disturbances. For ex-
ample, information transmission is a noisy process, which may affect the accuracy of mes-
sages. However, until now, there has been little research on interdependent networks with
stochastic perturbations.

Synchronization is an interesting and meaningful issue in the research of complex net-
works. The investigation of synchronization for dynamical systems was initiated in the
early 1980s for deterministic chaos. At present, many scholars have explored the synchro-
nization of complex networks [16–18]. Due to the disturbances of networks, there have
been many works in the field of synchronization for complex networks with stochastic dis-
turbances [19–25]. In Ref. [19], the finite-time stochastic synchronization of time-delay
neural networks with noise was investigated. In Ref. [23], the author studied the finite-
/fixed-time pinning synchronization of complex networks with stochastic disturbances.
In Ref. [24], the synchronization between each node in the drive layer and its counter-
part in the response layer of this sort of duplex networks with delayed nodes and noise
perturbation is explored. Though there is increasing research relating to the synchroniza-
tion of interdependent networks [8, 9, 26], few people have explored the synchronization
problem of interdependent networks with stochastic disturbances.

Motivated by the above-mentioned issues, in this paper, we discuss the synchroniza-
tion of interdependent networks with stochastic disturbances. The whole of the networks
consists of two sub-networks with “one-by-one” interdependence. Based on the stochastic
Lyapunov stability theory, adaptive control, the Itô formula and the linear matrix inequal-
ity, some control schemes related to mean-square heterogeneous synchronization are ob-
tained in this paper. In the end, some simulations verify the feasibility and effectiveness of
our conclusions.

2 Preliminaries
Considering interdependent networks which have two sub-networks G1 and G2, each sub-
network consisting of N identical dynamical nodes with nonlinear couplings and stochas-
tic disturbances. It can be characterized by
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where xk
i = (xk

i1, xk
i2, . . . , xk

in) ∈ Rn are the state variables of the ith node in the kth sub-
network, f k : Rn → Rn is a continuous but bounded nonlinear function, dk is the intra-
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coupling strength of the kth sub-network, ckl is the inter-coupling strength between the
kth sub-network and the lth sub-network, it satisfying

c11 = c22 = –c and c12 = c21 = c. (2)

Ak = (Ak
ij)N×N is the intra-coupling configuration matrix of the kth sub-network. If there

exists a connection from the ith node to the jth node in the kth sub-network, then Ak
ij =

Ak
ji = 1, otherwise, Ak

ij = 0. At the same time, Ak satisfying

Ak
ii = –

N∑

j=1
j �=i

Ak
ij = –

N∑

j=1
j �=i

Ak
ji, i = 1, 2, . . . , N . (3)

Hk : Rn → Rn is the coupling function of the kth sub-network, Bk is a nonlinear and
bounded function, and W (t) is a zero-mean real Wiener process satisfying

E
(
dW (t)

)
= 0, E

((
dW (t)

)T(
dW (t)

))
= dt.

Adding suitable controllers uk
i (t) to the interdependent networks (1), we get
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dW (t),

k = 1, 2; l = 1, 2. (4)

Definition 1 (Mean-square heterogeneous asymptotical synchronization) The interde-
pendent networks (1) are said to achieve mean-square heterogeneous asymptotical syn-
chronization if

lim
t→∞ E

(∥∥xk
i (t) – sk(t)

∥
∥2) = 0, i = 1, 2, . . . , N , k = 1, 2, (5)

where sk(t) ∈ Rn (k = 1, 2) is a solution of an isolated node of the kth sub-network, namely

ṡk(t) = f k(sk(t)
)
, k = 1, 2. (6)

Equation (6) can be rewritten as

ṡk(t) = f k(sk(t)
)

+ dk
N∑

j=1

Ak
ijH

k(sk(t)
)

+
2∑

l=1

ckl(Hk(sl(t)
)

– Hk(sl(t)
))

,

k = 1, 2, l = 1, 2. (7)

Remark 1 In this paper, we mainly discuss the mean-square heterogeneous asymptotical
synchronization of interdependent networks (4) under the controllers uk

i (t).
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In order to better illustrate the results of this paper, the following assumptions and lem-
mas are introduced.

Assumption 1 Suppose that there exists a constant matrix Lr with appropriate dimen-
sions such that

∥∥f
(
x1(t)

)
– f

(
x2(t)

)∥∥ ≤ ∥∥Lr
(
x1(t) – x2(t)

)∥∥, r = 0, 1,

for ∀x1(t), x2(t) ∈ Rn.

Assumption 2 Assume that Ĥ(t) = DH1(s1(t)) = (ĥij(t))n×n ∈ Rn×n is the Jacobian matrix
of H1(x1

i (t)) at s1(t), and denote Ĥ = (ĥij)n×n ∈ Rn×n, where ĥij is the maximum value of
ĥij(t). Similarly, H̃(t) = DH2(s2(t)) = (h̃ij(t))n×n ∈ Rn×n is the Jacobian matrix of H2(x2

i (t)) at
s2(t), and let H̃ = (h̃ij)n×n ∈ Rn×n, where h̃ij is the maximum value of h̃ij(t).

Assumption 3 Suppose that there exists a constant matrix Lr with suitable dimensions
such that

B
(
t, x(t) – y(t)

) ≤ ∥∥Lr
(
x(t) – y(t)

)∥∥, r = 2, 3,

for all x(t), y(t) ∈ Rn.
Let the synchronization error be ek

i (t) = xk
i (t) – sk(t) (i = 1, 2, . . . , N , k = 1, 2). Then the

error system can be described as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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i (t)) dW (t),

d(e2
i (t)) = [(f 2(x2

i (t)) – f 2(s2(t)))

+ d2 ∑N
j=1 A2

ijH̃(t)e2
j (t) + cH2(s1(t)) – cH2(s2(t))

+
∑2

l=1 c2lH̃(t)el
i(t) + u2

i (t)] dt + B2(t, e2
i (t)) dW (t).

(8)

Remark 2 The mean-square heterogeneous asymptotical synchronization for interdepen-
dent networks (1) also can be obtained if

lim
t→∞ E

(∥∥ek
i (t)

∥
∥2) = 0. (9)

Therefore, in the following, we mainly discuss the mean-square heterogeneous asymp-
totical stability at the origin for the system (8).

Remark 3 Let I represent the identity matrix with the appropriate dimensions.

Lemma 1 ([27]) For any matrices X, Y ∈ Rn×n, the following matrix inequality holds:

XTY + Y TX ≤ XTAX + Y TA–1Y ,

in which AT = A > 0, A ∈ Rn×n.
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Lemma 2 (Schur complement [28]) Assume Q(x) = Q(x)T, R(x) = R(x)T and S(x) all the
functions of x, the following linear matrix inequality:

[
Q(x) S(x)
S(x)T R(x)

]

< 0,

is equivalent to any of the following conditions:

(1) R(x) < 0, Q(x) – S(x)R(x)–1S(x)T < 0,

(2) Q(x) < 0, R(x) – S(x)TQ(x)–1S(x) < 0.

3 Main results
In this section, according to stochastic Lyapunov stability theory, adaptive control method
and the Itô formula, combined with the linear matrix inequality, with suitable adaptive
controllers, adaptive mean-square heterogeneous asymptotical synchronization of the in-
terdependent networks (1) is investigated.

Theorem 1 Suppose that Assumptions 1–3 hold, and there exist two positive matrices P
and Q, such that

Λ =

⎡

⎢⎢
⎢
⎣

T̃1
i Φ Θ1 0

ΦT T̃2
i 0 Θ2

Θ1T 0 Ψ 1 0
0 Θ2T 0 Ψ 2

⎤

⎥⎥
⎥
⎦

< 0, (10)

where

T̃1
i = λ1LT

0 L0 + P + d1
N∑

j=1

∣∣A1
ji
∣∣I + λ1LT

2 L2 – cĤTP – cPĤ – 2dP,

T̃2
i = λ2LT

1 L1 + Q + d2
N∑

j=1

∣
∣A2

ji
∣
∣I + λ2LT

3 L3 – cH̃TQ – cQH̃ – 2dQ,

Φ = cPĤ + cH̃TQ, Θ1 = PĤ , Θ2 = QH̃ ,

Ψ 1 =
–1

d1 ∑N
j=1 |A1

ij|
I, Ψ 2 =

–1
d2 ∑N

j=1 |A2
ij|

I,

in which L0, L1, L2 and L3 are constant matrices with suitable dimensions, λ1 and λ2 are
the maximum eigenvalues of the matrix P and Q, respectively, then the interdependent net-
works (1) can obtain adaptive mean-square heterogeneous asymptotical synchronization
under the control law

⎧
⎨

⎩
u1

i (t) = cH1(s1(t)) – cH1(s2(t)) – d1
i e1

i (t),

u2
i (t) = cH2(s2(t)) – cH2(s1(t)) – d2

i e2
i (t),

(11)
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and the adaptive law
⎧
⎨

⎩
ḋ1

i = k1
i e1

i (t)TPe1
i (t),

ḋ2
i = k2

i e2
i (t)TQe2

i (t),
(12)

where d is the estimation of d1
i and d2

i . k1
i and k2

i are the feedback gains of sub-networks G1

and G2.

Proof According to control law (11) and adaptive law (12), we can rewrite the error system
(8) in the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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+ d1 ∑N
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(13)

Construct the following Lyapunov function:
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i
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(d2
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i

]
. (14)

Then with the Itô formula, the derivative of V (t) on the system (13) is as follows:

dV (t) =
N∑

i=1
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de1

i (t)TPe1
i (t) + e1

i (t)TP de1
i (t) + d
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j (t)TĤ(t)TPe1

i (t) + e1
i (t)TP

(
f 1(x1

i (t)
)

– f 1(s1(t)
))

+ d1
N∑

j=1

A1
ije

1
i (t)TPĤ(t)e1
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+
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}
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+
N∑

i=1

{[
ce2

i (t)TĤ(t)TPe1
i (t) – ce1

i (t)TĤ(t)TPe1
i (t) + ce1

i (t)TPĤ(t)e2
i (t)

– ce1
i (t)TPĤ(t)e1

i (t)
]

dt +
[
ce1

i (t)TH̃(t)TQe2
i (t) – ce2

i (t)TH̃(t)TQe2
i (t)

+ ce2
i (t)TQH̃(t)e1

i (t) – ce2
i (t)TQH̃(t)e2

i (t)
]

dt

–
[
2de1

i (t)TPe1
i (t) + 2de2

i (t)TQe2
i (t)

]
dt

}

+
N∑

i=1

{[
B1(t, e1

i (t)
)TPB1(t, e1

i (t)
)]

dt +
[
2e1

i (t)TPB1(t, e1
i (t)

)]
dW (t)

+
[
B2(t, e2

i (t)
)TQB2(t, e2

i (t)
)]

dt +
[
2e2

i (t)TQB2(t, e2
i (t)

)]
dW (t)

}
. (15)

With Assumption 1 and Lemma 1, we have

N∑

i=1

{[
f 1(x1

i (t)
)

– f 1(s1(t)
)]TPe1

i (t) + e1
i (t)TP

[
f 1(x1

i (t)
)

– f 1(s1(t)
)]}

≤
N∑

i=1

[
f 1(x1

i (t)
)

– f 1(s1(t)
)]TP

[
f 1(x1

i (t)
)

– f 1(s1(t)
)]

+
N∑

i=1

e1
i (t)TPe1

i (t)

≤ λ1
N∑

i=1

∥
∥f 1(x1

i (t)
)

– f 1(s1(t)
)∥∥2 +

N∑

i=1

e1
i (t)TPe1

i (t)

≤ λ1
N∑

i=1

e1
i (t)TLT

0 L0e1
i (t) +

N∑

i=1

e1
i (t)TPe1

i (t).

Similarly,

N∑

i=1

{[
f 2(x2

i (t)
)

– f 2(s2(t)
)]TQe2

i (t) + e2
i (t)TQ

[
f 2(x2

i (t)
)

– f 2(s2(t)
)]}

≤ λ2
N∑

i=1

e2
i (t)TLT

1 L1e2
i (t) +

N∑

i=1

e2
i (t)TQe2

i (t).

Furthermore, using Assumption 2 and Lemma 1, we have

d1
N∑

j=1

A1
ije

1
j (t)TĤ(t)TPe1

i (t) + d1
N∑

j=1

A1
ije

1
i (t)TPĤ(t)e1

j (t)

≤ d1
N∑

j=1

∣
∣A1

ij
∣
∣[e1

j (t)TĤTPe1
i (t) + e1

i (t)TPĤe1
j (t)

]

≤ d1
N∑

j=1

∣
∣A1

ij
∣
∣[e1

j (t)Te1
j (t) + e1

i (t)PĤĤTPe1
i (t)

]

= d1
N∑

j=1

∣∣A1
ji
∣∣e1

i (t)Te1
i (t) + d1

N∑

j=1

∣∣A1
ij
∣∣e1

i (t)TPĤĤTPe1
i (t).
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Using the same method, we have

d2
N∑

j=1

A2
ije

2
j (t)TH̃(t)TQe2

i (t) + d2
N∑

j=1

A2
ije

2
i (t)TQH̃(t)e2

j (t)

≤ d2
N∑

j=1

∣
∣A2

ji
∣
∣e2

i (t)Te2
i (t) + d2

N∑

j=1

∣
∣A2

ij
∣
∣e2

i (t)TQH̃H̃TQe2
i (t).

With Assumption 3, we have

N∑

i=1

B1(t, e1
i (t)

)TPB1(t, e1
i (t)

) ≤
N∑

i=1

λ1B1(t, e1
i (t)

)TB1(t, e1
i (t)

) ≤ λ1
N∑

i=1

e1
i (t)TLT

2 L2e1
i (t)

and

N∑

i=1

B2(t, e2
i (t)

)TQB2(t, e2
i (t)

) ≤ λ2
N∑

i=1

e2
i (t)TLT

3 L3e2
i (t).

Therefore, according to the discussion mentioned above, equality (15) is

dV (t) ≤
N∑

i=1

{[

e1
i (t)T

(

λ1LT
0 L0 + P + d1

N∑

j=1

∣
∣A1

ji
∣
∣I + λ1LT

2 L2 – 2dP

+ d1
N∑

j=1

∣
∣A1

ij
∣
∣PĤĤTP – cĤTP – cPĤ

)

e1
i (t)

]

dt

+ e2
i (t)T

(

λ2LT
1 L1 + Q + d2

N∑

j=1

∣∣A2
ji
∣∣I + λ2LT

3 L3 – 2dQ

+ d2
N∑

j=1

∣∣A2
ij
∣∣QH̃H̃TQ – cH̃TQ – cQH̃

)

e2
i (t)] dt

}

+
N∑

i=1

{[
e2

i (t)T(
cĤTP + cQH̃

)
e1

i (t)
]

dt +
[
e1

i (t)T(
cPĤ + cH̃TQ

)
e2

i (t)
]

dt
}

+
N∑

i=1

{[
2e1

i (t)TPB1(t, e1
i (t)

)]
dW (t) +

[
2e2

i (t)TQB2(t, e2
i (t)

)]
dW (t)

}
, (16)

in which

T1
i = λ1LT

0 L0 + P + d1
N∑

j=1

∣∣A1
ji
∣∣I + λ1LT

2 L2 + d1
N∑

j=1

∣∣A1
ij
∣∣PĤĤTP – cĤTP – cPĤ – 2dP,

T2
i = λ2LT

1 L1 + Q + d2
N∑

j=1

∣
∣A2

ji
∣
∣I + d2

N∑

j=1

∣
∣A2

ij
∣
∣QH̃H̃TQ + λ2LT

3 L3 – cH̃TQ – cQH̃ – 2dQ,

and

Φ = cPĤ + cH̃TQ.
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According to stochastic Lyapunov stability theory, we can guarantee the mean-square
heterogeneous asymptotical synchronization of interdependent networks (1) under the
adaptive control law (11) if

[
T1

i Φ

ΦT T2
i

]

< 0. (17)

At the same time, it should be noted that the inequality (17) is not the standard linear
matrix inequality, it can be written equivalently as inequality (10) with Lemma 2.

Thus, the proof is completed. �

The discussions above tell us that if there exist two positive matrices P and Q satisfy-
ing LMI (10), then the interdependent networks (1) with stochastic disturbances reach
mean-square heterogeneous asymptotical synchronization. When there are no stochastic
disturbances, with similar methods to the proof of Theorem 1, Corollary 1 leads to the
interdependent networks (1) to adaptive heterogeneous synchronization.

Corollary 1 Suppose Assumptions 1–3 hold. If there exist two positive matrices P and Q,
such that

Λ =

⎡

⎢⎢
⎢
⎣

T̃1
i Φ Θ1 0

ΦT T̃2
i 0 Θ2

Θ1T 0 Ψ 1 0
0 Θ2T 0 Ψ 2

⎤

⎥⎥
⎥
⎦

< 0, (18)

where

T̃1
i = λ1LT

0 L0 + P + d1
N∑

j=1

∣
∣A1

ji
∣
∣I – cĤTP – cPĤ – 2dP,

T̃2
i = λ2LT

1 L1 + Q + d2
N∑

j=1

∣∣A2
ji
∣∣I – cH̃TQ – cQH̃ – 2dQ,

Φ = cPĤ + cH̃TQ, Θ1 = PĤ , Θ2 = QH̃ ,

Ψ 1 =
–1

d1 ∑N
j=1 |A1

ij|
I, Ψ 2 =

–1
d2 ∑N

j=1 |A2
ij|

I,

then the interdependent networks (1) without stochastic disturbances reach adaptive het-
erogeneous synchronization under the control law (11) and the adaptive law (12).

4 Simulations
In this section, some examples are shown to verify the feasibility and effectiveness of the
conditions presented in Sect. 3. The sub-network G1 is a BA network which consists of
100 nodes, where the average degree is 6.0800, the average path length is 2.5440 and the
clustering coefficient is 0.2094. The sub-network G2 is a SW network which has the same
nodes. Among them, the average degree is 10.4000, the average path length is 2.4180 and
the clustering coefficient is 0.4191. All the simulations take the Rössler system and Lü
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system as the dynamical system of the nodes in the sub-network G1 and the sub-network
G2, separately. The Rössler system can be described by [29]

⎧
⎪⎪⎨

⎪⎪⎩

ẋi1 = –(xi2 + xi3),

ẋi2 = xi1 + a1xi2,

ẋi3 = a2 + xi3(xi1 – a3),

i = 1, 2, . . . , 100,

where a1, a2, a3 are real constants. While a1 = 0.5, a2 = 0.2, a3 = 5.7, the Rössler system is
chaotic. At the same time, the Lü system can be described by [29]

⎧
⎪⎪⎨

⎪⎪⎩

ẏi1 = b1(yi2 – yi1),

ẏi2 = –yi1yi3 + b2yi2,

ẏi3 = yi1yi2 – b3yi3,

i = 1, 2, . . . , 100.

When b1 = 36, b2 = 20, b3 = 3, the Lü system is chaotic.
Let the coupling functions be as follows:

H
(
xi(t)

)
=

(
–xi1(t), xi2(t),

(
xi3(t)

)2),

and

H
(
yi(t)

)
=

(
–yi1(t), yi2(t),

(
yi3(t)

)2).

In addition, we let

B
(
xi(t)

)
=

(
sin

(
xi1(t) – s1

1(t)
)
, xi2(t) – s1

2(t), sin
(
xi3(t) – s1

3(t)
))

,

and

B
(
yi(t)

)
=

(
sin

(
yi1(t) – s2

1(t)
)
, yi2(t) – s2

2(t), sin
(
yi3(t) – s2

3(t)
))

.

Furthermore, we assume c = 0.26, d1 = d2 = 0.8, adaptive law initial values d1
i = 0.04 ∗ i,

d2
i = 1.5 ∗ i, and feedback gains k1

i = k2
i = 1. The initial values of the isolated systems are

l1 = (5, –8, 2) and l2 = (–6, 8, 5), respectively. The initial values of sub-network G1 and G2

are xi = (–0.01∗ i, 0.1∗ i, 0.5∗ i) and yi = (–2∗ i, 0.05∗ i, 0.15∗ i), i = 1, 2, . . . , 100, separately.
Figures 1 and 2 display the trajectories of sub-network G1 and sub-network G2 without

controllers. The trajectories of sub-network G1 and sub-network G2 nodes are chaotic or
uncontrollable with time. According to LMI (10), using LMI Control Toolbox, there exist
the following positive matrices P and Q satisfying the condition (10):

P =

⎡

⎢
⎣

1.3811 0.0014 0.4292
0.0014 0.5315 0.0242
0.4292 0.0242 0.4677

⎤

⎥
⎦ , Q =

⎡

⎢
⎣

3.4637 0.0962 0.6452
0.0962 2.0463 0.2969
0.6452 0.2969 0.7271

⎤

⎥
⎦ .

With the suitable controllers (11), the trajectories of the error systems tend to zero
quickly in Figs. 3 and 4. They tell us that the interdependent networks (1) have reached
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Figure 1 Trajectories of G1 without controller

Figure 2 Trajectories of G2 without controller

its mean-square heterogeneous asymptotical synchronization. It is worth noting that the
adaptive law also reaches the stable values while the error systems are asymptotically stable
at the origin (see Figs. 5 and 6). They show the feasibility and effectiveness of the condi-
tions provided in this paper.

5 Conclusions
In the real world, many critical infrastructures or systems interact with and depend on
each other. Recently, protecting and improving such critical infrastructures or systems
using network science has become more and more important. In this paper, we mainly
investigate the mean-square heterogeneous asymptotical synchronization of interdepen-
dent networks with stochastic disturbances. Compared with Refs. [19–22, 30], our net-
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Figure 3 Trajectories of the error system (8) about G1

Figure 4 Trajectories of the error system (8) about G2

works not only have the intra-coupling connections but also have the inter-coupling de-
pendence with each other. Compared with Refs. [13, 14], stochastic disturbances exist
our networks. Based on the stochastic Lyapunov stability theory, adaptive control, the
Itô formula and the linear matrix inequality, some sufficient conditions are given to en-
sure the mean-square heterogeneous asymptotical synchronization for the interdepen-
dent networks. Finally, some illustrative examples are given to verify the accuracy and
effectiveness of the proposed theory. Simulations show that the given results in this pa-
per perform very well. The results and understandings of this paper can be instructive for
protecting or building more realistic interdependent networks, such as electric-calculator
networks and aviation-railway-road networks with stochastic disturbances. It also can be
used to deal with the problems of networks of networks.
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Figure 5 Trajectories of the adaptive law (12) about G1

Figure 6 Trajectories of the adaptive law (12) about G2
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